e4650125b8
This commit updates the esp32 port to work exclusively with ESP-IDF v5. IDF v5 is needed for some of the newer ESP32 SoCs to work, and it also cleans up a lot of the inconsistencies between existing SoCs (eg S2, S3, and C3). Support for IDF v4 is dropped because it's a lot of effort to maintain both versions at the same time. The following components have been verified to work on the various SoCs: ESP32 ESP32-S2 ESP32-S3 ESP32-C3 build pass pass pass pass SPIRAM pass pass pass N/A REPL (UART) pass pass pass pass REPL (USB) N/A pass pass N/A filesystem pass pass pass pass GPIO pass pass pass pass SPI pass pass pass pass I2C pass pass pass pass PWM pass pass pass pass ADC pass pass pass pass WiFi STA pass pass pass pass WiFi AP pass pass pass pass BLE pass N/A pass pass ETH pass -- -- -- PPP pass pass pass -- sockets pass pass pass pass SSL pass ENOMEM pass pass RMT pass pass pass pass NeoPixel pass pass pass pass I2S pass pass pass N/A ESPNow pass pass pass pass ULP-FSM pass pass pass N/A SDCard pass N/A N/A pass WDT pass pass pass pass Signed-off-by: Damien George <damien@micropython.org> Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
379 lines
15 KiB
C
379 lines
15 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2019 "Matt Trentini" <matt.trentini@gmail.com>
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include "py/runtime.h"
|
|
#include "modmachine.h"
|
|
#include "mphalport.h"
|
|
#include "modesp32.h"
|
|
|
|
#include "esp_task.h"
|
|
#include "driver/rmt.h"
|
|
|
|
// This exposes the ESP32's RMT module to MicroPython. RMT is provided by the Espressif ESP-IDF:
|
|
//
|
|
// https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/peripherals/rmt.html
|
|
//
|
|
// With some examples provided:
|
|
//
|
|
// https://github.com/espressif/arduino-esp32/tree/master/libraries/ESP32/examples/RMT
|
|
//
|
|
// RMT allows accurate (down to 12.5ns resolution) transmit - and receive - of pulse signals.
|
|
// Originally designed to generate infrared remote control signals, the module is very
|
|
// flexible and quite easy-to-use.
|
|
//
|
|
// This current MicroPython implementation lacks some major features, notably receive pulses
|
|
// and carrier output.
|
|
|
|
// Last available RMT channel that can transmit.
|
|
#define RMT_LAST_TX_CHANNEL (SOC_RMT_TX_CANDIDATES_PER_GROUP - 1)
|
|
|
|
// Forward declaration
|
|
extern const mp_obj_type_t esp32_rmt_type;
|
|
|
|
typedef struct _esp32_rmt_obj_t {
|
|
mp_obj_base_t base;
|
|
uint8_t channel_id;
|
|
gpio_num_t pin;
|
|
uint8_t clock_div;
|
|
mp_uint_t num_items;
|
|
rmt_item32_t *items;
|
|
bool loop_en;
|
|
} esp32_rmt_obj_t;
|
|
|
|
// Current channel used for machine.bitstream, in the machine_bitstream_high_low_rmt
|
|
// implementation. A value of -1 means do not use RMT.
|
|
int8_t esp32_rmt_bitstream_channel_id = RMT_LAST_TX_CHANNEL;
|
|
|
|
#if MP_TASK_COREID == 0
|
|
|
|
typedef struct _rmt_install_state_t {
|
|
SemaphoreHandle_t handle;
|
|
uint8_t channel_id;
|
|
esp_err_t ret;
|
|
} rmt_install_state_t;
|
|
|
|
STATIC void rmt_install_task(void *pvParameter) {
|
|
rmt_install_state_t *state = pvParameter;
|
|
state->ret = rmt_driver_install(state->channel_id, 0, 0);
|
|
xSemaphoreGive(state->handle);
|
|
vTaskDelete(NULL);
|
|
for (;;) {
|
|
}
|
|
}
|
|
|
|
// Call rmt_driver_install on core 1. This ensures that the RMT interrupt handler is
|
|
// serviced on core 1, so that WiFi (if active) does not interrupt it and cause glitches.
|
|
esp_err_t rmt_driver_install_core1(uint8_t channel_id) {
|
|
TaskHandle_t th;
|
|
rmt_install_state_t state;
|
|
state.handle = xSemaphoreCreateBinary();
|
|
state.channel_id = channel_id;
|
|
xTaskCreatePinnedToCore(rmt_install_task, "rmt_install_task", 2048 / sizeof(StackType_t), &state, ESP_TASK_PRIO_MIN + 1, &th, 1);
|
|
xSemaphoreTake(state.handle, portMAX_DELAY);
|
|
vSemaphoreDelete(state.handle);
|
|
return state.ret;
|
|
}
|
|
|
|
#else
|
|
|
|
// MicroPython runs on core 1, so we can call the RMT installer directly and its
|
|
// interrupt handler will also run on core 1.
|
|
esp_err_t rmt_driver_install_core1(uint8_t channel_id) {
|
|
return rmt_driver_install(channel_id, 0, 0);
|
|
}
|
|
|
|
#endif
|
|
|
|
STATIC mp_obj_t esp32_rmt_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
|
|
{ MP_QSTR_pin, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
|
|
{ MP_QSTR_clock_div, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, // 100ns resolution
|
|
{ MP_QSTR_idle_level, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, // low voltage
|
|
{ MP_QSTR_tx_carrier, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, // no carrier
|
|
};
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
mp_uint_t channel_id = args[0].u_int;
|
|
gpio_num_t pin_id = machine_pin_get_id(args[1].u_obj);
|
|
mp_uint_t clock_div = args[2].u_int;
|
|
mp_uint_t idle_level = args[3].u_bool;
|
|
mp_obj_t tx_carrier_obj = args[4].u_obj;
|
|
|
|
if (esp32_rmt_bitstream_channel_id >= 0 && channel_id == esp32_rmt_bitstream_channel_id) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("channel used by bitstream"));
|
|
}
|
|
|
|
if (clock_div < 1 || clock_div > 255) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("clock_div must be between 1 and 255"));
|
|
}
|
|
|
|
esp32_rmt_obj_t *self = m_new_obj_with_finaliser(esp32_rmt_obj_t);
|
|
self->base.type = &esp32_rmt_type;
|
|
self->channel_id = channel_id;
|
|
self->pin = pin_id;
|
|
self->clock_div = clock_div;
|
|
self->loop_en = false;
|
|
|
|
rmt_config_t config = {0};
|
|
config.rmt_mode = RMT_MODE_TX;
|
|
config.channel = (rmt_channel_t)self->channel_id;
|
|
config.gpio_num = self->pin;
|
|
config.mem_block_num = 1;
|
|
config.tx_config.loop_en = 0;
|
|
|
|
if (tx_carrier_obj != mp_const_none) {
|
|
mp_obj_t *tx_carrier_details = NULL;
|
|
mp_obj_get_array_fixed_n(tx_carrier_obj, 3, &tx_carrier_details);
|
|
mp_uint_t frequency = mp_obj_get_int(tx_carrier_details[0]);
|
|
mp_uint_t duty = mp_obj_get_int(tx_carrier_details[1]);
|
|
mp_uint_t level = mp_obj_is_true(tx_carrier_details[2]);
|
|
|
|
if (frequency == 0) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("tx_carrier frequency must be >0"));
|
|
}
|
|
if (duty > 100) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("tx_carrier duty must be 0..100"));
|
|
}
|
|
|
|
config.tx_config.carrier_en = 1;
|
|
config.tx_config.carrier_freq_hz = frequency;
|
|
config.tx_config.carrier_duty_percent = duty;
|
|
config.tx_config.carrier_level = level;
|
|
} else {
|
|
config.tx_config.carrier_en = 0;
|
|
}
|
|
|
|
config.tx_config.idle_output_en = 1;
|
|
config.tx_config.idle_level = idle_level;
|
|
|
|
config.clk_div = self->clock_div;
|
|
|
|
check_esp_err(rmt_config(&config));
|
|
check_esp_err(rmt_driver_install_core1(config.channel));
|
|
|
|
return MP_OBJ_FROM_PTR(self);
|
|
}
|
|
|
|
STATIC void esp32_rmt_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
|
|
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
if (self->pin != -1) {
|
|
bool idle_output_en;
|
|
rmt_idle_level_t idle_level;
|
|
check_esp_err(rmt_get_idle_level(self->channel_id, &idle_output_en, &idle_level));
|
|
mp_printf(print, "RMT(channel=%u, pin=%u, source_freq=%u, clock_div=%u, idle_level=%u)",
|
|
self->channel_id, self->pin, APB_CLK_FREQ, self->clock_div, idle_level);
|
|
} else {
|
|
mp_printf(print, "RMT()");
|
|
}
|
|
}
|
|
|
|
STATIC mp_obj_t esp32_rmt_deinit(mp_obj_t self_in) {
|
|
// fixme: check for valid channel. Return exception if error occurs.
|
|
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
if (self->pin != -1) { // Check if channel has already been deinitialised.
|
|
rmt_driver_uninstall(self->channel_id);
|
|
self->pin = -1; // -1 to indicate RMT is unused
|
|
m_free(self->items);
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp32_rmt_deinit_obj, esp32_rmt_deinit);
|
|
|
|
// Return the source frequency.
|
|
// Currently only the APB clock (80MHz) can be used but it is possible other
|
|
// clock sources will added in the future.
|
|
STATIC mp_obj_t esp32_rmt_source_freq(mp_obj_t self_in) {
|
|
return mp_obj_new_int(APB_CLK_FREQ);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp32_rmt_source_freq_obj, esp32_rmt_source_freq);
|
|
|
|
// Return the clock divider.
|
|
STATIC mp_obj_t esp32_rmt_clock_div(mp_obj_t self_in) {
|
|
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
return mp_obj_new_int(self->clock_div);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp32_rmt_clock_div_obj, esp32_rmt_clock_div);
|
|
|
|
// Query whether the channel has finished sending pulses. Takes an optional
|
|
// timeout (in milliseconds), returning true if the pulse stream has
|
|
// completed or false if they are still transmitting (or timeout is reached).
|
|
STATIC mp_obj_t esp32_rmt_wait_done(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_self, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = mp_const_none} },
|
|
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
|
|
};
|
|
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(args[0].u_obj);
|
|
|
|
esp_err_t err = rmt_wait_tx_done(self->channel_id, args[1].u_int / portTICK_PERIOD_MS);
|
|
return err == ESP_OK ? mp_const_true : mp_const_false;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(esp32_rmt_wait_done_obj, 1, esp32_rmt_wait_done);
|
|
|
|
STATIC mp_obj_t esp32_rmt_loop(mp_obj_t self_in, mp_obj_t loop) {
|
|
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
self->loop_en = mp_obj_get_int(loop);
|
|
if (!self->loop_en) {
|
|
bool loop_en;
|
|
check_esp_err(rmt_get_tx_loop_mode(self->channel_id, &loop_en));
|
|
if (loop_en) {
|
|
check_esp_err(rmt_set_tx_loop_mode(self->channel_id, false));
|
|
check_esp_err(rmt_set_tx_intr_en(self->channel_id, true));
|
|
}
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_2(esp32_rmt_loop_obj, esp32_rmt_loop);
|
|
|
|
STATIC mp_obj_t esp32_rmt_write_pulses(size_t n_args, const mp_obj_t *args) {
|
|
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(args[0]);
|
|
mp_obj_t duration_obj = args[1];
|
|
mp_obj_t data_obj = n_args > 2 ? args[2] : mp_const_true;
|
|
|
|
mp_uint_t duration = 0;
|
|
size_t duration_length = 0;
|
|
mp_obj_t *duration_ptr = NULL;
|
|
mp_uint_t data = 0;
|
|
size_t data_length = 0;
|
|
mp_obj_t *data_ptr = NULL;
|
|
mp_uint_t num_pulses = 0;
|
|
|
|
if (!(mp_obj_is_type(data_obj, &mp_type_tuple) || mp_obj_is_type(data_obj, &mp_type_list))) {
|
|
// Mode 1: array of durations, toggle initial data value
|
|
mp_obj_get_array(duration_obj, &duration_length, &duration_ptr);
|
|
data = mp_obj_is_true(data_obj);
|
|
num_pulses = duration_length;
|
|
} else if (mp_obj_is_int(duration_obj)) {
|
|
// Mode 2: constant duration, array of data values
|
|
duration = mp_obj_get_int(duration_obj);
|
|
mp_obj_get_array(data_obj, &data_length, &data_ptr);
|
|
num_pulses = data_length;
|
|
} else {
|
|
// Mode 3: arrays of durations and data values
|
|
mp_obj_get_array(duration_obj, &duration_length, &duration_ptr);
|
|
mp_obj_get_array(data_obj, &data_length, &data_ptr);
|
|
if (duration_length != data_length) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("duration and data must have same length"));
|
|
}
|
|
num_pulses = duration_length;
|
|
}
|
|
|
|
if (num_pulses == 0) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("No pulses"));
|
|
}
|
|
if (self->loop_en && num_pulses > 126) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("Too many pulses for loop"));
|
|
}
|
|
|
|
mp_uint_t num_items = (num_pulses / 2) + (num_pulses % 2);
|
|
if (num_items > self->num_items) {
|
|
self->items = (rmt_item32_t *)m_realloc(self->items, num_items * sizeof(rmt_item32_t *));
|
|
self->num_items = num_items;
|
|
}
|
|
|
|
for (mp_uint_t item_index = 0, pulse_index = 0; item_index < num_items; item_index++) {
|
|
self->items[item_index].duration0 = duration_length ? mp_obj_get_int(duration_ptr[pulse_index]) : duration;
|
|
self->items[item_index].level0 = data_length ? mp_obj_is_true(data_ptr[pulse_index]) : data++;
|
|
pulse_index++;
|
|
if (pulse_index < num_pulses) {
|
|
self->items[item_index].duration1 = duration_length ? mp_obj_get_int(duration_ptr[pulse_index]) : duration;
|
|
self->items[item_index].level1 = data_length ? mp_obj_is_true(data_ptr[pulse_index]) : data++;
|
|
pulse_index++;
|
|
} else {
|
|
self->items[item_index].duration1 = 0;
|
|
self->items[item_index].level1 = 0;
|
|
}
|
|
}
|
|
|
|
if (self->loop_en) {
|
|
bool loop_en;
|
|
check_esp_err(rmt_get_tx_loop_mode(self->channel_id, &loop_en));
|
|
if (loop_en) {
|
|
check_esp_err(rmt_set_tx_intr_en(self->channel_id, true));
|
|
check_esp_err(rmt_set_tx_loop_mode(self->channel_id, false));
|
|
}
|
|
check_esp_err(rmt_wait_tx_done(self->channel_id, portMAX_DELAY));
|
|
}
|
|
|
|
if (self->loop_en) {
|
|
check_esp_err(rmt_set_tx_intr_en(self->channel_id, false));
|
|
check_esp_err(rmt_set_tx_loop_mode(self->channel_id, true));
|
|
}
|
|
|
|
check_esp_err(rmt_write_items(self->channel_id, self->items, num_items, false));
|
|
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp32_rmt_write_pulses_obj, 2, 3, esp32_rmt_write_pulses);
|
|
|
|
STATIC mp_obj_t esp32_rmt_bitstream_channel(size_t n_args, const mp_obj_t *args) {
|
|
if (n_args > 0) {
|
|
if (args[0] == mp_const_none) {
|
|
esp32_rmt_bitstream_channel_id = -1;
|
|
} else {
|
|
mp_int_t channel_id = mp_obj_get_int(args[0]);
|
|
if (channel_id < 0 || channel_id > RMT_LAST_TX_CHANNEL) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid channel"));
|
|
}
|
|
esp32_rmt_bitstream_channel_id = channel_id;
|
|
}
|
|
}
|
|
if (esp32_rmt_bitstream_channel_id < 0) {
|
|
return mp_const_none;
|
|
} else {
|
|
return MP_OBJ_NEW_SMALL_INT(esp32_rmt_bitstream_channel_id);
|
|
}
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp32_rmt_bitstream_channel_fun_obj, 0, 1, esp32_rmt_bitstream_channel);
|
|
STATIC MP_DEFINE_CONST_STATICMETHOD_OBJ(esp32_rmt_bitstream_channel_obj, MP_ROM_PTR(&esp32_rmt_bitstream_channel_fun_obj));
|
|
|
|
STATIC const mp_rom_map_elem_t esp32_rmt_locals_dict_table[] = {
|
|
{ MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&esp32_rmt_deinit_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&esp32_rmt_deinit_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_source_freq), MP_ROM_PTR(&esp32_rmt_source_freq_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_clock_div), MP_ROM_PTR(&esp32_rmt_clock_div_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_wait_done), MP_ROM_PTR(&esp32_rmt_wait_done_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_loop), MP_ROM_PTR(&esp32_rmt_loop_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_write_pulses), MP_ROM_PTR(&esp32_rmt_write_pulses_obj) },
|
|
|
|
// Static methods
|
|
{ MP_ROM_QSTR(MP_QSTR_bitstream_channel), MP_ROM_PTR(&esp32_rmt_bitstream_channel_obj) },
|
|
};
|
|
STATIC MP_DEFINE_CONST_DICT(esp32_rmt_locals_dict, esp32_rmt_locals_dict_table);
|
|
|
|
MP_DEFINE_CONST_OBJ_TYPE(
|
|
esp32_rmt_type,
|
|
MP_QSTR_RMT,
|
|
MP_TYPE_FLAG_NONE,
|
|
make_new, esp32_rmt_make_new,
|
|
print, esp32_rmt_print,
|
|
locals_dict, &esp32_rmt_locals_dict
|
|
);
|