circuitpython/shared-bindings/time/__init__.c
Scott Shawcroft ccbb5e84f9 This introduces an alternative hardware API called nativeio structured around different functions that are typically accelerated by native hardware. Its not meant to reflect the structure of the hardware.
Docs are here: http://tannewt-micropython.readthedocs.io/en/microcontroller/

It differs from upstream's machine in the following ways:

* Python API is identical across ports due to code structure. (Lives in shared-bindings)
* Focuses on abstracting common functionality (AnalogIn) and not representing structure (ADC).
* Documentation lives with code making it easy to ensure they match.
* Pin is split into references (board.D13 and microcontroller.pin.PA17) and functionality (DigitalInOut).
* All nativeio classes claim underlying hardware resources when inited on construction, support Context Managers (aka with statements) and have deinit methods which release the claimed hardware.
* All constructors take pin references rather than peripheral ids. Its up to the implementation to find hardware or throw and exception.
2016-11-21 14:11:52 -08:00

92 lines
3.2 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
* Copyright (c) 2015 Josef Gajdusek
* Copyright (c) 2016 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
//#include "py/nlr.h"
#include "py/obj.h"
//#include "py/gc.h"
//#include "py/runtime.h"
//#include "py/mphal.h"
//#include "py/smallint.h"
#include "shared-bindings/time/__init__.h"
//| :mod:`time` --- time and timing related functions
//| ========================================================
//|
//| .. module:: time
//| :synopsis: time and timing related functions
//| :platform: SAMD21
//|
//| The `time` module is a strict subset of the CPython `time` module. So, code
//| written in MicroPython will work in CPython but not necessarily the other
//| way around.
//|
//| .. method:: monotonic()
//|
//| Returns an always increasing value of time with an unknown reference
//| point. Only use it to compare against other values from `monotonic`.
//|
//| :return: the current monotonic time
//| :rtype: float
//|
STATIC mp_obj_t time_monotonic(void) {
return mp_obj_new_float(common_hal_time_monotonic() / 100.0);
}
MP_DEFINE_CONST_FUN_OBJ_0(time_monotonic_obj, time_monotonic);
//| .. method:: sleep(seconds)
//|
//| Sleep for a given number of seconds.
//|
//| :param float seconds: the time to sleep in fractional seconds
//|
STATIC mp_obj_t time_sleep(mp_obj_t seconds_o) {
#if MICROPY_PY_BUILTINS_FLOAT
common_hal_time_delay_ms(1000 * mp_obj_get_float(seconds_o));
#else
common_hal_time_delay_ms(1000 * mp_obj_get_int(seconds_o));
#endif
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(time_sleep_obj, time_sleep);
STATIC const mp_map_elem_t time_module_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_time) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_monotonic), (mp_obj_t)&time_monotonic_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_sleep), (mp_obj_t)&time_sleep_obj },
};
STATIC MP_DEFINE_CONST_DICT(time_module_globals, time_module_globals_table);
const mp_obj_module_t time_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&time_module_globals,
};