eee1e8841a
These macros could in principle be (inline) functions so it makes sense to have them lower case, to match the other C API functions. The remaining macros that are upper case are: - MP_OBJ_TO_PTR, MP_OBJ_FROM_PTR - MP_OBJ_NEW_SMALL_INT, MP_OBJ_SMALL_INT_VALUE - MP_OBJ_NEW_QSTR, MP_OBJ_QSTR_VALUE - MP_OBJ_FUN_MAKE_SIG - MP_DECLARE_CONST_xxx - MP_DEFINE_CONST_xxx These must remain macros because they are used when defining const data (at least, MP_OBJ_NEW_SMALL_INT is so it makes sense to have MP_OBJ_SMALL_INT_VALUE also a macro). For those macros that have been made lower case, compatibility macros are provided for the old names so that users do not need to change their code immediately.
331 lines
11 KiB
C
331 lines
11 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013, 2014 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "py/parsenum.h"
|
|
#include "py/runtime.h"
|
|
|
|
#if MICROPY_PY_BUILTINS_FLOAT
|
|
|
|
#include <math.h>
|
|
#include "py/formatfloat.h"
|
|
|
|
#if MICROPY_OBJ_REPR != MICROPY_OBJ_REPR_C && MICROPY_OBJ_REPR != MICROPY_OBJ_REPR_D
|
|
|
|
// M_E and M_PI are not part of the math.h standard and may not be defined
|
|
#ifndef M_E
|
|
#define M_E (2.7182818284590452354)
|
|
#endif
|
|
#ifndef M_PI
|
|
#define M_PI (3.14159265358979323846)
|
|
#endif
|
|
|
|
typedef struct _mp_obj_float_t {
|
|
mp_obj_base_t base;
|
|
mp_float_t value;
|
|
} mp_obj_float_t;
|
|
|
|
const mp_obj_float_t mp_const_float_e_obj = {{&mp_type_float}, M_E};
|
|
const mp_obj_float_t mp_const_float_pi_obj = {{&mp_type_float}, M_PI};
|
|
|
|
#endif
|
|
|
|
#if MICROPY_FLOAT_HIGH_QUALITY_HASH
|
|
// must return actual integer value if it fits in mp_int_t
|
|
mp_int_t mp_float_hash(mp_float_t src) {
|
|
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
|
|
typedef uint64_t mp_float_uint_t;
|
|
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
|
|
typedef uint32_t mp_float_uint_t;
|
|
#endif
|
|
union {
|
|
mp_float_t f;
|
|
#if MP_ENDIANNESS_LITTLE
|
|
struct { mp_float_uint_t frc:MP_FLOAT_FRAC_BITS, exp:MP_FLOAT_EXP_BITS, sgn:1; } p;
|
|
#else
|
|
struct { mp_float_uint_t sgn:1, exp:MP_FLOAT_EXP_BITS, frc:MP_FLOAT_FRAC_BITS; } p;
|
|
#endif
|
|
mp_float_uint_t i;
|
|
} u = {.f = src};
|
|
|
|
mp_int_t val;
|
|
const int adj_exp = (int)u.p.exp - MP_FLOAT_EXP_BIAS;
|
|
if (adj_exp < 0) {
|
|
// value < 1; must be sure to handle 0.0 correctly (ie return 0)
|
|
val = u.i;
|
|
} else {
|
|
// if adj_exp is max then: u.p.frc==0 indicates inf, else NaN
|
|
// else: 1 <= value
|
|
mp_float_uint_t frc = u.p.frc | ((mp_float_uint_t)1 << MP_FLOAT_FRAC_BITS);
|
|
|
|
if (adj_exp <= MP_FLOAT_FRAC_BITS) {
|
|
// number may have a fraction; xor the integer part with the fractional part
|
|
val = (frc >> (MP_FLOAT_FRAC_BITS - adj_exp))
|
|
^ (frc & (((mp_float_uint_t)1 << (MP_FLOAT_FRAC_BITS - adj_exp)) - 1));
|
|
} else if ((unsigned int)adj_exp < BITS_PER_BYTE * sizeof(mp_int_t) - 1) {
|
|
// the number is a (big) whole integer and will fit in val's signed-width
|
|
val = (mp_int_t)frc << (adj_exp - MP_FLOAT_FRAC_BITS);
|
|
} else {
|
|
// integer part will overflow val's width so just use what bits we can
|
|
val = frc;
|
|
}
|
|
}
|
|
|
|
if (u.p.sgn) {
|
|
val = -(mp_uint_t)val;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
#endif
|
|
|
|
STATIC void float_print(const mp_print_t *print, mp_obj_t o_in, mp_print_kind_t kind) {
|
|
(void)kind;
|
|
mp_float_t o_val = mp_obj_float_get(o_in);
|
|
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
|
|
char buf[16];
|
|
#if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_C
|
|
const int precision = 6;
|
|
#else
|
|
const int precision = 7;
|
|
#endif
|
|
#else
|
|
char buf[32];
|
|
const int precision = 16;
|
|
#endif
|
|
mp_format_float(o_val, buf, sizeof(buf), 'g', precision, '\0');
|
|
mp_print_str(print, buf);
|
|
if (strchr(buf, '.') == NULL && strchr(buf, 'e') == NULL && strchr(buf, 'n') == NULL) {
|
|
// Python floats always have decimal point (unless inf or nan)
|
|
mp_print_str(print, ".0");
|
|
}
|
|
}
|
|
|
|
STATIC mp_obj_t float_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
|
(void)type_in;
|
|
mp_arg_check_num(n_args, n_kw, 0, 1, false);
|
|
|
|
switch (n_args) {
|
|
case 0:
|
|
return mp_obj_new_float(0);
|
|
|
|
case 1:
|
|
default: {
|
|
mp_buffer_info_t bufinfo;
|
|
if (mp_get_buffer(args[0], &bufinfo, MP_BUFFER_READ)) {
|
|
// a textual representation, parse it
|
|
return mp_parse_num_decimal(bufinfo.buf, bufinfo.len, false, false, NULL);
|
|
} else if (mp_obj_is_float(args[0])) {
|
|
// a float, just return it
|
|
return args[0];
|
|
} else {
|
|
// something else, try to cast it to a float
|
|
return mp_obj_new_float(mp_obj_get_float(args[0]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
STATIC mp_obj_t float_unary_op(mp_unary_op_t op, mp_obj_t o_in) {
|
|
mp_float_t val = mp_obj_float_get(o_in);
|
|
switch (op) {
|
|
case MP_UNARY_OP_BOOL: return mp_obj_new_bool(val != 0);
|
|
case MP_UNARY_OP_HASH: return MP_OBJ_NEW_SMALL_INT(mp_float_hash(val));
|
|
case MP_UNARY_OP_POSITIVE: return o_in;
|
|
case MP_UNARY_OP_NEGATIVE: return mp_obj_new_float(-val);
|
|
case MP_UNARY_OP_ABS: {
|
|
if (signbit(val)) {
|
|
return mp_obj_new_float(-val);
|
|
} else {
|
|
return o_in;
|
|
}
|
|
}
|
|
default: return MP_OBJ_NULL; // op not supported
|
|
}
|
|
}
|
|
|
|
STATIC mp_obj_t float_binary_op(mp_binary_op_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
|
|
mp_float_t lhs_val = mp_obj_float_get(lhs_in);
|
|
#if MICROPY_PY_BUILTINS_COMPLEX
|
|
if (mp_obj_is_type(rhs_in, &mp_type_complex)) {
|
|
return mp_obj_complex_binary_op(op, lhs_val, 0, rhs_in);
|
|
} else
|
|
#endif
|
|
{
|
|
return mp_obj_float_binary_op(op, lhs_val, rhs_in);
|
|
}
|
|
}
|
|
|
|
const mp_obj_type_t mp_type_float = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_float,
|
|
.print = float_print,
|
|
.make_new = float_make_new,
|
|
.unary_op = float_unary_op,
|
|
.binary_op = float_binary_op,
|
|
};
|
|
|
|
#if MICROPY_OBJ_REPR != MICROPY_OBJ_REPR_C && MICROPY_OBJ_REPR != MICROPY_OBJ_REPR_D
|
|
|
|
mp_obj_t mp_obj_new_float(mp_float_t value) {
|
|
mp_obj_float_t *o = m_new(mp_obj_float_t, 1);
|
|
o->base.type = &mp_type_float;
|
|
o->value = value;
|
|
return MP_OBJ_FROM_PTR(o);
|
|
}
|
|
|
|
mp_float_t mp_obj_float_get(mp_obj_t self_in) {
|
|
assert(mp_obj_is_float(self_in));
|
|
mp_obj_float_t *self = MP_OBJ_TO_PTR(self_in);
|
|
return self->value;
|
|
}
|
|
|
|
#endif
|
|
|
|
STATIC void mp_obj_float_divmod(mp_float_t *x, mp_float_t *y) {
|
|
// logic here follows that of CPython
|
|
// https://docs.python.org/3/reference/expressions.html#binary-arithmetic-operations
|
|
// x == (x//y)*y + (x%y)
|
|
// divmod(x, y) == (x//y, x%y)
|
|
mp_float_t mod = MICROPY_FLOAT_C_FUN(fmod)(*x, *y);
|
|
mp_float_t div = (*x - mod) / *y;
|
|
|
|
// Python specs require that mod has same sign as second operand
|
|
if (mod == 0.0) {
|
|
mod = MICROPY_FLOAT_C_FUN(copysign)(0.0, *y);
|
|
} else {
|
|
if ((mod < 0.0) != (*y < 0.0)) {
|
|
mod += *y;
|
|
div -= 1.0;
|
|
}
|
|
}
|
|
|
|
mp_float_t floordiv;
|
|
if (div == 0.0) {
|
|
// if division is zero, take the correct sign of zero
|
|
floordiv = MICROPY_FLOAT_C_FUN(copysign)(0.0, *x / *y);
|
|
} else {
|
|
// Python specs require that x == (x//y)*y + (x%y)
|
|
floordiv = MICROPY_FLOAT_C_FUN(floor)(div);
|
|
if (div - floordiv > 0.5) {
|
|
floordiv += 1.0;
|
|
}
|
|
}
|
|
|
|
// return results
|
|
*x = floordiv;
|
|
*y = mod;
|
|
}
|
|
|
|
mp_obj_t mp_obj_float_binary_op(mp_binary_op_t op, mp_float_t lhs_val, mp_obj_t rhs_in) {
|
|
mp_float_t rhs_val;
|
|
if (!mp_obj_get_float_maybe(rhs_in, &rhs_val)) {
|
|
return MP_OBJ_NULL; // op not supported
|
|
}
|
|
|
|
switch (op) {
|
|
case MP_BINARY_OP_ADD:
|
|
case MP_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break;
|
|
case MP_BINARY_OP_SUBTRACT:
|
|
case MP_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break;
|
|
case MP_BINARY_OP_MULTIPLY:
|
|
case MP_BINARY_OP_INPLACE_MULTIPLY: lhs_val *= rhs_val; break;
|
|
case MP_BINARY_OP_FLOOR_DIVIDE:
|
|
case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE:
|
|
if (rhs_val == 0) {
|
|
zero_division_error:
|
|
mp_raise_msg(&mp_type_ZeroDivisionError, "divide by zero");
|
|
}
|
|
// Python specs require that x == (x//y)*y + (x%y) so we must
|
|
// call divmod to compute the correct floor division, which
|
|
// returns the floor divide in lhs_val.
|
|
mp_obj_float_divmod(&lhs_val, &rhs_val);
|
|
break;
|
|
case MP_BINARY_OP_TRUE_DIVIDE:
|
|
case MP_BINARY_OP_INPLACE_TRUE_DIVIDE:
|
|
if (rhs_val == 0) {
|
|
goto zero_division_error;
|
|
}
|
|
lhs_val /= rhs_val;
|
|
break;
|
|
case MP_BINARY_OP_MODULO:
|
|
case MP_BINARY_OP_INPLACE_MODULO:
|
|
if (rhs_val == 0) {
|
|
goto zero_division_error;
|
|
}
|
|
lhs_val = MICROPY_FLOAT_C_FUN(fmod)(lhs_val, rhs_val);
|
|
// Python specs require that mod has same sign as second operand
|
|
if (lhs_val == 0.0) {
|
|
lhs_val = MICROPY_FLOAT_C_FUN(copysign)(0.0, rhs_val);
|
|
} else {
|
|
if ((lhs_val < 0.0) != (rhs_val < 0.0)) {
|
|
lhs_val += rhs_val;
|
|
}
|
|
}
|
|
break;
|
|
case MP_BINARY_OP_POWER:
|
|
case MP_BINARY_OP_INPLACE_POWER:
|
|
if (lhs_val == 0 && rhs_val < 0 && !isinf(rhs_val)) {
|
|
goto zero_division_error;
|
|
}
|
|
if (lhs_val < 0 && rhs_val != MICROPY_FLOAT_C_FUN(floor)(rhs_val)) {
|
|
#if MICROPY_PY_BUILTINS_COMPLEX
|
|
return mp_obj_complex_binary_op(MP_BINARY_OP_POWER, lhs_val, 0, rhs_in);
|
|
#else
|
|
mp_raise_ValueError("complex values not supported");
|
|
#endif
|
|
}
|
|
lhs_val = MICROPY_FLOAT_C_FUN(pow)(lhs_val, rhs_val);
|
|
break;
|
|
case MP_BINARY_OP_DIVMOD: {
|
|
if (rhs_val == 0) {
|
|
goto zero_division_error;
|
|
}
|
|
mp_obj_float_divmod(&lhs_val, &rhs_val);
|
|
mp_obj_t tuple[2] = {
|
|
mp_obj_new_float(lhs_val),
|
|
mp_obj_new_float(rhs_val),
|
|
};
|
|
return mp_obj_new_tuple(2, tuple);
|
|
}
|
|
case MP_BINARY_OP_LESS: return mp_obj_new_bool(lhs_val < rhs_val);
|
|
case MP_BINARY_OP_MORE: return mp_obj_new_bool(lhs_val > rhs_val);
|
|
case MP_BINARY_OP_EQUAL: return mp_obj_new_bool(lhs_val == rhs_val);
|
|
case MP_BINARY_OP_LESS_EQUAL: return mp_obj_new_bool(lhs_val <= rhs_val);
|
|
case MP_BINARY_OP_MORE_EQUAL: return mp_obj_new_bool(lhs_val >= rhs_val);
|
|
|
|
default:
|
|
return MP_OBJ_NULL; // op not supported
|
|
}
|
|
return mp_obj_new_float(lhs_val);
|
|
}
|
|
|
|
#endif // MICROPY_PY_BUILTINS_FLOAT
|