circuitpython/ports/esp32s2/common-hal/busio/SPI.c

413 lines
14 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/busio/SPI.h"
#include "py/mperrno.h"
#include "py/runtime.h"
#include "shared-bindings/microcontroller/Pin.h"
#include "supervisor/shared/rgb_led_status.h"
static bool spi_never_reset[SOC_SPI_PERIPH_NUM];
// Store one lock handle per device so that we can free it.
static spi_bus_lock_dev_handle_t lock_dev_handle[SOC_SPI_PERIPH_NUM];
static intr_handle_t intr_handle[SOC_SPI_PERIPH_NUM];
void spi_reset(void) {
for (spi_host_device_t host_id = SPI2_HOST; host_id < SOC_SPI_PERIPH_NUM; host_id++) {
if (spi_never_reset[host_id]) {
continue;
}
bool in_use = false;
if (lock_dev_handle[host_id] != NULL) {
spi_bus_lock_unregister_dev(lock_dev_handle[host_id]);
lock_dev_handle[host_id] = NULL;
in_use = true;
}
if (intr_handle[host_id] != NULL) {
esp_intr_free(intr_handle[host_id]);
intr_handle[host_id] = NULL;
in_use = true;
}
if (in_use) {
spi_bus_free(host_id);
}
}
}
// This is copied in from the ESP-IDF because it is static.
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
static bool bus_uses_iomux_pins(spi_host_device_t host, const spi_bus_config_t* bus_config)
{
if (bus_config->sclk_io_num>=0 &&
bus_config->sclk_io_num != spi_periph_signal[host].spiclk_iomux_pin) return false;
if (bus_config->quadwp_io_num>=0 &&
bus_config->quadwp_io_num != spi_periph_signal[host].spiwp_iomux_pin) return false;
if (bus_config->quadhd_io_num>=0 &&
bus_config->quadhd_io_num != spi_periph_signal[host].spihd_iomux_pin) return false;
if (bus_config->mosi_io_num >= 0 &&
bus_config->mosi_io_num != spi_periph_signal[host].spid_iomux_pin) return false;
if (bus_config->miso_io_num>=0 &&
bus_config->miso_io_num != spi_periph_signal[host].spiq_iomux_pin) return false;
return true;
}
// End copied code.
static bool spi_bus_is_free(spi_host_device_t host_id) {
return spi_bus_get_attr(host_id) == NULL;
}
static void spi_interrupt_handler(void *arg) {
// busio_spi_obj_t *self = arg;
}
// The interrupt may get invoked by the bus lock.
static void spi_bus_intr_enable(void *self)
{
esp_intr_enable(((busio_spi_obj_t *)self)->interrupt);
}
// The interrupt is always disabled by the ISR itself, not exposed
static void spi_bus_intr_disable(void *self)
{
esp_intr_disable(((busio_spi_obj_t *)self)->interrupt);
}
void common_hal_busio_spi_construct(busio_spi_obj_t *self,
const mcu_pin_obj_t * clock, const mcu_pin_obj_t * mosi,
const mcu_pin_obj_t * miso) {
spi_bus_config_t bus_config;
bus_config.mosi_io_num = mosi != NULL ? mosi->number : -1;
bus_config.miso_io_num = miso != NULL ? miso->number : -1;
bus_config.sclk_io_num = clock != NULL ? clock->number : -1;
bus_config.quadwp_io_num = -1;
bus_config.quadhd_io_num = -1;
bus_config.max_transfer_sz = 0; // Uses the default
bus_config.flags = SPICOMMON_BUSFLAG_MASTER | SPICOMMON_BUSFLAG_SCLK |
(mosi != NULL ? SPICOMMON_BUSFLAG_MOSI : 0) |
(miso != NULL ? SPICOMMON_BUSFLAG_MISO : 0);
bus_config.intr_flags = 0;
// RAM and Flash is often on SPI1 and is unsupported by the IDF so use it as
// a flag value.
spi_host_device_t host_id = SPI1_HOST;
self->connected_through_gpio = true;
// Try and save SPI2 for pins that are on the IOMUX
if (bus_uses_iomux_pins(SPI2_HOST, &bus_config) && spi_bus_is_free(SPI2_HOST)) {
host_id = SPI2_HOST;
self->connected_through_gpio = false;
} else if (spi_bus_is_free(SPI3_HOST)) {
host_id = SPI3_HOST;
} else if (spi_bus_is_free(SPI2_HOST)) {
host_id = SPI2_HOST;
}
if (host_id == SPI1_HOST) {
mp_raise_ValueError(translate("All SPI peripherals are in use"));
}
esp_err_t result = spi_bus_initialize(host_id, &bus_config, host_id /* dma channel */);
if (result == ESP_ERR_NO_MEM) {
mp_raise_msg(&mp_type_MemoryError, translate("ESP-IDF memory allocation failed"));
} else if (result == ESP_ERR_INVALID_ARG) {
mp_raise_ValueError(translate("Invalid pins"));
}
// After this point, we need to deinit to free IDF memory so fill out self's pins.
self->clock_pin = clock;
self->MOSI_pin = mosi;
self->MISO_pin = miso;
self->host_id = host_id;
spi_bus_lock_dev_config_t config = { .flags = 0 };
// The returned lock is stored in the bus lock but must be freed separately with
// spi_bus_lock_unregister_dev.
result = spi_bus_lock_register_dev(spi_bus_get_attr(host_id)->lock,
&config,
&self->lock);
if (result == ESP_ERR_NO_MEM) {
common_hal_busio_spi_deinit(self);
mp_raise_msg(&mp_type_MemoryError, translate("ESP-IDF memory allocation failed"));
}
lock_dev_handle[host_id] = self->lock;
result = esp_intr_alloc(spicommon_irqsource_for_host(host_id),
bus_config.intr_flags | ESP_INTR_FLAG_INTRDISABLED,
spi_interrupt_handler, self, &self->interrupt);
if (result == ESP_ERR_NO_MEM) {
common_hal_busio_spi_deinit(self);
mp_raise_msg(&mp_type_MemoryError, translate("ESP-IDF memory allocation failed"));
}
intr_handle[host_id] = self->interrupt;
spi_bus_lock_set_bg_control(spi_bus_get_attr(host_id)->lock, spi_bus_intr_enable, spi_bus_intr_disable, self);
spi_hal_context_t* hal = &self->hal_context;
// spi_hal_init clears the given hal context so set everything after.
spi_hal_init(hal, host_id);
// We don't use native CS.
// hal->cs_setup = 0;
// hal->cs_hold = 0;
// hal->cs_pin_id = 0;
hal->sio = 0;
hal->half_duplex = 0;
// hal->tx_lsbfirst = 0;
// hal->rx_lsbfirst = 0;
hal->no_compensate = 1;
// Ignore CS bits
// We don't use cmd, addr or dummy bits.
// hal->cmd = 0;
// hal->cmd_bits = 0;
// hal->addr_bits = 0;
// hal->dummy_bits = 0;
// hal->addr = 0;
claim_pin(self->clock_pin);
if (self->MOSI_pin != NULL) {
claim_pin(self->MOSI_pin);
}
if (self->MISO_pin != NULL) {
claim_pin(self->MISO_pin);
}
hal->io_mode = SPI_LL_IO_MODE_NORMAL;
common_hal_busio_spi_configure(self, 250000, 0, 0, 8);
}
void common_hal_busio_spi_never_reset(busio_spi_obj_t *self) {
spi_never_reset[self->host_id] = true;
common_hal_never_reset_pin(self->clock_pin);
if (self->MOSI_pin != NULL) {
common_hal_never_reset_pin(self->MOSI_pin);
}
if (self->MISO_pin != NULL) {
common_hal_never_reset_pin(self->MISO_pin);
}
}
bool common_hal_busio_spi_deinited(busio_spi_obj_t *self) {
return self->clock_pin == NULL;
}
void common_hal_busio_spi_deinit(busio_spi_obj_t *self) {
if (common_hal_busio_spi_deinited(self)) {
return;
}
spi_never_reset[self->host_id] = false;
if (self->lock != NULL) {
spi_bus_lock_unregister_dev(self->lock);
lock_dev_handle[self->host_id] = NULL;
}
if (self->interrupt != NULL) {
esp_intr_free(self->interrupt);
intr_handle[self->host_id] = NULL;
}
spi_bus_free(self->host_id);
common_hal_reset_pin(self->clock_pin);
common_hal_reset_pin(self->MOSI_pin);
common_hal_reset_pin(self->MISO_pin);
self->clock_pin = NULL;
self->MISO_pin = NULL;
self->MOSI_pin = NULL;
}
bool common_hal_busio_spi_configure(busio_spi_obj_t *self,
uint32_t baudrate, uint8_t polarity, uint8_t phase, uint8_t bits) {
if (baudrate == self->target_frequency &&
polarity == self->polarity &&
phase == self->phase &&
bits == self->bits) {
return true;
}
self->hal_context.mode = polarity << 1 | phase;
self->polarity = polarity;
self->phase = phase;
self->bits = bits;
self->target_frequency = baudrate;
self->hal_context.timing_conf = &self->timing_conf;
esp_err_t result = spi_hal_get_clock_conf(&self->hal_context,
self->target_frequency,
128 /* duty_cycle */,
self->connected_through_gpio,
0 /* input_delay_ns */,
&self->real_frequency,
&self->timing_conf);
if (result != ESP_OK) {
return false;
}
spi_hal_setup_device(&self->hal_context);
return true;
}
bool common_hal_busio_spi_try_lock(busio_spi_obj_t *self) {
// If our lock has already been taken then return false because someone else
// may already grabbed it in our call stack.
if (self->has_lock) {
return false;
}
// Wait to grab the lock from another task.
esp_err_t result = spi_bus_lock_acquire_start(self->lock, portMAX_DELAY);
self->has_lock = result == ESP_OK;
return self->has_lock;
}
bool common_hal_busio_spi_has_lock(busio_spi_obj_t *self) {
return self->has_lock;
}
void common_hal_busio_spi_unlock(busio_spi_obj_t *self) {
spi_bus_lock_acquire_end(self->lock);
self->has_lock = false;
}
bool common_hal_busio_spi_write(busio_spi_obj_t *self,
const uint8_t *data, size_t len) {
if (self->MOSI_pin == NULL) {
mp_raise_ValueError(translate("No MOSI Pin"));
}
return common_hal_busio_spi_transfer(self, data, NULL, len);
}
bool common_hal_busio_spi_read(busio_spi_obj_t *self,
uint8_t *data, size_t len, uint8_t write_value) {
if (self->MISO_pin == NULL) {
mp_raise_ValueError(translate("No MISO Pin"));
}
if (self->MOSI_pin == NULL) {
return common_hal_busio_spi_transfer(self, NULL, data, len);
} else {
memset(data, write_value, len);
return common_hal_busio_spi_transfer(self, data, data, len);
}
}
bool common_hal_busio_spi_transfer(busio_spi_obj_t *self, const uint8_t *data_out, uint8_t *data_in, size_t len) {
if (len == 0) {
return true;
}
// Other than the read special case, stop transfers that don't have a pin/array match
if (!self->MOSI_pin && (data_out != data_in)) {
mp_raise_ValueError(translate("No MOSI Pin"));
}
if (!self->MISO_pin && data_in) {
mp_raise_ValueError(translate("No MISO Pin"));
}
spi_hal_context_t* hal = &self->hal_context;
hal->send_buffer = NULL;
hal->rcv_buffer = NULL;
// Reset timing_conf in case we've moved since the last time we used it.
hal->timing_conf = &self->timing_conf;
lldesc_t tx_dma __attribute__((aligned(16)));
lldesc_t rx_dma __attribute__((aligned(16)));
hal->dmadesc_tx = &tx_dma;
hal->dmadesc_rx = &rx_dma;
hal->dmadesc_n = 1;
size_t burst_length;
// If both of the incoming pointers are DMA capable then use DMA. Otherwise, do
// bursts the size of the SPI data buffer without DMA.
if ((data_out == NULL || esp_ptr_dma_capable(data_out)) &&
(data_in == NULL || esp_ptr_dma_capable(data_out))) {
hal->dma_enabled = 1;
burst_length = LLDESC_MAX_NUM_PER_DESC;
} else {
hal->dma_enabled = 0;
burst_length = sizeof(hal->hw->data_buf);
// When switching to non-DMA, we need to make sure DMA is off. Otherwise,
// the S2 will transmit zeroes instead of our data.
hal->hw->dma_out_link.dma_tx_ena = 0;
hal->hw->dma_out_link.stop = 1;
}
// This rounds up.
size_t burst_count = (len + burst_length - 1) / burst_length;
for (size_t i = 0; i < burst_count; i++) {
size_t offset = burst_length * i;
size_t this_length = len - offset;
if (this_length > burst_length) {
this_length = burst_length;
}
hal->tx_bitlen = this_length * self->bits;
hal->rx_bitlen = this_length * self->bits;
if (data_out != NULL) {
hal->send_buffer = (uint8_t*) data_out + offset;
}
if (data_in != NULL) {
hal->rcv_buffer = data_in + offset;
}
spi_hal_setup_trans(hal);
spi_hal_prepare_data(hal);
spi_hal_user_start(hal);
// TODO: Switch to waiting on a lock that is given by an interrupt.
while (!spi_hal_usr_is_done(hal)) {
RUN_BACKGROUND_TASKS;
}
spi_hal_fetch_result(hal);
}
hal->dmadesc_tx = NULL;
hal->dmadesc_rx = NULL;
hal->dmadesc_n = 0;
return true;
}
uint32_t common_hal_busio_spi_get_frequency(busio_spi_obj_t* self) {
return self->real_frequency;
}
uint8_t common_hal_busio_spi_get_phase(busio_spi_obj_t* self) {
return self->phase;
}
uint8_t common_hal_busio_spi_get_polarity(busio_spi_obj_t* self) {
return self->polarity;
}