circuitpython/py/objint_mpz.c
Damien George c2a4e4effc py: Convert hash API to use MP_UNARY_OP_HASH instead of ad-hoc function.
Hashing is now done using mp_unary_op function with MP_UNARY_OP_HASH as
the operator argument.  Hashing for int, str and bytes still go via
fast-path in mp_unary_op since they are the most common objects which
need to be hashed.

This lead to quite a bit of code cleanup, and should be more efficient
if anything.  It saves 176 bytes code space on Thumb2, and 360 bytes on
x86.

The only loss is that the error message "unhashable type" is now the
more generic "unsupported type for __hash__".
2015-05-12 22:46:02 +01:00

383 lines
13 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include <stdio.h>
#include <assert.h>
#include "py/nlr.h"
#include "py/parsenumbase.h"
#include "py/smallint.h"
#include "py/objint.h"
#include "py/runtime0.h"
#include "py/runtime.h"
#if MICROPY_PY_BUILTINS_FLOAT
#include <math.h>
#endif
#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_MPZ
#if MICROPY_PY_SYS_MAXSIZE
// Export value for sys.maxsize
#define DIG_MASK ((MPZ_LONG_1 << MPZ_DIG_SIZE) - 1)
STATIC const mpz_dig_t maxsize_dig[MPZ_NUM_DIG_FOR_INT] = {
(MP_SSIZE_MAX >> MPZ_DIG_SIZE * 0) & DIG_MASK,
#if (MP_SSIZE_MAX >> MPZ_DIG_SIZE * 0) > DIG_MASK
(MP_SSIZE_MAX >> MPZ_DIG_SIZE * 1) & DIG_MASK,
#if (MP_SSIZE_MAX >> MPZ_DIG_SIZE * 1) > DIG_MASK
(MP_SSIZE_MAX >> MPZ_DIG_SIZE * 2) & DIG_MASK,
(MP_SSIZE_MAX >> MPZ_DIG_SIZE * 3) & DIG_MASK,
(MP_SSIZE_MAX >> MPZ_DIG_SIZE * 4) & DIG_MASK,
// (MP_SSIZE_MAX >> MPZ_DIG_SIZE * 5) & DIG_MASK,
#endif
#endif
};
const mp_obj_int_t mp_maxsize_obj = {
{&mp_type_int},
{.fixed_dig = 1, .len = MPZ_NUM_DIG_FOR_INT, .alloc = MPZ_NUM_DIG_FOR_INT, .dig = (mpz_dig_t*)maxsize_dig}
};
#undef DIG_MASK
#endif
STATIC mp_obj_int_t *mp_obj_int_new_mpz(void) {
mp_obj_int_t *o = m_new_obj(mp_obj_int_t);
o->base.type = &mp_type_int;
mpz_init_zero(&o->mpz);
return o;
}
// This routine expects you to pass in a buffer and size (in *buf and buf_size).
// If, for some reason, this buffer is too small, then it will allocate a
// buffer and return the allocated buffer and size in *buf and *buf_size. It
// is the callers responsibility to free this allocated buffer.
//
// The resulting formatted string will be returned from this function and the
// formatted size will be in *fmt_size.
//
// This particular routine should only be called for the mpz representation of the int.
char *mp_obj_int_formatted_impl(char **buf, mp_uint_t *buf_size, mp_uint_t *fmt_size, mp_const_obj_t self_in,
int base, const char *prefix, char base_char, char comma) {
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_int));
const mp_obj_int_t *self = self_in;
mp_uint_t needed_size = mpz_as_str_size(&self->mpz, base, prefix, comma);
if (needed_size > *buf_size) {
*buf = m_new(char, needed_size);
*buf_size = needed_size;
}
char *str = *buf;
*fmt_size = mpz_as_str_inpl(&self->mpz, base, prefix, base_char, comma, str);
return str;
}
void mp_obj_int_to_bytes_impl(mp_obj_t self_in, bool big_endian, mp_uint_t len, byte *buf) {
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_int));
mp_obj_int_t *self = self_in;
mpz_as_bytes(&self->mpz, big_endian, len, buf);
}
bool mp_obj_int_is_positive(mp_obj_t self_in) {
if (MP_OBJ_IS_SMALL_INT(self_in)) {
return MP_OBJ_SMALL_INT_VALUE(self_in) >= 0;
}
mp_obj_int_t *self = self_in;
return !self->mpz.neg;
}
// This must handle int and bool types, and must raise a
// TypeError if the argument is not integral
mp_obj_t mp_obj_int_abs(mp_obj_t self_in) {
if (MP_OBJ_IS_TYPE(self_in, &mp_type_int)) {
mp_obj_int_t *self = self_in;
mp_obj_int_t *self2 = mp_obj_int_new_mpz();
mpz_abs_inpl(&self2->mpz, &self->mpz);
return self2;
} else {
mp_int_t val = mp_obj_get_int(self_in);
if (val == MP_SMALL_INT_MIN) {
return mp_obj_new_int_from_ll(-val);
} else {
if (val < 0) {
val = -val;
}
return MP_OBJ_NEW_SMALL_INT(val);
}
}
}
mp_obj_t mp_obj_int_unary_op(mp_uint_t op, mp_obj_t o_in) {
mp_obj_int_t *o = o_in;
switch (op) {
case MP_UNARY_OP_BOOL: return MP_BOOL(!mpz_is_zero(&o->mpz));
case MP_UNARY_OP_HASH: return MP_OBJ_NEW_SMALL_INT(mpz_hash(&o->mpz));
case MP_UNARY_OP_POSITIVE: return o_in;
case MP_UNARY_OP_NEGATIVE: { mp_obj_int_t *o2 = mp_obj_int_new_mpz(); mpz_neg_inpl(&o2->mpz, &o->mpz); return o2; }
case MP_UNARY_OP_INVERT: { mp_obj_int_t *o2 = mp_obj_int_new_mpz(); mpz_not_inpl(&o2->mpz, &o->mpz); return o2; }
default: return MP_OBJ_NULL; // op not supported
}
}
mp_obj_t mp_obj_int_binary_op(mp_uint_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
const mpz_t *zlhs;
const mpz_t *zrhs;
mpz_t z_int;
mpz_dig_t z_int_dig[MPZ_NUM_DIG_FOR_INT];
// lhs could be a small int (eg small-int + mpz)
if (MP_OBJ_IS_SMALL_INT(lhs_in)) {
mpz_init_fixed_from_int(&z_int, z_int_dig, MPZ_NUM_DIG_FOR_INT, MP_OBJ_SMALL_INT_VALUE(lhs_in));
zlhs = &z_int;
} else if (MP_OBJ_IS_TYPE(lhs_in, &mp_type_int)) {
zlhs = &((mp_obj_int_t*)lhs_in)->mpz;
} else {
// unsupported type
return MP_OBJ_NULL;
}
// if rhs is small int, then lhs was not (otherwise mp_binary_op handles it)
if (MP_OBJ_IS_SMALL_INT(rhs_in)) {
mpz_init_fixed_from_int(&z_int, z_int_dig, MPZ_NUM_DIG_FOR_INT, MP_OBJ_SMALL_INT_VALUE(rhs_in));
zrhs = &z_int;
} else if (MP_OBJ_IS_TYPE(rhs_in, &mp_type_int)) {
zrhs = &((mp_obj_int_t*)rhs_in)->mpz;
#if MICROPY_PY_BUILTINS_FLOAT
} else if (MP_OBJ_IS_TYPE(rhs_in, &mp_type_float)) {
return mp_obj_float_binary_op(op, mpz_as_float(zlhs), rhs_in);
#if MICROPY_PY_BUILTINS_COMPLEX
} else if (MP_OBJ_IS_TYPE(rhs_in, &mp_type_complex)) {
return mp_obj_complex_binary_op(op, mpz_as_float(zlhs), 0, rhs_in);
#endif
#endif
} else {
// delegate to generic function to check for extra cases
return mp_obj_int_binary_op_extra_cases(op, lhs_in, rhs_in);
}
if (0) {
#if MICROPY_PY_BUILTINS_FLOAT
} else if (op == MP_BINARY_OP_TRUE_DIVIDE || op == MP_BINARY_OP_INPLACE_TRUE_DIVIDE) {
mp_float_t flhs = mpz_as_float(zlhs);
mp_float_t frhs = mpz_as_float(zrhs);
return mp_obj_new_float(flhs / frhs);
#endif
} else if (op <= MP_BINARY_OP_INPLACE_POWER) {
mp_obj_int_t *res = mp_obj_int_new_mpz();
switch (op) {
case MP_BINARY_OP_ADD:
case MP_BINARY_OP_INPLACE_ADD:
mpz_add_inpl(&res->mpz, zlhs, zrhs);
break;
case MP_BINARY_OP_SUBTRACT:
case MP_BINARY_OP_INPLACE_SUBTRACT:
mpz_sub_inpl(&res->mpz, zlhs, zrhs);
break;
case MP_BINARY_OP_MULTIPLY:
case MP_BINARY_OP_INPLACE_MULTIPLY:
mpz_mul_inpl(&res->mpz, zlhs, zrhs);
break;
case MP_BINARY_OP_FLOOR_DIVIDE:
case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE: {
mpz_t rem; mpz_init_zero(&rem);
mpz_divmod_inpl(&res->mpz, &rem, zlhs, zrhs);
if (zlhs->neg != zrhs->neg) {
if (!mpz_is_zero(&rem)) {
mpz_t mpzone; mpz_init_from_int(&mpzone, -1);
mpz_add_inpl(&res->mpz, &res->mpz, &mpzone);
}
}
mpz_deinit(&rem);
break;
}
case MP_BINARY_OP_MODULO:
case MP_BINARY_OP_INPLACE_MODULO: {
mpz_t quo; mpz_init_zero(&quo);
mpz_divmod_inpl(&quo, &res->mpz, zlhs, zrhs);
mpz_deinit(&quo);
// Check signs and do Python style modulo
if (zlhs->neg != zrhs->neg) {
mpz_add_inpl(&res->mpz, &res->mpz, zrhs);
}
break;
}
case MP_BINARY_OP_AND:
case MP_BINARY_OP_INPLACE_AND:
mpz_and_inpl(&res->mpz, zlhs, zrhs);
break;
case MP_BINARY_OP_OR:
case MP_BINARY_OP_INPLACE_OR:
mpz_or_inpl(&res->mpz, zlhs, zrhs);
break;
case MP_BINARY_OP_XOR:
case MP_BINARY_OP_INPLACE_XOR:
mpz_xor_inpl(&res->mpz, zlhs, zrhs);
break;
case MP_BINARY_OP_LSHIFT:
case MP_BINARY_OP_INPLACE_LSHIFT:
case MP_BINARY_OP_RSHIFT:
case MP_BINARY_OP_INPLACE_RSHIFT: {
mp_int_t irhs = mp_obj_int_get_checked(rhs_in);
if (irhs < 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "negative shift count"));
}
if (op == MP_BINARY_OP_LSHIFT || op == MP_BINARY_OP_INPLACE_LSHIFT) {
mpz_shl_inpl(&res->mpz, zlhs, irhs);
} else {
mpz_shr_inpl(&res->mpz, zlhs, irhs);
}
break;
}
case MP_BINARY_OP_POWER:
case MP_BINARY_OP_INPLACE_POWER:
mpz_pow_inpl(&res->mpz, zlhs, zrhs);
break;
default:
return MP_OBJ_NULL; // op not supported
}
return res;
} else {
int cmp = mpz_cmp(zlhs, zrhs);
switch (op) {
case MP_BINARY_OP_LESS:
return MP_BOOL(cmp < 0);
case MP_BINARY_OP_MORE:
return MP_BOOL(cmp > 0);
case MP_BINARY_OP_LESS_EQUAL:
return MP_BOOL(cmp <= 0);
case MP_BINARY_OP_MORE_EQUAL:
return MP_BOOL(cmp >= 0);
case MP_BINARY_OP_EQUAL:
return MP_BOOL(cmp == 0);
default:
return MP_OBJ_NULL; // op not supported
}
}
}
mp_obj_t mp_obj_new_int(mp_int_t value) {
if (MP_SMALL_INT_FITS(value)) {
return MP_OBJ_NEW_SMALL_INT(value);
}
return mp_obj_new_int_from_ll(value);
}
mp_obj_t mp_obj_new_int_from_ll(long long val) {
mp_obj_int_t *o = mp_obj_int_new_mpz();
mpz_set_from_ll(&o->mpz, val, true);
return o;
}
mp_obj_t mp_obj_new_int_from_ull(unsigned long long val) {
mp_obj_int_t *o = mp_obj_int_new_mpz();
mpz_set_from_ll(&o->mpz, val, false);
return o;
}
mp_obj_t mp_obj_new_int_from_uint(mp_uint_t value) {
// SMALL_INT accepts only signed numbers, of one bit less size
// than word size, which totals 2 bits less for unsigned numbers.
if ((value & (WORD_MSBIT_HIGH | (WORD_MSBIT_HIGH >> 1))) == 0) {
return MP_OBJ_NEW_SMALL_INT(value);
}
return mp_obj_new_int_from_ull(value);
}
#if MICROPY_PY_BUILTINS_FLOAT
mp_obj_t mp_obj_new_int_from_float(mp_float_t val) {
int cl = fpclassify(val);
if (cl == FP_INFINITE) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_OverflowError, "can't convert inf to int"));
} else if (cl == FP_NAN) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "can't convert NaN to int"));
} else {
mp_fp_as_int_class_t icl = mp_classify_fp_as_int(val);
if (icl == MP_FP_CLASS_FIT_SMALLINT) {
return MP_OBJ_NEW_SMALL_INT((mp_int_t)val);
} else {
mp_obj_int_t *o = mp_obj_int_new_mpz();
mpz_set_from_float(&o->mpz, val);
return o;
}
}
}
#endif
mp_obj_t mp_obj_new_int_from_str_len(const char **str, mp_uint_t len, bool neg, mp_uint_t base) {
mp_obj_int_t *o = mp_obj_int_new_mpz();
mp_uint_t n = mpz_set_from_str(&o->mpz, *str, len, neg, base);
*str += n;
return o;
}
mp_int_t mp_obj_int_get_truncated(mp_const_obj_t self_in) {
if (MP_OBJ_IS_SMALL_INT(self_in)) {
return MP_OBJ_SMALL_INT_VALUE(self_in);
} else {
const mp_obj_int_t *self = self_in;
// hash returns actual int value if it fits in mp_int_t
return mpz_hash(&self->mpz);
}
}
mp_int_t mp_obj_int_get_checked(mp_const_obj_t self_in) {
if (MP_OBJ_IS_SMALL_INT(self_in)) {
return MP_OBJ_SMALL_INT_VALUE(self_in);
} else {
const mp_obj_int_t *self = self_in;
mp_int_t value;
if (mpz_as_int_checked(&self->mpz, &value)) {
return value;
} else {
// overflow
nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "overflow converting long int to machine word"));
}
}
}
#if MICROPY_PY_BUILTINS_FLOAT
mp_float_t mp_obj_int_as_float(mp_obj_t self_in) {
if (MP_OBJ_IS_SMALL_INT(self_in)) {
return MP_OBJ_SMALL_INT_VALUE(self_in);
} else {
mp_obj_int_t *self = self_in;
return mpz_as_float(&self->mpz);
}
}
#endif
#endif