circuitpython/ports/samd/machine_i2c.c
robert-hh fcd1788937 samd: Avoid under-/overflow in I2C and SPI baudrate calculations.
Applies to both SPI and I2C.  The underflow caused high baudrate settings
resulting in the lowest possible baudrate.  The overflow resulted in
erratic baudrates, not just the lowest possible.
2022-12-14 12:41:42 +11:00

277 lines
9.7 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
* Copyright (c) 2022 Robert Hammelrath
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/mphal.h"
#include "py/mperrno.h"
#include "extmod/machine_i2c.h"
#include "modmachine.h"
#include "samd_soc.h"
#include "pin_af.h"
#include "clock_config.h"
#define DEFAULT_I2C_FREQ (400000)
#define RISETIME_NS (200)
#define I2C_TIMEOUT (100)
#define IS_BUS_BUSY (i2c->I2CM.STATUS.bit.BUSSTATE == 3)
#define NACK_RECVD (i2c->I2CM.STATUS.bit.RXNACK == 1)
#define IRQ_DATA_SENT (i2c->I2CM.INTFLAG.bit.MB == 1)
#define IRQ_DATA_RECVD (i2c->I2CM.INTFLAG.bit.SB == 1)
#define READ_MODE ((flags & MP_MACHINE_I2C_FLAG_READ) != 0)
#define PREPARE_ACK i2c->I2CM.CTRLB.bit.ACKACT = 0
#define PREPARE_NACK i2c->I2CM.CTRLB.bit.ACKACT = 1
#define SET_STOP_STATE i2c_send_command(i2c, 0x03)
enum state_t {
state_done = 0,
state_busy,
state_buserr,
state_nack
};
typedef struct _machine_i2c_obj_t {
mp_obj_base_t base;
Sercom *instance;
uint8_t id;
uint8_t scl;
uint8_t sda;
uint8_t state;
uint32_t freq;
uint32_t timeout;
size_t len;
uint8_t *buf;
} machine_i2c_obj_t;
extern Sercom *sercom_instance[];
STATIC void i2c_send_command(Sercom *i2c, uint8_t command) {
i2c->I2CM.CTRLB.bit.CMD = command;
while (i2c->I2CM.SYNCBUSY.bit.SYSOP) {
}
}
void common_i2c_irq_handler(int i2c_id) {
// handle Sercom I2C IRQ
machine_i2c_obj_t *self = MP_STATE_PORT(sercom_table[i2c_id]);
// Handle IRQ
if (self != NULL) {
Sercom *i2c = self->instance;
// For now, clear all interrupts
if (IRQ_DATA_RECVD) {
if (self->len > 0) {
*(self->buf)++ = i2c->I2CM.DATA.reg;
self->len--;
self->timeout = I2C_TIMEOUT;
}
if (self->len > 0) { // no ACK at the last byte
PREPARE_ACK; // Send ACK
i2c_send_command(i2c, 0x02);
} else {
PREPARE_NACK; // Send NACK after the last byte
self->state = state_done;
i2c->I2CM.INTFLAG.reg |= SERCOM_I2CM_INTFLAG_SB;
}
} else if (IRQ_DATA_SENT) {
if (NACK_RECVD) { // e.g. NACK after adress for both read and write.
self->state = state_nack; // force stop of transmission
i2c->I2CM.INTFLAG.reg |= SERCOM_I2CM_INTFLAG_MB;
} else if (self->len > 0) { // data to be sent
i2c->I2CM.DATA.bit.DATA = *(self->buf)++;
self->len--;
self->timeout = I2C_TIMEOUT;
} else { // No data left, if there was any.
self->state = state_done;
i2c->I2CM.INTFLAG.reg |= SERCOM_I2CM_INTFLAG_MB;
}
} else { // On any error, e.g. ARBLOST or BUSERROR, stop the transmission
self->len = 0;
self->state = state_buserr;
i2c->I2CM.INTFLAG.reg |= SERCOM_I2CM_INTFLAG_ERROR;
}
}
}
STATIC void machine_i2c_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "I2C(%u, freq=%u, scl=%u, sda=%u)",
self->id, self->freq, self->scl, self->sda);
}
mp_obj_t machine_i2c_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
enum { ARG_id, ARG_freq, ARG_scl, ARG_sda };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_freq, MP_ARG_INT, {.u_int = DEFAULT_I2C_FREQ} },
{ MP_QSTR_scl, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_sda, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
};
// Parse args.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Get I2C bus.
int id = mp_obj_get_int(args[ARG_id].u_obj);
if (id < 0 || id >= SERCOM_INST_NUM) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("I2C(%d) doesn't exist"), id);
}
// Get the peripheral object.
machine_i2c_obj_t *self = mp_obj_malloc(machine_i2c_obj_t, &machine_i2c_type);
self->id = id;
self->instance = sercom_instance[self->id];
// Set SCL/SDA pins.
sercom_pad_config_t scl_pad_config;
self->scl = mp_hal_get_pin_obj(args[ARG_scl].u_obj);
scl_pad_config = get_sercom_config(self->scl, self->id);
sercom_pad_config_t sda_pad_config;
self->sda = mp_hal_get_pin_obj(args[ARG_sda].u_obj);
sda_pad_config = get_sercom_config(self->sda, self->id);
if (sda_pad_config.pad_nr != 0 || scl_pad_config.pad_nr != 1) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid pin for sda or scl"));
}
MP_STATE_PORT(sercom_table[self->id]) = self;
self->freq = args[ARG_freq].u_int;
// Configure the Pin mux.
mp_hal_set_pin_mux(self->scl, scl_pad_config.alt_fct);
mp_hal_set_pin_mux(self->sda, sda_pad_config.alt_fct);
// Set up the clocks
enable_sercom_clock(self->id);
// Initialise the I2C peripheral
Sercom *i2c = self->instance;
// Reset the device
i2c->I2CM.CTRLA.reg = SERCOM_I2CM_CTRLA_SWRST;
while (i2c->I2CM.SYNCBUSY.bit.SWRST == 1) {
}
// Set to master mode, inactivity timeout of 20 SCL cycles and speed.
i2c->I2CM.CTRLA.reg = SERCOM_I2CM_CTRLA_MODE(0x05)
| SERCOM_I2CM_CTRLA_INACTOUT(3)
| SERCOM_I2CM_CTRLA_SPEED(self->freq > 400000 ? 1 : 0);
// I2C is driven by the clock of GCLK Generator 2, with it's freq in variable bus_freq
// baud = peripheral_freq / (2 * baudrate) - 5 - (rise_time * peripheral_freq) / 2
// Just set the minimal configuration for standard and fast mode.
// Set Baud. Assume ~300ns rise time. Maybe set later by a keyword argument.
int32_t baud = get_peripheral_freq() / (2 * self->freq) - 5 - (get_peripheral_freq() / 1000000) * RISETIME_NS / 2000;
if (baud < 0) {
baud = 0;
}
if (baud > 255) {
baud = 255;
}
i2c->I2CM.BAUD.reg = baud;
// Enable interrupts
sercom_register_irq(self->id, &common_i2c_irq_handler);
#if defined(MCU_SAMD21)
NVIC_EnableIRQ(SERCOM0_IRQn + self->id);
#elif defined(MCU_SAMD51)
NVIC_EnableIRQ(SERCOM0_0_IRQn + 4 * self->id); // MB interrupt
NVIC_EnableIRQ(SERCOM0_0_IRQn + 4 * self->id + 1); // SB interrupt
NVIC_EnableIRQ(SERCOM0_0_IRQn + 4 * self->id + 3); // ERRROR interrupt
#endif
// Now enable I2C.
sercom_enable(i2c, 1);
// Force the bus state to idle
i2c->I2CM.STATUS.bit.BUSSTATE = 1;
return MP_OBJ_FROM_PTR(self);
}
STATIC int machine_i2c_transfer_single(mp_obj_base_t *self_in, uint16_t addr, size_t len, uint8_t *buf, unsigned int flags) {
machine_i2c_obj_t *self = (machine_i2c_obj_t *)self_in;
Sercom *i2c = self->instance;
self->timeout = I2C_TIMEOUT;
self->len = len;
self->buf = buf;
// Wait a while if the bus is busy
while (IS_BUS_BUSY && self->timeout) {
MICROPY_EVENT_POLL_HOOK
if (--self->timeout == 0) {
return -MP_ETIMEDOUT;
}
}
// Enable interrupts and set the state
i2c->I2CM.INTENSET.reg = SERCOM_I2CM_INTENSET_MB | SERCOM_I2CM_INTENSET_SB | SERCOM_I2CM_INTENSET_ERROR;
self->state = state_busy;
// Send the adress, which kicks off the transfer
i2c->I2CM.ADDR.bit.ADDR = (addr << 1) | READ_MODE;
// Transfer the data
self->timeout = I2C_TIMEOUT;
while (self->state == state_busy && self->timeout) {
self->timeout--;
MICROPY_EVENT_POLL_HOOK
}
i2c->I2CM.INTENCLR.reg = SERCOM_I2CM_INTENSET_MB | SERCOM_I2CM_INTENSET_SB | SERCOM_I2CM_INTENSET_ERROR;
// Check the error states after the transfer is stopped
if (self->state == state_nack) {
SET_STOP_STATE;
return self->len == len ? -MP_ENODEV : -MP_EIO;
} else if (self->state == state_buserr) {
SET_STOP_STATE;
return -MP_EIO;
} else if (self->timeout == 0) {
SET_STOP_STATE;
return -MP_ETIMEDOUT;
}
if (flags & MP_MACHINE_I2C_FLAG_STOP) {
SET_STOP_STATE;
}
return len;
}
STATIC const mp_machine_i2c_p_t machine_i2c_p = {
.transfer = mp_machine_i2c_transfer_adaptor,
.transfer_single = machine_i2c_transfer_single,
};
MP_DEFINE_CONST_OBJ_TYPE(
machine_i2c_type,
MP_QSTR_I2C,
MP_TYPE_FLAG_NONE,
make_new, machine_i2c_make_new,
print, machine_i2c_print,
protocol, &machine_i2c_p,
locals_dict, &mp_machine_i2c_locals_dict
);