2021-08-30 14:09:36 -07:00

157 lines
5.3 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017 Dan Halbert for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "common-hal/microcontroller/Processor.h"
#include "common-hal/alarm/__init__.h"
#include "shared-bindings/microcontroller/ResetReason.h"
#include "supervisor/shared/translate.h"
#include "nrfx_saadc.h"
#ifdef BLUETOOTH_SD
#include "nrf_sdm.h"
#endif
#include "nrf.h"
float common_hal_mcu_processor_get_temperature(void) {
int32_t temp = 0;
#ifdef BLUETOOTH_SD
uint8_t sd_en = 0;
(void)sd_softdevice_is_enabled(&sd_en);
if (sd_en) {
uint32_t err_code = sd_temp_get(&temp);
if (err_code != NRF_SUCCESS) {
mp_raise_OSError_msg(translate("Cannot get temperature"));
}
return temp / 4.0f;
} // Fall through if SD not enabled.
#endif
NRF_TEMP->TASKS_START = 1;
while (NRF_TEMP->EVENTS_DATARDY == 0) {
}
NRF_TEMP->EVENTS_DATARDY = 0;
temp = NRF_TEMP->TEMP;
NRF_TEMP->TASKS_STOP = 1;
return temp / 4.0f;
}
uint32_t common_hal_mcu_processor_get_frequency(void) {
return 64000000ul;
}
float common_hal_mcu_processor_get_voltage(void) {
nrf_saadc_value_t value;
const nrf_saadc_channel_config_t config = {
.resistor_p = NRF_SAADC_RESISTOR_DISABLED,
.resistor_n = NRF_SAADC_RESISTOR_DISABLED,
.gain = NRF_SAADC_GAIN1_6,
.reference = NRF_SAADC_REFERENCE_INTERNAL,
.acq_time = NRF_SAADC_ACQTIME_10US,
.mode = NRF_SAADC_MODE_SINGLE_ENDED,
.burst = NRF_SAADC_BURST_DISABLED
};
nrf_saadc_resolution_set(NRF_SAADC, NRF_SAADC_RESOLUTION_14BIT);
nrf_saadc_oversample_set(NRF_SAADC, NRF_SAADC_OVERSAMPLE_DISABLED);
nrf_saadc_enable(NRF_SAADC);
for (uint32_t i = 0; i < SAADC_CH_NUM; i++) {
nrf_saadc_channel_input_set(NRF_SAADC, i, NRF_SAADC_INPUT_DISABLED, NRF_SAADC_INPUT_DISABLED);
}
nrf_saadc_channel_init(NRF_SAADC, 0, &config);
nrf_saadc_channel_input_set(NRF_SAADC, 0, NRF_SAADC_INPUT_VDD, NRF_SAADC_INPUT_VDD);
nrf_saadc_buffer_init(NRF_SAADC, &value, 1);
nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_START);
while (nrf_saadc_event_check(NRF_SAADC, NRF_SAADC_EVENT_STARTED) == 0) {
}
nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_STARTED);
nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_SAMPLE);
while (nrf_saadc_event_check(NRF_SAADC, NRF_SAADC_EVENT_END) == 0) {
}
nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_END);
nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_STOP);
while (nrf_saadc_event_check(NRF_SAADC, NRF_SAADC_EVENT_STOPPED) == 0) {
}
nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_STOPPED);
nrf_saadc_disable(NRF_SAADC);
if (value < 0) {
value = 0;
}
// The ADC reading we expect if VDD is 3.3V.
#define NOMINAL_VALUE_3_3 (((3.3f / 6) / 0.6f) * 16383)
return (value / NOMINAL_VALUE_3_3) * 3.3f;
}
void common_hal_mcu_processor_get_uid(uint8_t raw_id[]) {
for (int i = 0; i < 2; i++) {
((uint32_t *)raw_id)[i] = NRF_FICR->DEVICEID[i];
}
}
mcu_reset_reason_t common_hal_mcu_processor_get_reset_reason(void) {
mcu_reset_reason_t r = RESET_REASON_UNKNOWN;
if (reset_reason_saved == 0) {
r = RESET_REASON_POWER_ON;
} else if (reset_reason_saved & POWER_RESETREAS_RESETPIN_Msk) {
r = RESET_REASON_RESET_PIN;
} else if (reset_reason_saved & POWER_RESETREAS_DOG_Msk) {
r = RESET_REASON_WATCHDOG;
} else if (reset_reason_saved & POWER_RESETREAS_SREQ_Msk) {
r = RESET_REASON_SOFTWARE;
#if CIRCUITPY_ALARM
// Our "deep sleep" is still actually light sleep followed by a software
// reset. Adding this check here ensures we treat it as-if we're waking
// from deep sleep.
if (sleepmem_wakeup_event != SLEEPMEM_WAKEUP_BY_NONE) {
r = RESET_REASON_DEEP_SLEEP_ALARM;
}
#endif
} else if ((reset_reason_saved & POWER_RESETREAS_OFF_Msk) ||
(reset_reason_saved & POWER_RESETREAS_LPCOMP_Msk) ||
(reset_reason_saved & POWER_RESETREAS_NFC_Msk) ||
(reset_reason_saved & POWER_RESETREAS_VBUS_Msk)) {
r = RESET_REASON_DEEP_SLEEP_ALARM;
}
return r;
}