Scott Shawcroft cfd71d9023
Fix nRF UART reset
disable only turns off ENABLE but doesn't set the init tracking that
nrfx uses. uninit hangs if ENABLE is off and is called because it
waits forever for TX to stop.
2019-12-27 20:18:07 -08:00

324 lines
10 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2018 Ha Thach for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/microcontroller/__init__.h"
#include "shared-bindings/busio/UART.h"
#include "lib/utils/interrupt_char.h"
#include "py/mpconfig.h"
#include "py/gc.h"
#include "py/mperrno.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "supervisor/shared/translate.h"
#include "tick.h"
#include "nrfx_uarte.h"
#include <string.h>
// expression to examine, and return value in case of failing
#define _VERIFY_ERR(_exp) \
do {\
uint32_t _err = (_exp);\
if (NRFX_SUCCESS != _err ) {\
mp_raise_msg_varg(&mp_type_RuntimeError, translate("error = 0x%08lX"), _err);\
}\
}while(0)
static nrfx_uarte_t nrfx_uartes[] = {
#if NRFX_CHECK(NRFX_UARTE0_ENABLED)
NRFX_UARTE_INSTANCE(0),
#endif
#if NRFX_CHECK(NRFX_UARTE1_ENABLED)
NRFX_UARTE_INSTANCE(1),
#endif
};
static uint32_t get_nrf_baud (uint32_t baudrate) {
static const struct {
const uint32_t boundary;
nrf_uarte_baudrate_t uarte_baudraute;
} baudrate_map[] = {
{ 1200, NRF_UARTE_BAUDRATE_1200 },
{ 2400, NRF_UARTE_BAUDRATE_2400 },
{ 4800, NRF_UARTE_BAUDRATE_4800 },
{ 9600, NRF_UARTE_BAUDRATE_9600 },
{ 14400, NRF_UARTE_BAUDRATE_14400 },
{ 19200, NRF_UARTE_BAUDRATE_19200 },
{ 28800, NRF_UARTE_BAUDRATE_28800 },
{ 38400, NRF_UARTE_BAUDRATE_38400 },
{ 57600, NRF_UARTE_BAUDRATE_57600 },
{ 76800, NRF_UARTE_BAUDRATE_76800 },
{ 115200, NRF_UARTE_BAUDRATE_115200 },
{ 230400, NRF_UARTE_BAUDRATE_230400 },
{ 250000, NRF_UARTE_BAUDRATE_250000 },
{ 460800, NRF_UARTE_BAUDRATE_460800 },
{ 921600, NRF_UARTE_BAUDRATE_921600 },
{ 0, NRF_UARTE_BAUDRATE_1000000 },
};
size_t i = 0;
uint32_t boundary;
do {
boundary = baudrate_map[i].boundary;
if (baudrate <= boundary || boundary == 0) {
return baudrate_map[i].uarte_baudraute;
}
i++;
} while (true);
}
static void uart_callback_irq (const nrfx_uarte_event_t * event, void * context) {
busio_uart_obj_t* self = (busio_uart_obj_t*) context;
switch ( event->type ) {
case NRFX_UARTE_EVT_RX_DONE:
ringbuf_put_n(&self->rbuf, event->data.rxtx.p_data, event->data.rxtx.bytes);
// keep receiving
(void) nrfx_uarte_rx(self->uarte, &self->rx_char, 1);
break;
case NRFX_UARTE_EVT_TX_DONE:
// nothing to do
break;
case NRFX_UARTE_EVT_ERROR:
// Possible Error source is Overrun, Parity, Framing, Break
// uint32_t errsrc = event->data.error.error_mask;
ringbuf_put_n(&self->rbuf, event->data.error.rxtx.p_data, event->data.error.rxtx.bytes);
// Keep receiving
(void) nrfx_uarte_rx(self->uarte, &self->rx_char, 1);
break;
default:
break;
}
}
void uart_reset(void) {
for (size_t i = 0 ; i < MP_ARRAY_SIZE(nrfx_uartes); i++) {
nrfx_uarte_uninit(&nrfx_uartes[i]);
}
}
void common_hal_busio_uart_construct (busio_uart_obj_t *self,
const mcu_pin_obj_t * tx, const mcu_pin_obj_t * rx, uint32_t baudrate,
uint8_t bits, uart_parity_t parity, uint8_t stop, mp_float_t timeout,
uint16_t receiver_buffer_size) {
// Find a free UART peripheral.
self->uarte = NULL;
for (size_t i = 0 ; i < MP_ARRAY_SIZE(nrfx_uartes); i++) {
if ((nrfx_uartes[i].p_reg->ENABLE & UARTE_ENABLE_ENABLE_Msk) == 0) {
self->uarte = &nrfx_uartes[i];
break;
}
}
if (self->uarte == NULL) {
mp_raise_ValueError(translate("All UART peripherals are in use"));
}
if ( (tx == mp_const_none) && (rx == mp_const_none) ) {
mp_raise_ValueError(translate("tx and rx cannot both be None"));
}
if ( receiver_buffer_size == 0 ) {
mp_raise_ValueError(translate("Invalid buffer size"));
}
if ( parity == PARITY_ODD ) {
mp_raise_ValueError(translate("Odd parity is not supported"));
}
nrfx_uarte_config_t config = {
.pseltxd = (tx == mp_const_none) ? NRF_UARTE_PSEL_DISCONNECTED : tx->number,
.pselrxd = (rx == mp_const_none) ? NRF_UARTE_PSEL_DISCONNECTED : rx->number,
.pselcts = NRF_UARTE_PSEL_DISCONNECTED,
.pselrts = NRF_UARTE_PSEL_DISCONNECTED,
.p_context = self,
.baudrate = get_nrf_baud(baudrate),
.interrupt_priority = 7,
.hal_cfg = {
.hwfc = NRF_UARTE_HWFC_DISABLED,
.parity = (parity == PARITY_NONE) ? NRF_UARTE_PARITY_EXCLUDED : NRF_UARTE_PARITY_INCLUDED
}
};
_VERIFY_ERR(nrfx_uarte_init(self->uarte, &config, uart_callback_irq));
// Init buffer for rx
if ( rx != mp_const_none ) {
// Initially allocate the UART's buffer in the long-lived part of the
// heap. UARTs are generally long-lived objects, but the "make long-
// lived" machinery is incapable of moving internal pointers like
// self->buffer, so do it manually. (However, as long as internal
// pointers like this are NOT moved, allocating the buffer
// in the long-lived pool is not strictly necessary)
// (This is a macro.)
ringbuf_alloc(&self->rbuf, receiver_buffer_size, true);
if ( !self->rbuf.buf ) {
nrfx_uarte_uninit(self->uarte);
mp_raise_msg(&mp_type_MemoryError, translate("Failed to allocate RX buffer"));
}
self->rx_pin_number = rx->number;
claim_pin(rx);
}
if ( tx != mp_const_none ) {
self->tx_pin_number = tx->number;
claim_pin(tx);
} else {
self->tx_pin_number = NO_PIN;
}
self->baudrate = baudrate;
self->timeout_ms = timeout * 1000;
// Initial wait for incoming byte
_VERIFY_ERR(nrfx_uarte_rx(self->uarte, &self->rx_char, 1));
}
bool common_hal_busio_uart_deinited(busio_uart_obj_t *self) {
return self->rx_pin_number == NO_PIN;
}
void common_hal_busio_uart_deinit(busio_uart_obj_t *self) {
if ( !common_hal_busio_uart_deinited(self) ) {
nrfx_uarte_uninit(self->uarte);
reset_pin_number(self->tx_pin_number);
reset_pin_number(self->rx_pin_number);
self->tx_pin_number = NO_PIN;
self->rx_pin_number = NO_PIN;
gc_free(self->rbuf.buf);
self->rbuf.size = 0;
self->rbuf.iput = self->rbuf.iget = 0;
}
}
// Read characters.
size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t len, int *errcode) {
if ( nrf_uarte_rx_pin_get(self->uarte->p_reg) == NRF_UARTE_PSEL_DISCONNECTED ) {
mp_raise_ValueError(translate("No RX pin"));
}
size_t rx_bytes = 0;
uint64_t start_ticks = supervisor_ticks_ms64();
// Wait for all bytes received or timeout
while ( (ringbuf_count(&self->rbuf) < len) && (supervisor_ticks_ms64() - start_ticks < self->timeout_ms) ) {
RUN_BACKGROUND_TASKS;
// Allow user to break out of a timeout with a KeyboardInterrupt.
if ( mp_hal_is_interrupted() ) {
return 0;
}
}
// prevent conflict with uart irq
NVIC_DisableIRQ(nrfx_get_irq_number(self->uarte->p_reg));
// copy received data
rx_bytes = ringbuf_count(&self->rbuf);
rx_bytes = MIN(rx_bytes, len);
for ( uint16_t i = 0; i < rx_bytes; i++ ) {
data[i] = ringbuf_get(&self->rbuf);
}
NVIC_EnableIRQ(nrfx_get_irq_number(self->uarte->p_reg));
return rx_bytes;
}
// Write characters.
size_t common_hal_busio_uart_write (busio_uart_obj_t *self, const uint8_t *data, size_t len, int *errcode) {
if ( nrf_uarte_tx_pin_get(self->uarte->p_reg) == NRF_UARTE_PSEL_DISCONNECTED ) {
mp_raise_ValueError(translate("No TX pin"));
}
if ( len == 0 ) return 0;
// EasyDMA can only access SRAM
uint8_t * tx_buf = (uint8_t*) data;
if ( !nrfx_is_in_ram(data) ) {
// TODO: If this is not too big, we could allocate it on the stack.
tx_buf = (uint8_t *) gc_alloc(len, false, false);
memcpy(tx_buf, data, len);
}
(*errcode) = nrfx_uarte_tx(self->uarte, tx_buf, len);
_VERIFY_ERR(*errcode);
(*errcode) = 0;
// Wait for write to complete.
while ( nrfx_uarte_tx_in_progress(self->uarte) ) {
RUN_BACKGROUND_TASKS;
}
if ( !nrfx_is_in_ram(data) ) {
gc_free(tx_buf);
}
return len;
}
uint32_t common_hal_busio_uart_get_baudrate(busio_uart_obj_t *self) {
return self->baudrate;
}
void common_hal_busio_uart_set_baudrate(busio_uart_obj_t *self, uint32_t baudrate) {
self->baudrate = baudrate;
nrf_uarte_baudrate_set(self->uarte->p_reg, get_nrf_baud(baudrate));
}
mp_float_t common_hal_busio_uart_get_timeout(busio_uart_obj_t *self) {
return (mp_float_t) (self->timeout_ms / 1000.0f);
}
void common_hal_busio_uart_set_timeout(busio_uart_obj_t *self, mp_float_t timeout) {
self->timeout_ms = timeout * 1000;
}
uint32_t common_hal_busio_uart_rx_characters_available(busio_uart_obj_t *self) {
return ringbuf_count(&self->rbuf);
}
void common_hal_busio_uart_clear_rx_buffer(busio_uart_obj_t *self) {
// prevent conflict with uart irq
NVIC_DisableIRQ(nrfx_get_irq_number(self->uarte->p_reg));
ringbuf_clear(&self->rbuf);
NVIC_EnableIRQ(nrfx_get_irq_number(self->uarte->p_reg));
}
bool common_hal_busio_uart_ready_to_tx(busio_uart_obj_t *self) {
return !nrfx_uarte_tx_in_progress(self->uarte);
}