circuitpython/ports/samd/machine_pin.c
robert-hh 03075a6839 samd/modmachine: Implement machine.lightsleep().
Which just sets the CPU clock to 200kHz and switches the peripheral clock
off.  There are two modes:

    machine.lightsleep(duration_ms)

and

    machine.lightsleep()

In any mode any configured pin.irq() event will terminate the sleep.

Current consumption in lightsleep for some boards:
- 1.5 - 2.5 mA when supplied trough an active USB
  (Seeed XIAO w/o power LED, Adafruit ItsyBitsy)
- 0.8 - 2 mA when supplied through Gnd/+5V (Vusb)
  (Seeed XIAO w/o power LED, Adafruit ItsyBitsy)
- < 1 mA for SAMD51 when supplied trough a battery connector
  (Sparkfun Thing SAMD51 plus)

Related change: move the calls to SysTick_Config() into set_cpu_freq().  It
is required after each CPU freq change to have ticks_ms run at the proper
rate.
2022-10-25 23:07:27 +11:00

536 lines
19 KiB
C

/*
* This is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016-2021 Damien P. George
* Copyright (c) 2022 Robert Hammelrath (pin.irq)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* Uses pins.h & pins.c to create board (MCU package) specific 'machine_pin_obj' array.
*/
#include "string.h"
#include "py/runtime.h"
#include "py/mphal.h"
#include "shared/runtime/mpirq.h"
#include "extmod/virtpin.h"
#include "modmachine.h"
#include "samd_soc.h"
#include "pins.h"
#include "pin_af.h"
#include "hal_gpio.h"
#define GPIO_MODE_IN (0)
#define GPIO_MODE_OUT (1)
#define GPIO_MODE_OPEN_DRAIN (2)
#define GPIO_STRENGTH_2MA (0)
#define GPIO_STRENGTH_8MA (1)
#define GPIO_IRQ_EDGE_RISE (1)
#define GPIO_IRQ_EDGE_FALL (2)
typedef struct _machine_pin_irq_obj_t {
mp_irq_obj_t base;
uint32_t flags;
uint32_t trigger;
uint8_t pin_id;
} machine_pin_irq_obj_t;
STATIC const mp_irq_methods_t machine_pin_irq_methods;
bool EIC_occured;
uint32_t machine_pin_open_drain_mask[4];
// Open drain behaviour is simulated.
#define GPIO_IS_OPEN_DRAIN(id) (machine_pin_open_drain_mask[id / 32] & (1 << (id % 32)))
STATIC void machine_pin_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_pin_obj_t *self = self_in;
char *mode_str;
char *pull_str[] = {"PULL_OFF", "PULL_UP", "PULL_DOWN"};
if (GPIO_IS_OPEN_DRAIN(self->id)) {
mode_str = "OPEN_DRAIN";
} else {
mode_str = (mp_hal_get_pin_direction(self->id) == GPIO_DIRECTION_OUT) ? "OUT" : "IN";
}
mp_printf(print, "Pin(\"%s\", mode=%s, pull=%s, GPIO=P%c%02u)",
self->name,
mode_str,
pull_str[mp_hal_get_pull_mode(self->id)],
"ABCD"[self->id / 32], self->id % 32);
}
STATIC void pin_validate_drive(bool strength) {
if (strength != GPIO_STRENGTH_2MA && strength != GPIO_STRENGTH_8MA) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid argument(s) value"));
}
}
int pin_find(mp_obj_t pin, const machine_pin_obj_t machine_pin_obj[], int table_size) {
int wanted_pin = -1;
if (mp_obj_is_small_int(pin)) {
// Pin defined by the index of pin table
wanted_pin = mp_obj_get_int(pin);
} else if (mp_obj_is_str(pin)) {
// Search by name
size_t slen;
const char *s = mp_obj_str_get_data(pin, &slen);
for (wanted_pin = 0; wanted_pin < table_size; wanted_pin++) {
if (slen == strlen(machine_pin_obj[wanted_pin].name) &&
strncmp(s, machine_pin_obj[wanted_pin].name, slen) == 0) {
break;
}
}
}
return wanted_pin;
}
// Pin.init(mode, pull=None, *, value=None, drive=0). No 'alt' yet.
STATIC mp_obj_t machine_pin_obj_init_helper(const machine_pin_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_mode, ARG_pull, ARG_value, ARG_drive, ARG_alt };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_mode, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE}},
{ MP_QSTR_pull, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE}},
{ MP_QSTR_value, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE}},
{ MP_QSTR_drive, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = GPIO_STRENGTH_2MA} },
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// set initial value (do this before configuring mode/pull)
if (args[ARG_value].u_obj != mp_const_none) {
mp_hal_pin_write(self->id, mp_obj_is_true(args[ARG_value].u_obj));
}
// configure mode
if (args[ARG_mode].u_obj != mp_const_none) {
mp_int_t mode = mp_obj_get_int(args[ARG_mode].u_obj);
if (mode == GPIO_MODE_IN) {
mp_hal_pin_input(self->id);
} else if (mode == GPIO_MODE_OUT) {
mp_hal_pin_output(self->id);
} else if (mode == GPIO_MODE_OPEN_DRAIN) {
mp_hal_pin_open_drain(self->id);
} else {
mp_hal_pin_input(self->id); // If no args are given, the Pin is 'input'.
}
}
// configure pull. Only to be used with IN mode. The function sets the pin to INPUT.
uint32_t pull = 0;
mp_int_t dir = mp_hal_get_pin_direction(self->id);
if (dir == GPIO_DIRECTION_OUT && args[ARG_pull].u_obj != mp_const_none) {
mp_raise_ValueError(MP_ERROR_TEXT("OUT incompatible with pull"));
} else if (args[ARG_pull].u_obj != mp_const_none) {
pull = mp_obj_get_int(args[ARG_pull].u_obj);
gpio_set_pin_pull_mode(self->id, pull); // hal_gpio.h
}
// get the strength
bool strength = args[3].u_int;
pin_validate_drive(strength);
return mp_const_none;
}
// constructor(id, ...)
mp_obj_t mp_pin_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// get the wanted pin object
int wanted_pin = pin_find(args[0], machine_pin_obj, MP_ARRAY_SIZE(machine_pin_obj));
const machine_pin_obj_t *self = NULL;
if (0 <= wanted_pin && wanted_pin < MP_ARRAY_SIZE(machine_pin_obj)) {
self = (machine_pin_obj_t *)&machine_pin_obj[wanted_pin];
}
if (self == NULL || self->base.type == NULL) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid pin"));
}
if (n_args > 1 || n_kw > 0) {
// pin mode given, so configure this GPIO
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
machine_pin_obj_init_helper(self, n_args - 1, args + 1, &kw_args);
}
return MP_OBJ_FROM_PTR(self);
}
// fast method for getting/setting pin value
mp_obj_t machine_pin_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 0, 1, false);
machine_pin_obj_t *self = self_in;
if (n_args == 0) {
// get pin
return MP_OBJ_NEW_SMALL_INT(mp_hal_pin_read(self->id));
} else {
// set pin
bool value = mp_obj_is_true(args[0]);
if (GPIO_IS_OPEN_DRAIN(self->id)) {
if (value == 0) {
mp_hal_pin_od_low(self->id);
} else {
mp_hal_pin_od_high(self->id);
}
} else {
mp_hal_pin_write(self->id, value);
}
return mp_const_none;
}
}
// Pin.init(mode, pull)
STATIC mp_obj_t machine_pin_obj_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return machine_pin_obj_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
MP_DEFINE_CONST_FUN_OBJ_KW(machine_pin_init_obj, 1, machine_pin_obj_init);
// Pin.value([value])
mp_obj_t machine_pin_value(size_t n_args, const mp_obj_t *args) {
return machine_pin_call(args[0], n_args - 1, 0, args + 1);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_pin_value_obj, 1, 2, machine_pin_value);
// Pin.disable(pin)
STATIC mp_obj_t machine_pin_disable(mp_obj_t self_in) {
machine_pin_obj_t *self = MP_OBJ_TO_PTR(self_in);
gpio_set_pin_direction(self->id, GPIO_DIRECTION_OFF); // Disables the pin (low power state)
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_pin_disable_obj, machine_pin_disable);
// Pin.low() Totem-pole (push-pull)
STATIC mp_obj_t machine_pin_low(mp_obj_t self_in) {
machine_pin_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (GPIO_IS_OPEN_DRAIN(self->id)) {
mp_hal_pin_od_low(self->id);
} else {
mp_hal_pin_low(self->id);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(machine_pin_low_obj, machine_pin_low);
// Pin.high() Totem-pole (push-pull)
STATIC mp_obj_t machine_pin_high(mp_obj_t self_in) {
machine_pin_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (GPIO_IS_OPEN_DRAIN(self->id)) {
mp_hal_pin_od_high(self->id);
} else {
mp_hal_pin_high(self->id);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(machine_pin_high_obj, machine_pin_high);
// Pin.toggle(). Only TOGGLE pins set as OUTPUT.
STATIC mp_obj_t machine_pin_toggle(mp_obj_t self_in) {
machine_pin_obj_t *self = MP_OBJ_TO_PTR(self_in);
// Determine DIRECTION of PIN.
bool pin_dir;
if (GPIO_IS_OPEN_DRAIN(self->id)) {
pin_dir = mp_hal_get_pin_direction(self->id);
if (pin_dir) {
// Pin is output, thus low, switch to high
mp_hal_pin_od_high(self->id);
} else {
mp_hal_pin_od_low(self->id);
}
} else {
gpio_toggle_pin_level(self->id);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(machine_pin_toggle_obj, machine_pin_toggle);
// Pin.drive(). Normal (0) is 2mA, High (1) allows 8mA.
STATIC mp_obj_t machine_pin_drive(size_t n_args, const mp_obj_t *args) {
machine_pin_obj_t *self = args[0]; // Pin
if (n_args == 1) {
return mp_const_none;
} else {
bool strength = mp_obj_get_int(args[1]); // 0 or 1
pin_validate_drive(strength);
// Set the DRVSTR bit (ASF hri/hri_port_dxx.h
hri_port_write_PINCFG_DRVSTR_bit(PORT,
(enum gpio_port)GPIO_PORT(self->id),
GPIO_PIN(self->id),
strength);
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_pin_drive_obj, 1, 2, machine_pin_drive);
// pin.irq(handler=None, trigger=IRQ_FALLING|IRQ_RISING, hard=False)
STATIC mp_obj_t machine_pin_irq(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_handler, ARG_trigger, ARG_hard };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_handler, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_trigger, MP_ARG_INT, {.u_int = 3} },
{ MP_QSTR_hard, MP_ARG_BOOL, {.u_bool = false} },
};
machine_pin_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Get the IRQ object.
uint8_t eic_id = get_pin_af_info(self->id)->eic;
machine_pin_irq_obj_t *irq = MP_STATE_PORT(machine_pin_irq_objects[eic_id]);
if (irq != NULL && irq->pin_id != self->id) {
mp_raise_ValueError(MP_ERROR_TEXT("IRQ already used"));
}
// Allocate the IRQ object if it doesn't already exist.
if (irq == NULL) {
irq = m_new_obj(machine_pin_irq_obj_t);
irq->base.base.type = &mp_irq_type;
irq->base.methods = (mp_irq_methods_t *)&machine_pin_irq_methods;
irq->base.parent = MP_OBJ_FROM_PTR(self);
irq->base.handler = mp_const_none;
irq->base.ishard = false;
irq->pin_id = 0xff;
MP_STATE_PORT(machine_pin_irq_objects[eic_id]) = irq;
}
// (Re-)configure the irq.
if (n_args > 1 || kw_args->used != 0) {
// set the mux config of the pin.
mp_hal_set_pin_mux(self->id, ALT_FCT_EIC);
// Configure IRQ.
#if defined(MCU_SAMD21)
uint32_t irq_num = 4;
// Disable all IRQs from the affected source while data is updated.
NVIC_DisableIRQ(irq_num);
// Disable EIC
EIC->CTRL.bit.ENABLE = 0;
while (EIC->STATUS.bit.SYNCBUSY != 0) {
}
EIC->INTENCLR.reg = (1 << eic_id);
// Enable the clocks
PM->APBAMASK.bit.EIC_ |= 1;
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK2 | EIC_GCLK_ID;
#elif defined(MCU_SAMD51)
uint32_t irq_num = eic_id + 12;
// Disable all IRQs from the affected source while data is updated.
NVIC_DisableIRQ(irq_num);
// Disable EIC
EIC->CTRLA.bit.ENABLE = 0;
while (EIC->SYNCBUSY.bit.ENABLE != 0) {
}
EIC->INTENCLR.reg = (1 << eic_id);
// Enable the clocks
MCLK->APBAMASK.bit.EIC_ |= 1;
GCLK->PCHCTRL[EIC_GCLK_ID].reg = GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN_GCLK2;
#endif
// Clear the pending interrupts flag
EIC->INTENCLR.reg = (1 << eic_id);
// Update IRQ data.
irq->base.handler = args[ARG_handler].u_obj;
irq->base.ishard = args[ARG_hard].u_bool;
irq->flags = 0;
irq->trigger = args[ARG_trigger].u_int;
irq->pin_id = self->id;
// Enable IRQ if a handler is given.
if (args[ARG_handler].u_obj != mp_const_none) {
// Set EIC channel mode
EIC->CONFIG[eic_id / 8].reg |= irq->trigger << ((eic_id % 8) * 4);
EIC->INTENSET.reg = (1 << eic_id);
EIC->INTFLAG.reg |= (1 << eic_id);
}
// Enable EIC (again)
#if defined(MCU_SAMD21)
EIC->CTRL.bit.ENABLE = 1;
while (EIC->STATUS.bit.SYNCBUSY != 0) {
}
#elif defined(MCU_SAMD51)
EIC->CTRLA.bit.ENABLE = 1;
while (EIC->SYNCBUSY.bit.ENABLE != 0) {
}
#endif
// Enable interrupt again
NVIC_EnableIRQ(irq_num);
}
return MP_OBJ_FROM_PTR(irq);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_pin_irq_obj, 1, machine_pin_irq);
void pin_irq_deinit_all(void) {
EIC->INTENCLR.reg = 0xffff; // Disable all interrupts from the EIC.
for (int i = 0; i < 16; i++) { // Clear all irq object pointers
MP_STATE_PORT(machine_pin_irq_objects[i]) = NULL;
}
// Disable all irq's at the NVIC controller
#if defined(MCU_SAMD21)
NVIC_DisableIRQ(4);
#elif defined(MCU_SAMD51)
for (int i = 12; i < 20; i++) {
NVIC_DisableIRQ(i);
}
#endif
}
// Common EIC handler for all events.
void EIC_Handler() {
uint32_t mask = 1;
uint32_t isr = EIC->INTFLAG.reg;
for (int eic_id = 0; eic_id < 16; eic_id++, mask <<= 1) {
// Did the ISR fire?
if (isr & mask) {
EIC_occured = true;
EIC->INTFLAG.reg |= mask; // clear the ISR flag
machine_pin_irq_obj_t *irq = MP_STATE_PORT(machine_pin_irq_objects[eic_id]);
if (irq != NULL) {
irq->flags = irq->trigger;
mp_irq_handler(&irq->base);
break;
}
}
}
}
STATIC const mp_rom_map_elem_t machine_pin_locals_dict_table[] = {
// instance methods
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_pin_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_value), MP_ROM_PTR(&machine_pin_value_obj) },
{ MP_ROM_QSTR(MP_QSTR_low), MP_ROM_PTR(&machine_pin_low_obj) },
{ MP_ROM_QSTR(MP_QSTR_high), MP_ROM_PTR(&machine_pin_high_obj) },
{ MP_ROM_QSTR(MP_QSTR_off), MP_ROM_PTR(&machine_pin_low_obj) },
{ MP_ROM_QSTR(MP_QSTR_on), MP_ROM_PTR(&machine_pin_high_obj) },
{ MP_ROM_QSTR(MP_QSTR_toggle), MP_ROM_PTR(&machine_pin_toggle_obj) },
{ MP_ROM_QSTR(MP_QSTR_disable), MP_ROM_PTR(&machine_pin_disable_obj) },
{ MP_ROM_QSTR(MP_QSTR_drive), MP_ROM_PTR(&machine_pin_drive_obj) },
{ MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&machine_pin_irq_obj) },
// class constants
{ MP_ROM_QSTR(MP_QSTR_IN), MP_ROM_INT(GPIO_MODE_IN) },
{ MP_ROM_QSTR(MP_QSTR_OUT), MP_ROM_INT(GPIO_MODE_OUT) },
{ MP_ROM_QSTR(MP_QSTR_OPEN_DRAIN), MP_ROM_INT(GPIO_MODE_OPEN_DRAIN) },
{ MP_ROM_QSTR(MP_QSTR_PULL_OFF), MP_ROM_INT(GPIO_PULL_OFF) },
{ MP_ROM_QSTR(MP_QSTR_PULL_UP), MP_ROM_INT(GPIO_PULL_UP) },
{ MP_ROM_QSTR(MP_QSTR_PULL_DOWN), MP_ROM_INT(GPIO_PULL_DOWN) },
{ MP_ROM_QSTR(MP_QSTR_LOW_POWER), MP_ROM_INT(GPIO_STRENGTH_2MA) },
{ MP_ROM_QSTR(MP_QSTR_HIGH_POWER), MP_ROM_INT(GPIO_STRENGTH_8MA) },
{ MP_ROM_QSTR(MP_QSTR_IRQ_RISING), MP_ROM_INT(GPIO_IRQ_EDGE_RISE) },
{ MP_ROM_QSTR(MP_QSTR_IRQ_FALLING), MP_ROM_INT(GPIO_IRQ_EDGE_FALL) },
};
STATIC MP_DEFINE_CONST_DICT(machine_pin_locals_dict, machine_pin_locals_dict_table);
STATIC mp_uint_t pin_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
(void)errcode;
machine_pin_obj_t *self = self_in;
switch (request) {
case MP_PIN_READ: {
return mp_hal_pin_read(self->id);
}
case MP_PIN_WRITE: {
mp_hal_pin_write(self->id, arg);
return 0;
}
}
return -1;
}
STATIC const mp_pin_p_t pin_pin_p = {
.ioctl = pin_ioctl,
};
MP_DEFINE_CONST_OBJ_TYPE(
machine_pin_type,
MP_QSTR_Pin,
MP_TYPE_FLAG_NONE,
make_new, mp_pin_make_new,
print, machine_pin_print,
call, machine_pin_call,
protocol, &pin_pin_p,
locals_dict, &machine_pin_locals_dict
);
static uint8_t find_eic_id(int pin) {
for (int eic_id = 0; eic_id < 16; eic_id++) {
machine_pin_irq_obj_t *irq = MP_STATE_PORT(machine_pin_irq_objects[eic_id]);
if (irq != NULL && irq->pin_id == pin) {
return eic_id;
}
}
return 0xff;
}
STATIC mp_uint_t machine_pin_irq_trigger(mp_obj_t self_in, mp_uint_t new_trigger) {
machine_pin_obj_t *self = MP_OBJ_TO_PTR(self_in);
uint8_t eic_id = find_eic_id(self->id);
if (eic_id != 0xff) {
machine_pin_irq_obj_t *irq = MP_STATE_PORT(machine_pin_irq_objects[eic_id]);
EIC->INTENCLR.reg |= (1 << eic_id);
irq->flags = 0;
irq->trigger = new_trigger;
EIC->INTENSET.reg |= (1 << eic_id);
}
return 0;
}
STATIC mp_uint_t machine_pin_irq_info(mp_obj_t self_in, mp_uint_t info_type) {
machine_pin_obj_t *self = MP_OBJ_TO_PTR(self_in);
uint8_t eic_id = find_eic_id(self->id);
if (eic_id != 0xff) {
machine_pin_irq_obj_t *irq = MP_STATE_PORT(machine_pin_irq_objects[eic_id]);
if (info_type == MP_IRQ_INFO_FLAGS) {
return irq->flags;
} else if (info_type == MP_IRQ_INFO_TRIGGERS) {
return irq->trigger;
}
}
return 0;
}
STATIC const mp_irq_methods_t machine_pin_irq_methods = {
.trigger = machine_pin_irq_trigger,
.info = machine_pin_irq_info,
};
mp_hal_pin_obj_t mp_hal_get_pin_obj(mp_obj_t obj) {
if (!mp_obj_is_type(obj, &machine_pin_type)) {
mp_raise_ValueError(MP_ERROR_TEXT("expecting a Pin"));
}
machine_pin_obj_t *pin = MP_OBJ_TO_PTR(obj);
return pin->id;
}
MP_REGISTER_ROOT_POINTER(void *machine_pin_irq_objects[16]);