circuitpython/ports/espressif/common-hal/busio/SPI.c
2023-05-11 16:57:07 -04:00

290 lines
9.1 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2021 microDev
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "py/runtime.h"
#include "shared-bindings/busio/SPI.h"
#include "shared-bindings/microcontroller/Pin.h"
#include "driver/spi_common_internal.h"
#define SPI_MAX_DMA_BITS (SPI_MAX_DMA_LEN * 8)
#define MAX_SPI_TRANSACTIONS 10
static bool spi_never_reset[SOC_SPI_PERIPH_NUM];
static spi_device_handle_t spi_handle[SOC_SPI_PERIPH_NUM];
static bool spi_bus_is_free(spi_host_device_t host_id) {
return spi_bus_get_attr(host_id) == NULL;
}
void spi_reset(void) {
for (spi_host_device_t host_id = SPI2_HOST; host_id < SOC_SPI_PERIPH_NUM; host_id++) {
if (spi_never_reset[host_id]) {
continue;
}
if (!spi_bus_is_free(host_id)) {
spi_bus_remove_device(spi_handle[host_id]);
spi_bus_free(host_id);
}
}
}
static void set_spi_config(busio_spi_obj_t *self,
uint32_t baudrate, uint8_t polarity, uint8_t phase, uint8_t bits) {
// 128 is a 50% duty cycle.
const int closest_clock = spi_get_actual_clock(APB_CLK_FREQ, baudrate, 128);
const spi_device_interface_config_t device_config = {
.clock_speed_hz = closest_clock,
.mode = phase | (polarity << 1),
.spics_io_num = -1, // No CS pin
.queue_size = MAX_SPI_TRANSACTIONS,
.pre_cb = NULL
};
esp_err_t result = spi_bus_add_device(self->host_id, &device_config, &spi_handle[self->host_id]);
if (result != ESP_OK) {
mp_raise_RuntimeError(translate("SPI configuration failed"));
}
self->baudrate = closest_clock;
self->polarity = polarity;
self->phase = phase;
self->bits = bits;
}
void common_hal_busio_spi_construct(busio_spi_obj_t *self,
const mcu_pin_obj_t *clock, const mcu_pin_obj_t *mosi,
const mcu_pin_obj_t *miso, bool half_duplex) {
const spi_bus_config_t bus_config = {
.mosi_io_num = mosi != NULL ? mosi->number : -1,
.miso_io_num = miso != NULL ? miso->number : -1,
.sclk_io_num = clock != NULL ? clock->number : -1,
.quadwp_io_num = -1,
.quadhd_io_num = -1,
};
if (half_duplex) {
mp_raise_NotImplementedError(translate("Half duplex SPI is not implemented"));
}
for (spi_host_device_t host_id = SPI2_HOST; host_id < SOC_SPI_PERIPH_NUM; host_id++) {
if (spi_bus_is_free(host_id)) {
self->host_id = host_id;
}
}
if (self->host_id == 0) {
mp_raise_ValueError(translate("All SPI peripherals are in use"));
}
esp_err_t result = spi_bus_initialize(self->host_id, &bus_config, SPI_DMA_CH_AUTO);
if (result == ESP_ERR_NO_MEM) {
mp_raise_msg(&mp_type_MemoryError, translate("ESP-IDF memory allocation failed"));
} else if (result == ESP_ERR_INVALID_ARG) {
raise_ValueError_invalid_pins();
}
set_spi_config(self, 250000, 0, 0, 8);
self->MOSI = mosi;
self->MISO = miso;
self->clock = clock;
if (mosi != NULL) {
claim_pin(mosi);
}
if (miso != NULL) {
claim_pin(miso);
}
claim_pin(clock);
}
void common_hal_busio_spi_never_reset(busio_spi_obj_t *self) {
spi_never_reset[self->host_id] = true;
common_hal_never_reset_pin(self->clock);
if (self->MOSI != NULL) {
common_hal_never_reset_pin(self->MOSI);
}
if (self->MISO != NULL) {
common_hal_never_reset_pin(self->MISO);
}
}
bool common_hal_busio_spi_deinited(busio_spi_obj_t *self) {
return self->clock == NULL;
}
void common_hal_busio_spi_deinit(busio_spi_obj_t *self) {
if (common_hal_busio_spi_deinited(self)) {
return;
}
spi_never_reset[self->host_id] = false;
spi_bus_remove_device(spi_handle[self->host_id]);
spi_bus_free(self->host_id);
common_hal_reset_pin(self->MOSI);
common_hal_reset_pin(self->MISO);
common_hal_reset_pin(self->clock);
self->clock = NULL;
}
bool common_hal_busio_spi_configure(busio_spi_obj_t *self,
uint32_t baudrate, uint8_t polarity, uint8_t phase, uint8_t bits) {
if (baudrate == self->baudrate &&
polarity == self->polarity &&
phase == self->phase &&
bits == self->bits) {
return true;
}
spi_bus_remove_device(spi_handle[self->host_id]);
set_spi_config(self, baudrate, polarity, phase, bits);
return true;
}
bool common_hal_busio_spi_try_lock(busio_spi_obj_t *self) {
bool grabbed_lock = false;
if (!self->has_lock) {
grabbed_lock = true;
self->has_lock = true;
}
return grabbed_lock;
}
bool common_hal_busio_spi_has_lock(busio_spi_obj_t *self) {
return self->has_lock;
}
void common_hal_busio_spi_unlock(busio_spi_obj_t *self) {
self->has_lock = false;
}
bool common_hal_busio_spi_write(busio_spi_obj_t *self,
const uint8_t *data, size_t len) {
if (self->MOSI == NULL) {
mp_raise_ValueError(translate("No MOSI Pin"));
}
return common_hal_busio_spi_transfer(self, data, NULL, len);
}
bool common_hal_busio_spi_read(busio_spi_obj_t *self,
uint8_t *data, size_t len, uint8_t write_value) {
if (self->MISO == NULL) {
mp_raise_ValueError(translate("No MISO Pin"));
}
if (self->MOSI == NULL) {
return common_hal_busio_spi_transfer(self, NULL, data, len);
} else {
memset(data, write_value, len);
return common_hal_busio_spi_transfer(self, data, data, len);
}
}
bool common_hal_busio_spi_transfer(busio_spi_obj_t *self,
const uint8_t *data_out, uint8_t *data_in, size_t len) {
if (len == 0) {
return true;
}
if (self->MOSI == NULL && data_out != NULL) {
mp_raise_ValueError(translate("No MOSI Pin"));
}
if (self->MISO == NULL && data_in != NULL) {
mp_raise_ValueError(translate("No MISO Pin"));
}
spi_transaction_t transactions[MAX_SPI_TRANSACTIONS];
// Round to nearest whole set of bits
int bits_to_send = len * 8 / self->bits * self->bits;
if (len <= 4) {
memset(&transactions[0], 0, sizeof(spi_transaction_t));
if (data_out != NULL) {
memcpy(&transactions[0].tx_data, data_out, len);
}
transactions[0].flags = SPI_TRANS_USE_TXDATA | SPI_TRANS_USE_RXDATA;
transactions[0].length = bits_to_send;
spi_device_transmit(spi_handle[self->host_id], &transactions[0]);
if (data_in != NULL) {
memcpy(data_in, &transactions[0].rx_data, len);
}
} else {
int offset = 0;
int bits_remaining = bits_to_send;
int cur_trans = 0;
while (bits_remaining && !mp_hal_is_interrupted()) {
cur_trans = 0;
while (bits_remaining && (cur_trans != MAX_SPI_TRANSACTIONS)) {
memset(&transactions[cur_trans], 0, sizeof(spi_transaction_t));
transactions[cur_trans].length =
bits_remaining > SPI_MAX_DMA_BITS ? SPI_MAX_DMA_BITS : bits_remaining;
if (data_out != NULL) {
transactions[cur_trans].tx_buffer = data_out + offset;
}
if (data_in != NULL) {
transactions[cur_trans].rx_buffer = data_in + offset;
}
bits_remaining -= transactions[cur_trans].length;
// doesn't need ceil(); loop ends when bits_remaining is 0
offset += transactions[cur_trans].length / 8;
cur_trans++;
}
for (int i = 0; i < cur_trans; i++) {
spi_device_queue_trans(spi_handle[self->host_id], &transactions[i], portMAX_DELAY);
}
spi_transaction_t *rtrans;
for (int x = 0; x < cur_trans; x++) {
RUN_BACKGROUND_TASKS;
spi_device_get_trans_result(spi_handle[self->host_id], &rtrans, portMAX_DELAY);
}
}
}
return true;
}
uint32_t common_hal_busio_spi_get_frequency(busio_spi_obj_t *self) {
return self->baudrate;
}
uint8_t common_hal_busio_spi_get_polarity(busio_spi_obj_t *self) {
return self->polarity;
}
uint8_t common_hal_busio_spi_get_phase(busio_spi_obj_t *self) {
return self->phase;
}