circuitpython/py/runtime.c
2014-05-02 17:48:40 +03:00

1141 lines
42 KiB
C

#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "mpconfig.h"
#include "nlr.h"
#include "misc.h"
#include "qstr.h"
#include "obj.h"
#include "objtuple.h"
#include "objmodule.h"
#include "parsenum.h"
#include "runtime0.h"
#include "runtime.h"
#include "emitglue.h"
#include "builtin.h"
#include "builtintables.h"
#include "bc.h"
#include "smallint.h"
#include "objgenerator.h"
#if 0 // print debugging info
#define DEBUG_PRINT (1)
#define DEBUG_printf DEBUG_printf
#define DEBUG_OP_printf(...) DEBUG_printf(__VA_ARGS__)
#else // don't print debugging info
#define DEBUG_printf(...) (void)0
#define DEBUG_OP_printf(...) (void)0
#endif
// locals and globals need to be pointers because they can be the same in outer module scope
STATIC mp_obj_dict_t *dict_locals;
STATIC mp_obj_dict_t *dict_globals;
// dictionary for the __main__ module
STATIC mp_obj_dict_t dict_main;
const mp_obj_module_t mp_module___main__ = {
.base = { &mp_type_module },
.name = MP_QSTR___main__,
.globals = (mp_obj_dict_t*)&dict_main,
};
void mp_init(void) {
mp_emit_glue_init();
// init global module stuff
mp_module_init();
// initialise the __main__ module
mp_obj_dict_init(&dict_main, 1);
mp_obj_dict_store(&dict_main, MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR___main__));
// locals = globals for outer module (see Objects/frameobject.c/PyFrame_New())
dict_locals = dict_globals = &dict_main;
}
void mp_deinit(void) {
//mp_obj_dict_free(&dict_main);
mp_module_deinit();
mp_emit_glue_deinit();
}
mp_obj_t mp_load_const_dec(qstr qstr) {
DEBUG_OP_printf("load '%s'\n", qstr_str(qstr));
uint len;
const byte* data = qstr_data(qstr, &len);
return mp_parse_num_decimal((const char*)data, len, true, false);
}
mp_obj_t mp_load_const_str(qstr qstr) {
DEBUG_OP_printf("load '%s'\n", qstr_str(qstr));
return MP_OBJ_NEW_QSTR(qstr);
}
mp_obj_t mp_load_const_bytes(qstr qstr) {
DEBUG_OP_printf("load b'%s'\n", qstr_str(qstr));
uint len;
const byte *data = qstr_data(qstr, &len);
return mp_obj_new_bytes(data, len);
}
mp_obj_t mp_load_name(qstr qstr) {
// logic: search locals, globals, builtins
DEBUG_OP_printf("load name %s\n", qstr_str(qstr));
// If we're at the outer scope (locals == globals), dispatch to load_global right away
if (dict_locals != dict_globals) {
mp_map_elem_t *elem = mp_map_lookup(&dict_locals->map, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
if (elem != NULL) {
return elem->value;
}
}
return mp_load_global(qstr);
}
mp_obj_t mp_load_global(qstr qstr) {
// logic: search globals, builtins
DEBUG_OP_printf("load global %s\n", qstr_str(qstr));
mp_map_elem_t *elem = mp_map_lookup(&dict_globals->map, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
if (elem == NULL) {
// TODO lookup in dynamic table of builtins first
elem = mp_map_lookup((mp_map_t*)&mp_builtin_object_dict_obj.map, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
if (elem == NULL) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_NameError, "name '%s' is not defined", qstr_str(qstr)));
}
}
return elem->value;
}
mp_obj_t mp_load_build_class(void) {
DEBUG_OP_printf("load_build_class\n");
// TODO lookup __build_class__ in dynamic table of builtins first
// ... else no user-defined __build_class__, return builtin one
return (mp_obj_t)&mp_builtin___build_class___obj;
}
void mp_store_name(qstr qstr, mp_obj_t obj) {
DEBUG_OP_printf("store name %s <- %p\n", qstr_str(qstr), obj);
mp_obj_dict_store(dict_locals, MP_OBJ_NEW_QSTR(qstr), obj);
}
void mp_delete_name(qstr qstr) {
DEBUG_OP_printf("delete name %s\n", qstr_str(qstr));
// TODO convert KeyError to NameError if qstr not found
mp_obj_dict_delete(dict_locals, MP_OBJ_NEW_QSTR(qstr));
}
void mp_store_global(qstr qstr, mp_obj_t obj) {
DEBUG_OP_printf("store global %s <- %p\n", qstr_str(qstr), obj);
mp_obj_dict_store(dict_globals, MP_OBJ_NEW_QSTR(qstr), obj);
}
void mp_delete_global(qstr qstr) {
DEBUG_OP_printf("delete global %s\n", qstr_str(qstr));
// TODO convert KeyError to NameError if qstr not found
mp_obj_dict_delete(dict_globals, MP_OBJ_NEW_QSTR(qstr));
}
mp_obj_t mp_unary_op(int op, mp_obj_t arg) {
DEBUG_OP_printf("unary %d %p\n", op, arg);
if (MP_OBJ_IS_SMALL_INT(arg)) {
mp_small_int_t val = MP_OBJ_SMALL_INT_VALUE(arg);
switch (op) {
case MP_UNARY_OP_BOOL:
return MP_BOOL(val != 0);
case MP_UNARY_OP_POSITIVE:
return arg;
case MP_UNARY_OP_NEGATIVE:
// check for overflow
if (val == MP_SMALL_INT_MIN) {
return mp_obj_new_int(-val);
} else {
return MP_OBJ_NEW_SMALL_INT(-val);
}
case MP_UNARY_OP_INVERT:
return MP_OBJ_NEW_SMALL_INT(~val);
default:
assert(0);
return arg;
}
} else {
mp_obj_type_t *type = mp_obj_get_type(arg);
if (type->unary_op != NULL) {
mp_obj_t result = type->unary_op(op, arg);
if (result != MP_OBJ_NOT_SUPPORTED) {
return result;
}
}
// TODO specify in error message what the operator is
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "bad operand type for unary operator: '%s'", mp_obj_get_type_str(arg)));
}
}
mp_obj_t mp_binary_op(int op, mp_obj_t lhs, mp_obj_t rhs) {
DEBUG_OP_printf("binary %d %p %p\n", op, lhs, rhs);
// TODO correctly distinguish inplace operators for mutable objects
// lookup logic that CPython uses for +=:
// check for implemented +=
// then check for implemented +
// then check for implemented seq.inplace_concat
// then check for implemented seq.concat
// then fail
// note that list does not implement + or +=, so that inplace_concat is reached first for +=
// deal with is
if (op == MP_BINARY_OP_IS) {
return MP_BOOL(lhs == rhs);
}
// deal with == and != for all types
if (op == MP_BINARY_OP_EQUAL || op == MP_BINARY_OP_NOT_EQUAL) {
if (mp_obj_equal(lhs, rhs)) {
if (op == MP_BINARY_OP_EQUAL) {
return mp_const_true;
} else {
return mp_const_false;
}
} else {
if (op == MP_BINARY_OP_EQUAL) {
return mp_const_false;
} else {
return mp_const_true;
}
}
}
// deal with exception_match for all types
if (op == MP_BINARY_OP_EXCEPTION_MATCH) {
// rhs must be issubclass(rhs, BaseException)
if (mp_obj_is_exception_type(rhs)) {
// if lhs is an instance of an exception, then extract and use its type
if (mp_obj_is_exception_instance(lhs)) {
lhs = mp_obj_get_type(lhs);
}
if (mp_obj_is_subclass_fast(lhs, rhs)) {
return mp_const_true;
} else {
return mp_const_false;
}
}
assert(0);
return mp_const_false;
}
if (MP_OBJ_IS_SMALL_INT(lhs)) {
mp_small_int_t lhs_val = MP_OBJ_SMALL_INT_VALUE(lhs);
if (MP_OBJ_IS_SMALL_INT(rhs)) {
mp_small_int_t rhs_val = MP_OBJ_SMALL_INT_VALUE(rhs);
// This is a binary operation: lhs_val op rhs_val
// We need to be careful to handle overflow; see CERT INT32-C
// Operations that can overflow:
// + result always fits in machine_int_t, then handled by SMALL_INT check
// - result always fits in machine_int_t, then handled by SMALL_INT check
// * checked explicitly
// / if lhs=MIN and rhs=-1; result always fits in machine_int_t, then handled by SMALL_INT check
// % if lhs=MIN and rhs=-1; result always fits in machine_int_t, then handled by SMALL_INT check
// << checked explicitly
switch (op) {
case MP_BINARY_OP_OR:
case MP_BINARY_OP_INPLACE_OR: lhs_val |= rhs_val; break;
case MP_BINARY_OP_XOR:
case MP_BINARY_OP_INPLACE_XOR: lhs_val ^= rhs_val; break;
case MP_BINARY_OP_AND:
case MP_BINARY_OP_INPLACE_AND: lhs_val &= rhs_val; break;
case MP_BINARY_OP_LSHIFT:
case MP_BINARY_OP_INPLACE_LSHIFT: {
if (rhs_val < 0) {
// negative shift not allowed
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "negative shift count"));
} else if (rhs_val >= BITS_PER_WORD || lhs_val > (MP_SMALL_INT_MAX >> rhs_val) || lhs_val < (MP_SMALL_INT_MIN >> rhs_val)) {
// left-shift will overflow, so use higher precision integer
lhs = mp_obj_new_int_from_ll(lhs_val);
goto generic_binary_op;
} else {
// use standard precision
lhs_val <<= rhs_val;
}
break;
}
case MP_BINARY_OP_RSHIFT:
case MP_BINARY_OP_INPLACE_RSHIFT:
if (rhs_val < 0) {
// negative shift not allowed
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "negative shift count"));
} else {
// standard precision is enough for right-shift
lhs_val >>= rhs_val;
}
break;
case MP_BINARY_OP_ADD:
case MP_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break;
case MP_BINARY_OP_SUBTRACT:
case MP_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break;
case MP_BINARY_OP_MULTIPLY:
case MP_BINARY_OP_INPLACE_MULTIPLY: {
// If long long type exists and is larger than machine_int_t, then
// we can use the following code to perform overflow-checked multiplication.
// Otherwise (eg in x64 case) we must use mp_small_int_mul_overflow.
#if 0
// compute result using long long precision
long long res = (long long)lhs_val * (long long)rhs_val;
if (res > MP_SMALL_INT_MAX || res < MP_SMALL_INT_MIN) {
// result overflowed SMALL_INT, so return higher precision integer
return mp_obj_new_int_from_ll(res);
} else {
// use standard precision
lhs_val = (mp_small_int_t)res;
}
#endif
if (mp_small_int_mul_overflow(lhs_val, rhs_val)) {
// use higher precision
lhs = mp_obj_new_int_from_ll(lhs_val);
goto generic_binary_op;
} else {
// use standard precision
return MP_OBJ_NEW_SMALL_INT(lhs_val * rhs_val);
}
break;
}
case MP_BINARY_OP_FLOOR_DIVIDE:
case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE:
if (rhs_val == 0) {
goto zero_division;
}
lhs_val = mp_small_int_floor_divide(lhs_val, rhs_val);
break;
#if MICROPY_ENABLE_FLOAT
case MP_BINARY_OP_TRUE_DIVIDE:
case MP_BINARY_OP_INPLACE_TRUE_DIVIDE:
if (rhs_val == 0) {
goto zero_division;
}
return mp_obj_new_float((mp_float_t)lhs_val / (mp_float_t)rhs_val);
#endif
case MP_BINARY_OP_MODULO:
case MP_BINARY_OP_INPLACE_MODULO: {
lhs_val = mp_small_int_modulo(lhs_val, rhs_val);
break;
}
case MP_BINARY_OP_POWER:
case MP_BINARY_OP_INPLACE_POWER:
if (rhs_val < 0) {
#if MICROPY_ENABLE_FLOAT
lhs = mp_obj_new_float(lhs_val);
goto generic_binary_op;
#else
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "negative power with no float support"));
#endif
} else {
machine_int_t ans = 1;
while (rhs_val > 0) {
if (rhs_val & 1) {
if (mp_small_int_mul_overflow(ans, lhs_val)) {
goto power_overflow;
}
ans *= lhs_val;
}
if (rhs_val == 1) {
break;
}
rhs_val /= 2;
if (mp_small_int_mul_overflow(lhs_val, lhs_val)) {
goto power_overflow;
}
lhs_val *= lhs_val;
}
lhs_val = ans;
}
break;
power_overflow:
// use higher precision
lhs = mp_obj_new_int_from_ll(MP_OBJ_SMALL_INT_VALUE(lhs));
goto generic_binary_op;
case MP_BINARY_OP_LESS: return MP_BOOL(lhs_val < rhs_val); break;
case MP_BINARY_OP_MORE: return MP_BOOL(lhs_val > rhs_val); break;
case MP_BINARY_OP_LESS_EQUAL: return MP_BOOL(lhs_val <= rhs_val); break;
case MP_BINARY_OP_MORE_EQUAL: return MP_BOOL(lhs_val >= rhs_val); break;
default:
goto unsupported_op;
}
// TODO: We just should make mp_obj_new_int() inline and use that
if (MP_OBJ_FITS_SMALL_INT(lhs_val)) {
return MP_OBJ_NEW_SMALL_INT(lhs_val);
} else {
return mp_obj_new_int(lhs_val);
}
#if MICROPY_ENABLE_FLOAT
} else if (MP_OBJ_IS_TYPE(rhs, &mp_type_float)) {
mp_obj_t res = mp_obj_float_binary_op(op, lhs_val, rhs);
if (res == MP_OBJ_NULL) {
goto unsupported_op;
} else {
return res;
}
} else if (MP_OBJ_IS_TYPE(rhs, &mp_type_complex)) {
mp_obj_t res = mp_obj_complex_binary_op(op, lhs_val, 0, rhs);
if (res == MP_OBJ_NULL) {
goto unsupported_op;
} else {
return res;
}
#endif
}
}
/* deal with `in`
*
* NOTE `a in b` is `b.__contains__(a)`, hence why the generic dispatch
* needs to go below with swapped arguments
*/
if (op == MP_BINARY_OP_IN) {
mp_obj_type_t *type = mp_obj_get_type(rhs);
if (type->binary_op != NULL) {
mp_obj_t res = type->binary_op(op, rhs, lhs);
if (res != MP_OBJ_NOT_SUPPORTED) {
return res;
}
}
if (type->getiter != NULL) {
/* second attempt, walk the iterator */
mp_obj_t next = NULL;
mp_obj_t iter = mp_getiter(rhs);
while ((next = mp_iternext(iter)) != MP_OBJ_STOP_ITERATION) {
if (mp_obj_equal(next, lhs)) {
return mp_const_true;
}
}
return mp_const_false;
}
nlr_raise(mp_obj_new_exception_msg_varg(
&mp_type_TypeError, "'%s' object is not iterable",
mp_obj_get_type_str(rhs)));
return mp_const_none;
}
// generic binary_op supplied by type
mp_obj_type_t *type;
generic_binary_op:
type = mp_obj_get_type(lhs);
if (type->binary_op != NULL) {
mp_obj_t result = type->binary_op(op, lhs, rhs);
if (result != MP_OBJ_NOT_SUPPORTED) {
return result;
}
}
// TODO implement dispatch for reverse binary ops
// TODO specify in error message what the operator is
unsupported_op:
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"unsupported operand types for binary operator: '%s', '%s'",
mp_obj_get_type_str(lhs), mp_obj_get_type_str(rhs)));
return mp_const_none;
zero_division:
nlr_raise(mp_obj_new_exception_msg(&mp_type_ZeroDivisionError, "division by zero"));
}
mp_obj_t mp_call_function_0(mp_obj_t fun) {
return mp_call_function_n_kw(fun, 0, 0, NULL);
}
mp_obj_t mp_call_function_1(mp_obj_t fun, mp_obj_t arg) {
return mp_call_function_n_kw(fun, 1, 0, &arg);
}
mp_obj_t mp_call_function_2(mp_obj_t fun, mp_obj_t arg1, mp_obj_t arg2) {
mp_obj_t args[2];
args[0] = arg1;
args[1] = arg2;
return mp_call_function_n_kw(fun, 2, 0, args);
}
// wrapper that accepts n_args and n_kw in one argument
// native emitter can only pass at most 3 arguments to a function
mp_obj_t mp_call_function_n_kw_for_native(mp_obj_t fun_in, uint n_args_kw, const mp_obj_t *args) {
return mp_call_function_n_kw(fun_in, n_args_kw & 0xff, (n_args_kw >> 8) & 0xff, args);
}
// args contains, eg: arg0 arg1 key0 value0 key1 value1
mp_obj_t mp_call_function_n_kw(mp_obj_t fun_in, uint n_args, uint n_kw, const mp_obj_t *args) {
// TODO improve this: fun object can specify its type and we parse here the arguments,
// passing to the function arrays of fixed and keyword arguments
DEBUG_OP_printf("calling function %p(n_args=%d, n_kw=%d, args=%p)\n", fun_in, n_args, n_kw, args);
// get the type
mp_obj_type_t *type = mp_obj_get_type(fun_in);
// do the call
if (type->call != NULL) {
mp_obj_t res = type->call(fun_in, n_args, n_kw, args);
if (res != NULL) {
return res;
}
}
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not callable", mp_obj_get_type_str(fun_in)));
}
// args contains: fun self/NULL arg(0) ... arg(n_args-2) arg(n_args-1) kw_key(0) kw_val(0) ... kw_key(n_kw-1) kw_val(n_kw-1)
// if n_args==0 and n_kw==0 then there are only fun and self/NULL
mp_obj_t mp_call_method_n_kw(uint n_args, uint n_kw, const mp_obj_t *args) {
DEBUG_OP_printf("call method (fun=%p, self=%p, n_args=%u, n_kw=%u, args=%p)\n", args[0], args[1], n_args, n_kw, args);
int adjust = (args[1] == NULL) ? 0 : 1;
return mp_call_function_n_kw(args[0], n_args + adjust, n_kw, args + 2 - adjust);
}
mp_obj_t mp_call_method_n_kw_var(bool have_self, uint n_args_n_kw, const mp_obj_t *args) {
mp_obj_t fun = *args++;
mp_obj_t self = MP_OBJ_NULL;
if (have_self) {
self = *args++; // may be MP_OBJ_NULL
}
uint n_args = n_args_n_kw & 0xff;
uint n_kw = (n_args_n_kw >> 8) & 0xff;
mp_obj_t pos_seq = args[n_args + 2 * n_kw]; // map be MP_OBJ_NULL
mp_obj_t kw_dict = args[n_args + 2 * n_kw + 1]; // map be MP_OBJ_NULL
DEBUG_OP_printf("call method var (fun=%p, self=%p, n_args=%u, n_kw=%u, args=%p, seq=%p, dict=%p)\n", fun, self, n_args, n_kw, args, pos_seq, kw_dict);
// We need to create the following array of objects:
// args[0 .. n_args] unpacked(pos_seq) args[n_args .. n_args + 2 * n_kw] unpacked(kw_dict)
// TODO: optimize one day to avoid constructing new arg array? Will be hard.
// The new args array
mp_obj_t *args2;
uint args2_alloc;
uint args2_len = 0;
// Try to get a hint for the size of the kw_dict
uint kw_dict_len = 0;
if (kw_dict != MP_OBJ_NULL && MP_OBJ_IS_TYPE(kw_dict, &mp_type_dict)) {
kw_dict_len = mp_obj_dict_len(kw_dict);
}
// Extract the pos_seq sequence to the new args array.
// Note that it can be arbitrary iterator.
if (pos_seq == MP_OBJ_NULL) {
// no sequence
// allocate memory for the new array of args
args2_alloc = 1 + n_args + 2 * (n_kw + kw_dict_len);
args2 = m_new(mp_obj_t, args2_alloc);
// copy the self
if (self != MP_OBJ_NULL) {
args2[args2_len++] = self;
}
// copy the fixed pos args
m_seq_copy(args2 + args2_len, args, n_args, mp_obj_t);
args2_len += n_args;
} else if (MP_OBJ_IS_TYPE(pos_seq, &mp_type_tuple) || MP_OBJ_IS_TYPE(pos_seq, &mp_type_list)) {
// optimise the case of a tuple and list
// get the items
uint len;
mp_obj_t *items;
mp_obj_get_array(pos_seq, &len, &items);
// allocate memory for the new array of args
args2_alloc = 1 + n_args + len + 2 * (n_kw + kw_dict_len);
args2 = m_new(mp_obj_t, args2_alloc);
// copy the self
if (self != MP_OBJ_NULL) {
args2[args2_len++] = self;
}
// copy the fixed and variable position args
m_seq_cat(args2 + args2_len, args, n_args, items, len, mp_obj_t);
args2_len += n_args + len;
} else {
// generic iterator
// allocate memory for the new array of args
args2_alloc = 1 + n_args + 2 * (n_kw + kw_dict_len) + 3;
args2 = m_new(mp_obj_t, args2_alloc);
// copy the self
if (self != MP_OBJ_NULL) {
args2[args2_len++] = self;
}
// copy the fixed position args
m_seq_copy(args2 + args2_len, args, n_args, mp_obj_t);
// extract the variable position args from the iterator
mp_obj_t iterable = mp_getiter(pos_seq);
mp_obj_t item;
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
if (args2_len >= args2_alloc) {
args2 = m_renew(mp_obj_t, args2, args2_alloc, args2_alloc * 2);
args2_alloc *= 2;
}
args2[args2_len++] = item;
}
}
// The size of the args2 array now is the number of positional args.
uint pos_args_len = args2_len;
// Copy the fixed kw args.
m_seq_copy(args2 + args2_len, args + n_args, 2 * n_kw, mp_obj_t);
args2_len += 2 * n_kw;
// Extract (key,value) pairs from kw_dict dictionary and append to args2.
// Note that it can be arbitrary iterator.
if (kw_dict == MP_OBJ_NULL) {
// pass
} else if (MP_OBJ_IS_TYPE(kw_dict, &mp_type_dict)) {
// dictionary
mp_map_t *map = mp_obj_dict_get_map(kw_dict);
assert(args2_len + 2 * map->used <= args2_alloc); // should have enough, since kw_dict_len is in this case hinted correctly above
for (uint i = 0; i < map->alloc; i++) {
if (map->table[i].key != MP_OBJ_NULL) {
args2[args2_len++] = map->table[i].key;
args2[args2_len++] = map->table[i].value;
}
}
} else {
// generic mapping
// TODO is calling 'items' on the mapping the correct thing to do here?
mp_obj_t dest[2];
mp_load_method(kw_dict, MP_QSTR_items, dest);
mp_obj_t iterable = mp_getiter(mp_call_method_n_kw(0, 0, dest));
mp_obj_t item;
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
if (args2_len + 1 >= args2_alloc) {
uint new_alloc = args2_alloc * 2;
if (new_alloc < 4) {
new_alloc = 4;
}
args2 = m_renew(mp_obj_t, args2, args2_alloc, new_alloc);
args2_alloc = new_alloc;
}
mp_obj_t *items;
mp_obj_get_array_fixed_n(item, 2, &items);
args2[args2_len++] = items[0];
args2[args2_len++] = items[1];
}
}
mp_obj_t res = mp_call_function_n_kw(fun, pos_args_len, (args2_len - pos_args_len) / 2, args2);
m_del(mp_obj_t, args2, args2_alloc);
return res;
}
// unpacked items are stored in reverse order into the array pointed to by items
void mp_unpack_sequence(mp_obj_t seq_in, uint num, mp_obj_t *items) {
uint seq_len;
if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(seq_in, &mp_type_list)) {
mp_obj_t *seq_items;
if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple)) {
mp_obj_tuple_get(seq_in, &seq_len, &seq_items);
} else {
mp_obj_list_get(seq_in, &seq_len, &seq_items);
}
if (seq_len < num) {
goto too_short;
} else if (seq_len > num) {
goto too_long;
}
for (uint i = 0; i < num; i++) {
items[i] = seq_items[num - 1 - i];
}
} else {
mp_obj_t iterable = mp_getiter(seq_in);
for (seq_len = 0; seq_len < num; seq_len++) {
mp_obj_t el = mp_iternext(iterable);
if (el == MP_OBJ_STOP_ITERATION) {
goto too_short;
}
items[num - 1 - seq_len] = el;
}
if (mp_iternext(iterable) != MP_OBJ_STOP_ITERATION) {
goto too_long;
}
}
return;
too_short:
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "need more than %d values to unpack", seq_len));
too_long:
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "too many values to unpack (expected %d)", num));
}
// unpacked items are stored in reverse order into the array pointed to by items
void mp_unpack_ex(mp_obj_t seq_in, uint num_in, mp_obj_t *items) {
uint num_left = num_in & 0xff;
uint num_right = (num_in >> 8) & 0xff;
DEBUG_OP_printf("unpack ex %d %d\n", num_left, num_right);
uint seq_len;
if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(seq_in, &mp_type_list)) {
mp_obj_t *seq_items;
if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple)) {
mp_obj_tuple_get(seq_in, &seq_len, &seq_items);
} else {
if (num_left == 0 && num_right == 0) {
// *a, = b # sets a to b if b is a list
items[0] = seq_in;
return;
}
mp_obj_list_get(seq_in, &seq_len, &seq_items);
}
if (seq_len < num_left + num_right) {
goto too_short;
}
for (uint i = 0; i < num_right; i++) {
items[i] = seq_items[seq_len - 1 - i];
}
items[num_right] = mp_obj_new_list(seq_len - num_left - num_right, seq_items + num_left);
for (uint i = 0; i < num_left; i++) {
items[num_right + 1 + i] = seq_items[num_left - 1 - i];
}
} else {
// Generic iterable; this gets a bit messy: we unpack known left length to the
// items destination array, then the rest to a dynamically created list. Once the
// iterable is exhausted, we take from this list for the right part of the items.
// TODO Improve to waste less memory in the dynamically created list.
mp_obj_t iterable = mp_getiter(seq_in);
mp_obj_t item;
for (seq_len = 0; seq_len < num_left; seq_len++) {
item = mp_iternext(iterable);
if (item == MP_OBJ_STOP_ITERATION) {
goto too_short;
}
items[num_left + num_right + 1 - 1 - seq_len] = item;
}
mp_obj_t rest = mp_obj_new_list(0, NULL);
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
mp_obj_list_append(rest, item);
}
uint rest_len;
mp_obj_t *rest_items;
mp_obj_list_get(rest, &rest_len, &rest_items);
if (rest_len < num_right) {
goto too_short;
}
items[num_right] = rest;
for (uint i = 0; i < num_right; i++) {
items[num_right - 1 - i] = rest_items[rest_len - num_right + i];
}
mp_obj_list_set_len(rest, rest_len - num_right);
}
return;
too_short:
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "need more than %d values to unpack", seq_len));
}
mp_obj_t mp_load_attr(mp_obj_t base, qstr attr) {
DEBUG_OP_printf("load attr %p.%s\n", base, qstr_str(attr));
// use load_method
mp_obj_t dest[2];
mp_load_method(base, attr, dest);
if (dest[1] == MP_OBJ_NULL) {
// load_method returned just a normal attribute
return dest[0];
} else {
// load_method returned a method, so build a bound method object
return mp_obj_new_bound_meth(dest[0], dest[1]);
}
}
// no attribute found, returns: dest[0] == MP_OBJ_NULL, dest[1] == MP_OBJ_NULL
// normal attribute found, returns: dest[0] == <attribute>, dest[1] == MP_OBJ_NULL
// method attribute found, returns: dest[0] == <method>, dest[1] == <self>
void mp_load_method_maybe(mp_obj_t base, qstr attr, mp_obj_t *dest) {
// clear output to indicate no attribute/method found yet
dest[0] = MP_OBJ_NULL;
dest[1] = MP_OBJ_NULL;
// get the type
mp_obj_type_t *type = mp_obj_get_type(base);
// look for built-in names
if (0) {
#if MICROPY_CPYTHON_COMPAT
} else if (attr == MP_QSTR___class__) {
// a.__class__ is equivalent to type(a)
dest[0] = type;
#endif
} else if (attr == MP_QSTR___next__ && type->iternext != NULL) {
dest[0] = (mp_obj_t)&mp_builtin_next_obj;
dest[1] = base;
} else if (type->load_attr != NULL) {
// this type can do its own load, so call it
type->load_attr(base, attr, dest);
} else if (type->locals_dict != NULL) {
// generic method lookup
// this is a lookup in the object (ie not class or type)
assert(MP_OBJ_IS_TYPE(type->locals_dict, &mp_type_dict)); // Micro Python restriction, for now
mp_map_t *locals_map = mp_obj_dict_get_map(type->locals_dict);
mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP);
if (elem != NULL) {
// check if the methods are functions, static or class methods
// see http://docs.python.org/3.3/howto/descriptor.html
if (MP_OBJ_IS_TYPE(elem->value, &mp_type_staticmethod)) {
// return just the function
dest[0] = ((mp_obj_static_class_method_t*)elem->value)->fun;
} else if (MP_OBJ_IS_TYPE(elem->value, &mp_type_classmethod)) {
// return a bound method, with self being the type of this object
dest[0] = ((mp_obj_static_class_method_t*)elem->value)->fun;
dest[1] = mp_obj_get_type(base);
} else if (mp_obj_is_callable(elem->value)) {
// return a bound method, with self being this object
dest[0] = elem->value;
dest[1] = base;
} else {
// class member is a value, so just return that value
dest[0] = elem->value;
}
}
}
}
void mp_load_method(mp_obj_t base, qstr attr, mp_obj_t *dest) {
DEBUG_OP_printf("load method %p.%s\n", base, qstr_str(attr));
mp_load_method_maybe(base, attr, dest);
if (dest[0] == MP_OBJ_NULL) {
// no attribute/method called attr
// following CPython, we give a more detailed error message for type objects
if (MP_OBJ_IS_TYPE(base, &mp_type_type)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_AttributeError,
"type object '%s' has no attribute '%s'", qstr_str(((mp_obj_type_t*)base)->name), qstr_str(attr)));
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_AttributeError, "'%s' object has no attribute '%s'", mp_obj_get_type_str(base), qstr_str(attr)));
}
}
}
void mp_store_attr(mp_obj_t base, qstr attr, mp_obj_t value) {
DEBUG_OP_printf("store attr %p.%s <- %p\n", base, qstr_str(attr), value);
mp_obj_type_t *type = mp_obj_get_type(base);
if (type->store_attr != NULL) {
if (type->store_attr(base, attr, value)) {
return;
}
}
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_AttributeError, "'%s' object has no attribute '%s'", mp_obj_get_type_str(base), qstr_str(attr)));
}
mp_obj_t mp_getiter(mp_obj_t o_in) {
mp_obj_type_t *type = mp_obj_get_type(o_in);
if (type->getiter != NULL) {
return type->getiter(o_in);
} else {
// check for __iter__ method
mp_obj_t dest[2];
mp_load_method_maybe(o_in, MP_QSTR___iter__, dest);
if (dest[0] != MP_OBJ_NULL) {
// __iter__ exists, call it and return its result
return mp_call_method_n_kw(0, 0, dest);
} else {
mp_load_method_maybe(o_in, MP_QSTR___getitem__, dest);
if (dest[0] != MP_OBJ_NULL) {
// __getitem__ exists, create an iterator
return mp_obj_new_getitem_iter(dest);
} else {
// object not iterable
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not iterable", mp_obj_get_type_str(o_in)));
}
}
}
}
// may return MP_OBJ_STOP_ITERATION as an optimisation instead of raise StopIteration()
// may also raise StopIteration()
mp_obj_t mp_iternext_allow_raise(mp_obj_t o_in) {
mp_obj_type_t *type = mp_obj_get_type(o_in);
if (type->iternext != NULL) {
return type->iternext(o_in);
} else {
// check for __next__ method
mp_obj_t dest[2];
mp_load_method_maybe(o_in, MP_QSTR___next__, dest);
if (dest[0] != MP_OBJ_NULL) {
// __next__ exists, call it and return its result
return mp_call_method_n_kw(0, 0, dest);
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not an iterator", mp_obj_get_type_str(o_in)));
}
}
}
// will always return MP_OBJ_STOP_ITERATION instead of raising StopIteration() (or any subclass thereof)
// may raise other exceptions
mp_obj_t mp_iternext(mp_obj_t o_in) {
mp_obj_type_t *type = mp_obj_get_type(o_in);
if (type->iternext != NULL) {
return type->iternext(o_in);
} else {
// check for __next__ method
mp_obj_t dest[2];
mp_load_method_maybe(o_in, MP_QSTR___next__, dest);
if (dest[0] != MP_OBJ_NULL) {
// __next__ exists, call it and return its result
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
mp_obj_t ret = mp_call_method_n_kw(0, 0, dest);
nlr_pop();
return ret;
} else {
if (mp_obj_is_subclass_fast(mp_obj_get_type(nlr.ret_val), &mp_type_StopIteration)) {
return MP_OBJ_STOP_ITERATION;
} else {
nlr_raise(nlr.ret_val);
}
}
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not an iterator", mp_obj_get_type_str(o_in)));
}
}
}
// TODO: Unclear what to do with StopIterarion exception here.
mp_vm_return_kind_t mp_resume(mp_obj_t self_in, mp_obj_t send_value, mp_obj_t throw_value, mp_obj_t *ret_val) {
assert((send_value != MP_OBJ_NULL) ^ (throw_value != MP_OBJ_NULL));
mp_obj_type_t *type = mp_obj_get_type(self_in);
if (type == &mp_type_gen_instance) {
return mp_obj_gen_resume(self_in, send_value, throw_value, ret_val);
}
if (type->iternext != NULL && send_value == mp_const_none) {
mp_obj_t ret = type->iternext(self_in);
if (ret != MP_OBJ_NULL) {
*ret_val = ret;
return MP_VM_RETURN_YIELD;
} else {
// Emulate raise StopIteration()
// Special case, handled in vm.c
*ret_val = MP_OBJ_NULL;
return MP_VM_RETURN_NORMAL;
}
}
mp_obj_t dest[3]; // Reserve slot for send() arg
if (send_value == mp_const_none) {
mp_load_method_maybe(self_in, MP_QSTR___next__, dest);
if (dest[0] != MP_OBJ_NULL) {
*ret_val = mp_call_method_n_kw(0, 0, dest);
return MP_VM_RETURN_YIELD;
}
}
if (send_value != MP_OBJ_NULL) {
mp_load_method(self_in, MP_QSTR_send, dest);
dest[2] = send_value;
*ret_val = mp_call_method_n_kw(1, 0, dest);
return MP_VM_RETURN_YIELD;
}
if (throw_value != MP_OBJ_NULL) {
if (mp_obj_is_subclass_fast(mp_obj_get_type(throw_value), &mp_type_GeneratorExit)) {
mp_load_method_maybe(self_in, MP_QSTR_close, dest);
if (dest[0] != MP_OBJ_NULL) {
*ret_val = mp_call_method_n_kw(0, 0, dest);
// We assume one can't "yield" from close()
return MP_VM_RETURN_NORMAL;
}
}
mp_load_method_maybe(self_in, MP_QSTR_throw, dest);
if (dest[0] != MP_OBJ_NULL) {
*ret_val = mp_call_method_n_kw(1, 0, &throw_value);
// If .throw() method returned, we assume it's value to yield
// - any exception would be thrown with nlr_raise().
return MP_VM_RETURN_YIELD;
}
// If there's nowhere to throw exception into, then we assume that object
// is just incapable to handle it, so any exception thrown into it
// will be propagated up. This behavior is approved by test_pep380.py
// test_delegation_of_close_to_non_generator(),
// test_delegating_throw_to_non_generator()
*ret_val = throw_value;
return MP_VM_RETURN_EXCEPTION;
}
assert(0);
return MP_VM_RETURN_NORMAL; // Should be unreachable
}
mp_obj_t mp_make_raise_obj(mp_obj_t o) {
DEBUG_printf("raise %p\n", o);
if (mp_obj_is_exception_type(o)) {
// o is an exception type (it is derived from BaseException (or is BaseException))
// create and return a new exception instance by calling o
// TODO could have an option to disable traceback, then builtin exceptions (eg TypeError)
// could have const instances in ROM which we return here instead
return mp_call_function_n_kw(o, 0, 0, NULL);
} else if (mp_obj_is_exception_instance(o)) {
// o is an instance of an exception, so use it as the exception
return o;
} else {
// o cannot be used as an exception, so return a type error (which will be raised by the caller)
return mp_obj_new_exception_msg(&mp_type_TypeError, "exceptions must derive from BaseException");
}
}
mp_obj_t mp_import_name(qstr name, mp_obj_t fromlist, mp_obj_t level) {
DEBUG_printf("import name %s\n", qstr_str(name));
// build args array
mp_obj_t args[5];
args[0] = MP_OBJ_NEW_QSTR(name);
args[1] = mp_const_none; // TODO should be globals
args[2] = mp_const_none; // TODO should be locals
args[3] = fromlist;
args[4] = level; // must be 0; we don't yet support other values
// TODO lookup __import__ and call that instead of going straight to builtin implementation
return mp_builtin___import__(5, args);
}
mp_obj_t mp_import_from(mp_obj_t module, qstr name) {
DEBUG_printf("import from %p %s\n", module, qstr_str(name));
mp_obj_t dest[2];
mp_load_method_maybe(module, name, dest);
if (dest[1] != MP_OBJ_NULL) {
// Hopefully we can't import bound method from an object
import_error:
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ImportError, "cannot import name %s", qstr_str(name)));
}
if (dest[0] != MP_OBJ_NULL) {
return dest[0];
}
// See if it's a package, then can try FS import
mp_load_method_maybe(module, MP_QSTR___path__, dest);
if (dest[0] == MP_OBJ_NULL) {
goto import_error;
}
mp_load_method_maybe(module, MP_QSTR___name__, dest);
uint pkg_name_len;
const char *pkg_name = mp_obj_str_get_data(dest[0], &pkg_name_len);
char dot_name[pkg_name_len + 1 + qstr_len(name)];
memcpy(dot_name, pkg_name, pkg_name_len);
dot_name[pkg_name_len] = '.';
memcpy(dot_name + pkg_name_len + 1, qstr_str(name), qstr_len(name));
qstr dot_name_q = qstr_from_strn(dot_name, sizeof(dot_name));
mp_obj_t args[5];
args[0] = MP_OBJ_NEW_QSTR(dot_name_q);
args[1] = mp_const_none; // TODO should be globals
args[2] = mp_const_none; // TODO should be locals
args[3] = mp_const_true; // Pass sentinel "non empty" value to force returning of leaf module
args[4] = MP_OBJ_NEW_SMALL_INT(0);
// TODO lookup __import__ and call that instead of going straight to builtin implementation
return mp_builtin___import__(5, args);
}
void mp_import_all(mp_obj_t module) {
DEBUG_printf("import all %p\n", module);
// TODO: Support __all__
mp_map_t *map = mp_obj_dict_get_map(mp_obj_module_get_globals(module));
for (uint i = 0; i < map->alloc; i++) {
if (MP_MAP_SLOT_IS_FILLED(map, i)) {
qstr name = MP_OBJ_QSTR_VALUE(map->table[i].key);
if (*qstr_str(name) != '_') {
mp_store_name(name, map->table[i].value);
}
}
}
}
mp_obj_dict_t *mp_locals_get(void) {
return dict_locals;
}
void mp_locals_set(mp_obj_dict_t *d) {
DEBUG_OP_printf("mp_locals_set(%p)\n", d);
dict_locals = d;
}
mp_obj_dict_t *mp_globals_get(void) {
return dict_globals;
}
void mp_globals_set(mp_obj_dict_t *d) {
DEBUG_OP_printf("mp_globals_set(%p)\n", d);
dict_globals = d;
}
void *m_malloc_fail(int num_bytes) {
DEBUG_printf("memory allocation failed, allocating %d bytes\n", num_bytes);
nlr_raise((mp_obj_t)&mp_const_MemoryError_obj);
}
// these must correspond to the respective enum
void *const mp_fun_table[MP_F_NUMBER_OF] = {
mp_load_const_dec,
mp_obj_new_int_from_long_str,
mp_load_const_str,
mp_load_name,
mp_load_global,
mp_load_build_class,
mp_load_attr,
mp_load_method,
mp_store_name,
mp_store_attr,
mp_obj_subscr,
mp_obj_is_true,
mp_unary_op,
mp_binary_op,
mp_obj_new_tuple,
mp_obj_new_list,
mp_obj_list_append,
mp_obj_new_dict,
mp_obj_dict_store,
mp_obj_new_set,
mp_obj_set_store,
mp_make_function_from_raw_code,
mp_call_function_n_kw_for_native,
mp_call_method_n_kw,
mp_getiter,
mp_import_name,
mp_import_from,
mp_import_all,
mp_obj_new_slice,
mp_unpack_sequence,
mp_iternext,
};
/*
void mp_f_vector(mp_fun_kind_t fun_kind) {
(mp_f_table[fun_kind])();
}
*/