7a14022604
py: Use <alloca.h> for alloca()
521 lines
19 KiB
C
521 lines
19 KiB
C
#include <stdbool.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <alloca.h>
|
|
|
|
#include "mpconfig.h"
|
|
#include "nlr.h"
|
|
#include "misc.h"
|
|
#include "qstr.h"
|
|
#include "obj.h"
|
|
#include "objtuple.h"
|
|
#include "objfun.h"
|
|
#include "runtime0.h"
|
|
#include "runtime.h"
|
|
#include "bc.h"
|
|
|
|
#if 0 // print debugging info
|
|
#define DEBUG_PRINT (1)
|
|
#else // don't print debugging info
|
|
#define DEBUG_printf(...) (void)0
|
|
#endif
|
|
|
|
/******************************************************************************/
|
|
/* native functions */
|
|
|
|
// mp_obj_fun_native_t defined in obj.h
|
|
|
|
STATIC mp_obj_t fun_binary_op(int op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
|
|
switch (op) {
|
|
case MP_BINARY_OP_EQUAL:
|
|
// These objects can be equal only if it's the same underlying structure,
|
|
// we don't even need to check for 2nd arg type.
|
|
return MP_BOOL(lhs_in == rhs_in);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
STATIC mp_obj_t fun_native_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
|
|
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_native));
|
|
mp_obj_fun_native_t *self = self_in;
|
|
|
|
// check number of arguments
|
|
mp_arg_check_num(n_args, n_kw, self->n_args_min, self->n_args_max, self->is_kw);
|
|
|
|
if (self->is_kw) {
|
|
// function allows keywords
|
|
|
|
// we create a map directly from the given args array
|
|
mp_map_t kw_args;
|
|
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
|
|
|
|
return ((mp_fun_kw_t)self->fun)(n_args, args, &kw_args);
|
|
|
|
} else if (self->n_args_min <= 3 && self->n_args_min == self->n_args_max) {
|
|
// function requires a fixed number of arguments
|
|
|
|
// dispatch function call
|
|
switch (self->n_args_min) {
|
|
case 0:
|
|
return ((mp_fun_0_t)self->fun)();
|
|
|
|
case 1:
|
|
return ((mp_fun_1_t)self->fun)(args[0]);
|
|
|
|
case 2:
|
|
return ((mp_fun_2_t)self->fun)(args[0], args[1]);
|
|
|
|
case 3:
|
|
return ((mp_fun_3_t)self->fun)(args[0], args[1], args[2]);
|
|
|
|
default:
|
|
assert(0);
|
|
return mp_const_none;
|
|
}
|
|
|
|
} else {
|
|
// function takes a variable number of arguments, but no keywords
|
|
|
|
return ((mp_fun_var_t)self->fun)(n_args, args);
|
|
}
|
|
}
|
|
|
|
const mp_obj_type_t mp_type_fun_native = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_function,
|
|
.call = fun_native_call,
|
|
.binary_op = fun_binary_op,
|
|
};
|
|
|
|
// fun must have the correct signature for n_args fixed arguments
|
|
mp_obj_t mp_make_function_n(int n_args, void *fun) {
|
|
mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t);
|
|
o->base.type = &mp_type_fun_native;
|
|
o->is_kw = false;
|
|
o->n_args_min = n_args;
|
|
o->n_args_max = n_args;
|
|
o->fun = fun;
|
|
return o;
|
|
}
|
|
|
|
mp_obj_t mp_make_function_var(int n_args_min, mp_fun_var_t fun) {
|
|
mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t);
|
|
o->base.type = &mp_type_fun_native;
|
|
o->is_kw = false;
|
|
o->n_args_min = n_args_min;
|
|
o->n_args_max = MP_OBJ_FUN_ARGS_MAX;
|
|
o->fun = fun;
|
|
return o;
|
|
}
|
|
|
|
// min and max are inclusive
|
|
mp_obj_t mp_make_function_var_between(int n_args_min, int n_args_max, mp_fun_var_t fun) {
|
|
mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t);
|
|
o->base.type = &mp_type_fun_native;
|
|
o->is_kw = false;
|
|
o->n_args_min = n_args_min;
|
|
o->n_args_max = n_args_max;
|
|
o->fun = fun;
|
|
return o;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/* byte code functions */
|
|
|
|
const char *mp_obj_code_get_name(const byte *code_info) {
|
|
qstr block_name = code_info[8] | (code_info[9] << 8) | (code_info[10] << 16) | (code_info[11] << 24);
|
|
return qstr_str(block_name);
|
|
}
|
|
|
|
const char *mp_obj_fun_get_name(mp_obj_t fun_in) {
|
|
mp_obj_fun_bc_t *fun = fun_in;
|
|
const byte *code_info = fun->bytecode;
|
|
return mp_obj_code_get_name(code_info);
|
|
}
|
|
|
|
#if MICROPY_CPYTHON_COMPAT
|
|
STATIC void fun_bc_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t o_in, mp_print_kind_t kind) {
|
|
mp_obj_fun_bc_t *o = o_in;
|
|
print(env, "<function %s at 0x%x>", mp_obj_fun_get_name(o), o);
|
|
}
|
|
#endif
|
|
|
|
#if DEBUG_PRINT
|
|
STATIC void dump_args(const mp_obj_t *a, int sz) {
|
|
DEBUG_printf("%p: ", a);
|
|
for (int i = 0; i < sz; i++) {
|
|
DEBUG_printf("%p ", a[i]);
|
|
}
|
|
DEBUG_printf("\n");
|
|
}
|
|
#else
|
|
#define dump_args(...) (void)0
|
|
#endif
|
|
|
|
STATIC NORETURN void fun_pos_args_mismatch(mp_obj_fun_bc_t *f, uint expected, uint given) {
|
|
#if MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE
|
|
// Generic message, to be reused for other argument issues
|
|
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError,
|
|
"argument num/types mismatch"));
|
|
#elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_NORMAL
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
|
|
"function takes %d positional arguments but %d were given", expected, given));
|
|
#elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_DETAILED
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
|
|
"%s() takes %d positional arguments but %d were given",
|
|
mp_obj_fun_get_name(f), expected, given));
|
|
#endif
|
|
}
|
|
|
|
// If it's possible to call a function without allocating new argument array,
|
|
// this function returns true, together with pointers to 2 subarrays to be used
|
|
// as arguments. Otherwise, it returns false. It is expected that this fucntion
|
|
// will be accompanied by another, mp_obj_fun_prepare_full_args(), which will
|
|
// instead take pointer to full-length out-array, and will fill it in. Rationale
|
|
// being that a caller can try this function and if it succeeds, the function call
|
|
// can be made without allocating extra memory. Otherwise, caller can allocate memory
|
|
// and try "full" function. These functions are expected to be refactoring of
|
|
// code in fun_bc_call() and evenrually replace it.
|
|
bool mp_obj_fun_prepare_simple_args(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args,
|
|
uint *out_args1_len, const mp_obj_t **out_args1, uint *out_args2_len, const mp_obj_t **out_args2) {
|
|
mp_obj_fun_bc_t *self = self_in;
|
|
DEBUG_printf("mp_obj_fun_prepare_simple_args: given: %d pos, %d kw, expected: %d pos (%d default)\n",
|
|
n_args, n_kw, self->n_pos_args, self->n_def_args);
|
|
|
|
assert(n_kw == 0);
|
|
assert(self->n_kwonly_args == 0);
|
|
assert(self->takes_var_args == 0);
|
|
assert(self->takes_kw_args == 0);
|
|
|
|
mp_obj_t *extra_args = self->extra_args + self->n_def_args;
|
|
uint n_extra_args = 0;
|
|
|
|
if (n_args > self->n_pos_args) {
|
|
goto arg_error;
|
|
} else {
|
|
if (n_args >= self->n_pos_args - self->n_def_args) {
|
|
extra_args -= self->n_pos_args - n_args;
|
|
n_extra_args += self->n_pos_args - n_args;
|
|
} else {
|
|
fun_pos_args_mismatch(self, self->n_pos_args - self->n_def_args, n_args);
|
|
}
|
|
}
|
|
*out_args1 = args;
|
|
*out_args1_len = n_args;
|
|
*out_args2 = extra_args;
|
|
*out_args2_len = n_extra_args;
|
|
return true;
|
|
|
|
arg_error:
|
|
fun_pos_args_mismatch(self, self->n_pos_args, n_args);
|
|
}
|
|
|
|
STATIC mp_obj_t fun_bc_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
|
|
// This function is pretty complicated. It's main aim is to be efficient in speed and RAM
|
|
// usage for the common case of positional only args.
|
|
//
|
|
// extra_args layout: def_args, var_arg tuple, kwonly args, var_kw dict
|
|
|
|
DEBUG_printf("Input n_args: %d, n_kw: %d\n", n_args, n_kw);
|
|
DEBUG_printf("Input pos args: ");
|
|
dump_args(args, n_args);
|
|
DEBUG_printf("Input kw args: ");
|
|
dump_args(args + n_args, n_kw * 2);
|
|
mp_obj_fun_bc_t *self = self_in;
|
|
DEBUG_printf("Func n_def_args: %d\n", self->n_def_args);
|
|
|
|
const mp_obj_t *kwargs = args + n_args;
|
|
mp_obj_t *extra_args = self->extra_args + self->n_def_args;
|
|
uint n_extra_args = 0;
|
|
|
|
// check positional arguments
|
|
|
|
if (n_args > self->n_pos_args) {
|
|
// given more than enough arguments
|
|
if (!self->takes_var_args) {
|
|
fun_pos_args_mismatch(self, self->n_pos_args, n_args);
|
|
}
|
|
// put extra arguments in varargs tuple
|
|
*extra_args = mp_obj_new_tuple(n_args - self->n_pos_args, args + self->n_pos_args);
|
|
n_extra_args = 1;
|
|
n_args = self->n_pos_args;
|
|
} else {
|
|
if (self->takes_var_args) {
|
|
DEBUG_printf("passing empty tuple as *args\n");
|
|
*extra_args = mp_const_empty_tuple;
|
|
n_extra_args = 1;
|
|
}
|
|
// Apply processing and check below only if we don't have kwargs,
|
|
// otherwise, kw handling code below has own extensive checks.
|
|
if (n_kw == 0) {
|
|
if (n_args >= self->n_pos_args - self->n_def_args) {
|
|
// given enough arguments, but may need to use some default arguments
|
|
extra_args -= self->n_pos_args - n_args;
|
|
n_extra_args += self->n_pos_args - n_args;
|
|
} else {
|
|
fun_pos_args_mismatch(self, self->n_pos_args - self->n_def_args, n_args);
|
|
}
|
|
}
|
|
}
|
|
|
|
// check keyword arguments
|
|
|
|
if (n_kw != 0) {
|
|
// We cannot use dynamically-sized array here, because GCC indeed
|
|
// deallocates it on leaving defining scope (unlike most static stack allocs).
|
|
// So, we have 2 choices: allocate it unconditionally at the top of function
|
|
// (wastes stack), or use alloca which is guaranteed to dealloc on func exit.
|
|
//mp_obj_t flat_args[self->n_args];
|
|
mp_obj_t *flat_args = alloca((self->n_pos_args + self->n_kwonly_args) * sizeof(mp_obj_t));
|
|
for (int i = self->n_pos_args + self->n_kwonly_args - 1; i >= 0; i--) {
|
|
flat_args[i] = MP_OBJ_NULL;
|
|
}
|
|
memcpy(flat_args, args, sizeof(*args) * n_args);
|
|
DEBUG_printf("Initial args: ");
|
|
dump_args(flat_args, self->n_pos_args + self->n_kwonly_args);
|
|
|
|
mp_obj_t dict = MP_OBJ_NULL;
|
|
if (self->takes_kw_args) {
|
|
dict = mp_obj_new_dict(n_kw); // TODO: better go conservative with 0?
|
|
}
|
|
for (uint i = 0; i < n_kw; i++) {
|
|
qstr arg_name = MP_OBJ_QSTR_VALUE(kwargs[2 * i]);
|
|
for (uint j = 0; j < self->n_pos_args + self->n_kwonly_args; j++) {
|
|
if (arg_name == self->args[j]) {
|
|
if (flat_args[j] != MP_OBJ_NULL) {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
|
|
"function got multiple values for argument '%s'", qstr_str(arg_name)));
|
|
}
|
|
flat_args[j] = kwargs[2 * i + 1];
|
|
goto continue2;
|
|
}
|
|
}
|
|
// Didn't find name match with positional args
|
|
if (!self->takes_kw_args) {
|
|
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "function does not take keyword arguments"));
|
|
}
|
|
mp_obj_dict_store(dict, kwargs[2 * i], kwargs[2 * i + 1]);
|
|
continue2:;
|
|
}
|
|
DEBUG_printf("Args with kws flattened: ");
|
|
dump_args(flat_args, self->n_pos_args + self->n_kwonly_args);
|
|
|
|
// Now fill in defaults for positional args
|
|
mp_obj_t *d = &flat_args[self->n_pos_args - 1];
|
|
mp_obj_t *s = &self->extra_args[self->n_def_args - 1];
|
|
for (int i = self->n_def_args; i > 0; i--, d--, s--) {
|
|
if (*d == MP_OBJ_NULL) {
|
|
*d = *s;
|
|
}
|
|
}
|
|
DEBUG_printf("Args after filling defaults: ");
|
|
dump_args(flat_args, self->n_pos_args + self->n_kwonly_args);
|
|
|
|
// Check that all mandatory positional args are specified
|
|
while (d >= flat_args) {
|
|
if (*d-- == MP_OBJ_NULL) {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
|
|
"function missing required positional argument #%d", d - flat_args));
|
|
}
|
|
}
|
|
|
|
// Check that all mandatory keyword args are specified
|
|
for (int i = 0; i < self->n_kwonly_args; i++) {
|
|
if (flat_args[self->n_pos_args + i] == MP_OBJ_NULL) {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
|
|
"function missing required keyword argument '%s'", qstr_str(self->args[self->n_pos_args + i])));
|
|
}
|
|
}
|
|
|
|
args = flat_args;
|
|
n_args = self->n_pos_args + self->n_kwonly_args;
|
|
|
|
if (self->takes_kw_args) {
|
|
extra_args[n_extra_args] = dict;
|
|
n_extra_args += 1;
|
|
}
|
|
} else {
|
|
// no keyword arguments given
|
|
if (self->n_kwonly_args != 0) {
|
|
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError,
|
|
"function missing keyword-only argument"));
|
|
}
|
|
if (self->takes_kw_args) {
|
|
extra_args[n_extra_args] = mp_obj_new_dict(0);
|
|
n_extra_args += 1;
|
|
}
|
|
}
|
|
|
|
mp_obj_dict_t *old_globals = mp_globals_get();
|
|
mp_globals_set(self->globals);
|
|
mp_obj_t result;
|
|
DEBUG_printf("Calling: args=%p, n_args=%d, extra_args=%p, n_extra_args=%d\n", args, n_args, extra_args, n_extra_args);
|
|
dump_args(args, n_args);
|
|
dump_args(extra_args, n_extra_args);
|
|
mp_vm_return_kind_t vm_return_kind = mp_execute_byte_code(self->bytecode, args, n_args, extra_args, n_extra_args, &result);
|
|
mp_globals_set(old_globals);
|
|
|
|
if (vm_return_kind == MP_VM_RETURN_NORMAL) {
|
|
return result;
|
|
} else { // MP_VM_RETURN_EXCEPTION
|
|
nlr_raise(result);
|
|
}
|
|
}
|
|
|
|
const mp_obj_type_t mp_type_fun_bc = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_function,
|
|
#if MICROPY_CPYTHON_COMPAT
|
|
.print = fun_bc_print,
|
|
#endif
|
|
.call = fun_bc_call,
|
|
.binary_op = fun_binary_op,
|
|
};
|
|
|
|
mp_obj_t mp_obj_new_fun_bc(uint scope_flags, qstr *args, uint n_pos_args, uint n_kwonly_args, mp_obj_t def_args_in, const byte *code) {
|
|
uint n_def_args = 0;
|
|
uint n_extra_args = 0;
|
|
mp_obj_tuple_t *def_args = def_args_in;
|
|
if (def_args != MP_OBJ_NULL) {
|
|
assert(MP_OBJ_IS_TYPE(def_args, &mp_type_tuple));
|
|
n_def_args = def_args->len;
|
|
n_extra_args = def_args->len;
|
|
}
|
|
if ((scope_flags & MP_SCOPE_FLAG_VARARGS) != 0) {
|
|
n_extra_args += 1;
|
|
}
|
|
if ((scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) {
|
|
n_extra_args += 1;
|
|
}
|
|
mp_obj_fun_bc_t *o = m_new_obj_var(mp_obj_fun_bc_t, mp_obj_t, n_extra_args);
|
|
o->base.type = &mp_type_fun_bc;
|
|
o->globals = mp_globals_get();
|
|
o->args = args;
|
|
o->n_pos_args = n_pos_args;
|
|
o->n_kwonly_args = n_kwonly_args;
|
|
o->n_def_args = n_def_args;
|
|
o->takes_var_args = (scope_flags & MP_SCOPE_FLAG_VARARGS) != 0;
|
|
o->takes_kw_args = (scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0;
|
|
o->bytecode = code;
|
|
memset(o->extra_args, 0, n_extra_args * sizeof(mp_obj_t));
|
|
if (def_args != MP_OBJ_NULL) {
|
|
memcpy(o->extra_args, def_args->items, n_def_args * sizeof(mp_obj_t));
|
|
}
|
|
if ((scope_flags & MP_SCOPE_FLAG_VARARGS) != 0) {
|
|
o->extra_args[n_def_args] = MP_OBJ_NULL;
|
|
}
|
|
if ((scope_flags & MP_SCOPE_FLAG_VARARGS) != 0) {
|
|
o->extra_args[n_extra_args - 1] = MP_OBJ_NULL;
|
|
}
|
|
return o;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/* inline assembler functions */
|
|
|
|
typedef struct _mp_obj_fun_asm_t {
|
|
mp_obj_base_t base;
|
|
int n_args;
|
|
void *fun;
|
|
} mp_obj_fun_asm_t;
|
|
|
|
typedef machine_uint_t (*inline_asm_fun_0_t)();
|
|
typedef machine_uint_t (*inline_asm_fun_1_t)(machine_uint_t);
|
|
typedef machine_uint_t (*inline_asm_fun_2_t)(machine_uint_t, machine_uint_t);
|
|
typedef machine_uint_t (*inline_asm_fun_3_t)(machine_uint_t, machine_uint_t, machine_uint_t);
|
|
|
|
// convert a Micro Python object to a sensible value for inline asm
|
|
STATIC machine_uint_t convert_obj_for_inline_asm(mp_obj_t obj) {
|
|
// TODO for byte_array, pass pointer to the array
|
|
if (MP_OBJ_IS_SMALL_INT(obj)) {
|
|
return MP_OBJ_SMALL_INT_VALUE(obj);
|
|
} else if (obj == mp_const_none) {
|
|
return 0;
|
|
} else if (obj == mp_const_false) {
|
|
return 0;
|
|
} else if (obj == mp_const_true) {
|
|
return 1;
|
|
} else if (MP_OBJ_IS_STR(obj)) {
|
|
// pointer to the string (it's probably constant though!)
|
|
uint l;
|
|
return (machine_uint_t)mp_obj_str_get_data(obj, &l);
|
|
} else {
|
|
mp_obj_type_t *type = mp_obj_get_type(obj);
|
|
if (0) {
|
|
#if MICROPY_ENABLE_FLOAT
|
|
} else if (type == &mp_type_float) {
|
|
// convert float to int (could also pass in float registers)
|
|
return (machine_int_t)mp_obj_float_get(obj);
|
|
#endif
|
|
} else if (type == &mp_type_tuple) {
|
|
// pointer to start of tuple (could pass length, but then could use len(x) for that)
|
|
uint len;
|
|
mp_obj_t *items;
|
|
mp_obj_tuple_get(obj, &len, &items);
|
|
return (machine_uint_t)items;
|
|
} else if (type == &mp_type_list) {
|
|
// pointer to start of list (could pass length, but then could use len(x) for that)
|
|
uint len;
|
|
mp_obj_t *items;
|
|
mp_obj_list_get(obj, &len, &items);
|
|
return (machine_uint_t)items;
|
|
} else {
|
|
mp_buffer_info_t bufinfo;
|
|
if (mp_get_buffer(obj, &bufinfo, MP_BUFFER_WRITE)) {
|
|
// supports the buffer protocol, return a pointer to the data
|
|
return (machine_uint_t)bufinfo.buf;
|
|
} else {
|
|
// just pass along a pointer to the object
|
|
return (machine_uint_t)obj;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// convert a return value from inline asm to a sensible Micro Python object
|
|
STATIC mp_obj_t convert_val_from_inline_asm(machine_uint_t val) {
|
|
return MP_OBJ_NEW_SMALL_INT(val);
|
|
}
|
|
|
|
STATIC mp_obj_t fun_asm_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
|
|
mp_obj_fun_asm_t *self = self_in;
|
|
|
|
if (n_args != self->n_args) {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "function takes %d positional arguments but %d were given", self->n_args, n_args));
|
|
}
|
|
if (n_kw != 0) {
|
|
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "function does not take keyword arguments"));
|
|
}
|
|
|
|
machine_uint_t ret;
|
|
if (n_args == 0) {
|
|
ret = ((inline_asm_fun_0_t)self->fun)();
|
|
} else if (n_args == 1) {
|
|
ret = ((inline_asm_fun_1_t)self->fun)(convert_obj_for_inline_asm(args[0]));
|
|
} else if (n_args == 2) {
|
|
ret = ((inline_asm_fun_2_t)self->fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]));
|
|
} else if (n_args == 3) {
|
|
ret = ((inline_asm_fun_3_t)self->fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]), convert_obj_for_inline_asm(args[2]));
|
|
} else {
|
|
assert(0);
|
|
ret = 0;
|
|
}
|
|
|
|
return convert_val_from_inline_asm(ret);
|
|
}
|
|
|
|
STATIC const mp_obj_type_t mp_type_fun_asm = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_function,
|
|
.call = fun_asm_call,
|
|
.binary_op = fun_binary_op,
|
|
};
|
|
|
|
mp_obj_t mp_obj_new_fun_asm(uint n_args, void *fun) {
|
|
mp_obj_fun_asm_t *o = m_new_obj(mp_obj_fun_asm_t);
|
|
o->base.type = &mp_type_fun_asm;
|
|
o->n_args = n_args;
|
|
o->fun = fun;
|
|
return o;
|
|
}
|