2021-03-26 11:01:22 -05:00

377 lines
12 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft
* Copyright (c) 2019 Artur Pacholec
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/microcontroller/Pin.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "shared-bindings/busio/SPI.h"
#include "py/mperrno.h"
#include "py/runtime.h"
#include "periph.h"
#include "fsl_lpspi.h"
#include <stdio.h>
#define LPSPI_MASTER_CLK_FREQ (CLOCK_GetFreq(kCLOCK_Usb1PllPfd0Clk) / (CLOCK_GetDiv(kCLOCK_LpspiDiv) + 1))
#define MAX_SPI_BUSY_RETRIES 100
// arrays use 0 based numbering: SPI1 is stored at index 0
#define MAX_SPI 4
STATIC bool reserved_spi[MAX_SPI];
STATIC bool never_reset_spi[MAX_SPI];
STATIC void config_periph_pin(const mcu_periph_obj_t *periph) {
IOMUXC_SetPinMux(
periph->pin->mux_reg, periph->mux_mode,
periph->input_reg, periph->input_idx,
0,
0);
IOMUXC_SetPinConfig(0, 0, 0, 0,
periph->pin->cfg_reg,
IOMUXC_SW_PAD_CTL_PAD_HYS(0)
| IOMUXC_SW_PAD_CTL_PAD_PUS(0)
| IOMUXC_SW_PAD_CTL_PAD_PUE(0)
| IOMUXC_SW_PAD_CTL_PAD_PKE(1)
| IOMUXC_SW_PAD_CTL_PAD_ODE(0)
| IOMUXC_SW_PAD_CTL_PAD_SPEED(2)
| IOMUXC_SW_PAD_CTL_PAD_DSE(4)
| IOMUXC_SW_PAD_CTL_PAD_SRE(0));
}
void spi_reset(void) {
for (uint i = 0; i < MP_ARRAY_SIZE(mcu_spi_banks); i++) {
if (!never_reset_spi[i]) {
reserved_spi[i] = false;
LPSPI_Deinit(mcu_spi_banks[i]);
}
}
}
void common_hal_busio_spi_construct(busio_spi_obj_t *self,
const mcu_pin_obj_t *clock, const mcu_pin_obj_t *mosi,
const mcu_pin_obj_t *miso) {
const uint32_t sck_count = MP_ARRAY_SIZE(mcu_spi_sck_list);
const uint32_t miso_count = MP_ARRAY_SIZE(mcu_spi_miso_list);
const uint32_t mosi_count = MP_ARRAY_SIZE(mcu_spi_mosi_list);
bool spi_taken = false;
for (uint i = 0; i < sck_count; i++) {
if (mcu_spi_sck_list[i].pin != clock) {
continue;
}
// if both MOSI and MISO exist, loop search normally
if ((mosi != NULL) && (miso != NULL)) {
for (uint j = 0; j < mosi_count; j++) {
if ((mcu_spi_mosi_list[i].pin != mosi)
|| (mcu_spi_sck_list[i].bank_idx != mcu_spi_mosi_list[j].bank_idx)) {
continue;
}
for (uint k = 0; k < miso_count; k++) {
if ((mcu_spi_miso_list[k].pin != miso) // everything needs the same index
|| (mcu_spi_sck_list[i].bank_idx != mcu_spi_miso_list[k].bank_idx)) {
continue;
}
// if SPI is taken, break (pins never have >1 periph)
if (reserved_spi[mcu_spi_sck_list[i].bank_idx - 1]) {
spi_taken = true;
break;
}
// store pins if not
self->clock = &mcu_spi_sck_list[i];
self->mosi = &mcu_spi_mosi_list[j];
self->miso = &mcu_spi_miso_list[k];
break;
}
if (self->clock != NULL || spi_taken) {
break; // Multi-level break to pick lowest peripheral
}
}
if (self->clock != NULL || spi_taken) {
break;
}
// if just MISO, reduce search
} else if (miso != NULL) {
for (uint j = 0; j < miso_count; j++) {
if ((mcu_spi_miso_list[j].pin != miso) // only SCK and MISO need the same index
|| (mcu_spi_sck_list[i].bank_idx != mcu_spi_miso_list[j].bank_idx)) {
continue;
}
if (reserved_spi[mcu_spi_sck_list[i].bank_idx - 1]) {
spi_taken = true;
break;
}
self->clock = &mcu_spi_sck_list[i];
self->miso = &mcu_spi_miso_list[j];
break;
}
if (self->clock != NULL || spi_taken) {
break;
}
// if just MOSI, reduce search
} else if (mosi != NULL) {
for (uint j = 0; j < mosi_count; j++) {
if ((mcu_spi_mosi_list[j].pin != mosi) // only SCK and MOSI need the same index
|| (mcu_spi_sck_list[i].bank_idx != mcu_spi_mosi_list[j].bank_idx)) {
continue;
}
if (reserved_spi[mcu_spi_sck_list[i].bank_idx - 1]) {
spi_taken = true;
break;
}
self->clock = &mcu_spi_sck_list[i];
self->mosi = &mcu_spi_mosi_list[j];
break;
}
if (self->clock != NULL || spi_taken) {
break;
}
} else {
// throw an error immediately
mp_raise_ValueError(translate("Must provide MISO or MOSI pin"));
}
}
if (self->clock != NULL && (self->mosi != NULL || self->miso != NULL)) {
self->spi = mcu_spi_banks[self->clock->bank_idx - 1];
} else {
if (spi_taken) {
mp_raise_ValueError(translate("Hardware busy, try alternative pins"));
} else {
mp_raise_ValueError(translate("Invalid pins"));
}
}
config_periph_pin(self->clock);
if (self->mosi != NULL) {
config_periph_pin(self->mosi);
}
if (self->miso != NULL) {
config_periph_pin(self->miso);
}
reserved_spi[self->clock->bank_idx - 1] = true;
lpspi_master_config_t config = { 0 };
LPSPI_MasterGetDefaultConfig(&config);
// Always start at 250khz which is what SD cards need. They are sensitive to
// SPI bus noise before they are put into SPI mode.
config.baudRate = 250000;
LPSPI_MasterInit(self->spi, &config, LPSPI_MASTER_CLK_FREQ);
LPSPI_Enable(self->spi, false);
uint32_t tcrPrescaleValue;
self->baudrate = LPSPI_MasterSetBaudRate(self->spi, config.baudRate, LPSPI_MASTER_CLK_FREQ, &tcrPrescaleValue);
self->spi->TCR = (self->spi->TCR & ~LPSPI_TCR_PRESCALE_MASK) | LPSPI_TCR_PRESCALE(tcrPrescaleValue);
LPSPI_Enable(self->spi, true);
claim_pin(self->clock->pin);
if (self->mosi != NULL) {
claim_pin(self->mosi->pin);
}
if (self->miso != NULL) {
claim_pin(self->miso->pin);
}
}
void common_hal_busio_spi_never_reset(busio_spi_obj_t *self) {
never_reset_spi[self->clock->bank_idx - 1] = true;
common_hal_never_reset_pin(self->clock->pin);
if (self->mosi != NULL) {
common_hal_never_reset_pin(self->mosi->pin);
}
if (self->miso != NULL) {
common_hal_never_reset_pin(self->miso->pin);
}
}
bool common_hal_busio_spi_deinited(busio_spi_obj_t *self) {
return self->clock == NULL;
}
void common_hal_busio_spi_deinit(busio_spi_obj_t *self) {
if (common_hal_busio_spi_deinited(self)) {
return;
}
LPSPI_Deinit(self->spi);
reserved_spi[self->clock->bank_idx - 1] = false;
never_reset_spi[self->clock->bank_idx - 1] = false;
common_hal_reset_pin(self->clock->pin);
common_hal_reset_pin(self->mosi->pin);
common_hal_reset_pin(self->miso->pin);
self->clock = NULL;
self->mosi = NULL;
self->miso = NULL;
}
bool common_hal_busio_spi_configure(busio_spi_obj_t *self,
uint32_t baudrate, uint8_t polarity, uint8_t phase, uint8_t bits) {
if (baudrate > 30000000) {
baudrate = 30000000; // "Absolute maximum frequency of operation (fop) is 30 MHz" -- IMXRT1010CEC.pdf
}
if ((polarity == common_hal_busio_spi_get_polarity(self)) &&
(phase == common_hal_busio_spi_get_phase(self)) &&
(bits == ((self->spi->TCR & LPSPI_TCR_FRAMESZ_MASK) >> LPSPI_TCR_FRAMESZ_SHIFT)) + 1 &&
(baudrate == common_hal_busio_spi_get_frequency(self))) {
return true;
}
lpspi_master_config_t config = { 0 };
LPSPI_MasterGetDefaultConfig(&config);
config.baudRate = baudrate;
config.cpol = polarity;
config.cpha = phase;
config.bitsPerFrame = bits;
// The between-transfer-delay must be equal to the SCK low-time.
// Setting it lower introduces runt pulses, while setting it higher
// wastes time.
config.betweenTransferDelayInNanoSec = (1000000000 / config.baudRate) / 2;
LPSPI_Deinit(self->spi);
LPSPI_MasterInit(self->spi, &config, LPSPI_MASTER_CLK_FREQ);
// Recompute the actual baudrate so that we can set the baudrate
// (frequency) property. We don't need to set TCR because it was
// established by LPSPI_MasterInit, above
uint32_t tcrPrescaleValue;
LPSPI_Enable(self->spi, false);
self->baudrate = LPSPI_MasterSetBaudRate(self->spi, baudrate, LPSPI_MASTER_CLK_FREQ, &tcrPrescaleValue);
LPSPI_Enable(self->spi, true);
return true;
}
bool common_hal_busio_spi_try_lock(busio_spi_obj_t *self) {
bool grabbed_lock = false;
// CRITICAL_SECTION_ENTER()
if (!self->has_lock) {
grabbed_lock = true;
self->has_lock = true;
}
// CRITICAL_SECTION_LEAVE();
return grabbed_lock;
}
bool common_hal_busio_spi_has_lock(busio_spi_obj_t *self) {
return self->has_lock;
}
void common_hal_busio_spi_unlock(busio_spi_obj_t *self) {
self->has_lock = false;
}
static status_t transfer_common(busio_spi_obj_t *self, lpspi_transfer_t *xfer) {
xfer->configFlags = kLPSPI_MasterPcsContinuous;
status_t status;
int retries = MAX_SPI_BUSY_RETRIES;
do {
status = LPSPI_MasterTransferBlocking(self->spi, xfer);
} while (status == kStatus_LPSPI_Busy && --retries > 0);
if (status != kStatus_Success) {
printf("%s: status %ld\r\n", __func__, status);
}
return status;
}
bool common_hal_busio_spi_write(busio_spi_obj_t *self,
const uint8_t *data, size_t len) {
if (len == 0) {
return true;
}
if (self->mosi == NULL) {
mp_raise_ValueError(translate("No MOSI Pin"));
}
lpspi_transfer_t xfer = { 0 };
xfer.txData = (uint8_t *)data;
xfer.dataSize = len;
status_t status = transfer_common(self, &xfer);
return status == kStatus_Success;
}
bool common_hal_busio_spi_read(busio_spi_obj_t *self,
uint8_t *data, size_t len, uint8_t write_value) {
if (len == 0) {
return true;
}
if (self->miso == NULL) {
mp_raise_ValueError(translate("No MISO Pin"));
}
LPSPI_SetDummyData(self->spi, write_value);
lpspi_transfer_t xfer = { 0 };
xfer.rxData = data;
xfer.dataSize = len;
status_t status = transfer_common(self, &xfer);
return status == kStatus_Success;
}
bool common_hal_busio_spi_transfer(busio_spi_obj_t *self, const uint8_t *data_out, uint8_t *data_in, size_t len) {
if (len == 0) {
return true;
}
if (self->miso == NULL || self->mosi == NULL) {
mp_raise_ValueError(translate("Missing MISO or MOSI Pin"));
}
LPSPI_SetDummyData(self->spi, 0xFF);
lpspi_transfer_t xfer = { 0 };
xfer.txData = (uint8_t *)data_out;
xfer.rxData = data_in;
xfer.dataSize = len;
status_t status = transfer_common(self, &xfer);
return status == kStatus_Success;
}
uint32_t common_hal_busio_spi_get_frequency(busio_spi_obj_t *self) {
return self->baudrate;
}
uint8_t common_hal_busio_spi_get_phase(busio_spi_obj_t *self) {
return (self->spi->TCR & LPSPI_TCR_CPHA_MASK) == LPSPI_TCR_CPHA_MASK;
}
uint8_t common_hal_busio_spi_get_polarity(busio_spi_obj_t *self) {
return (self->spi->TCR & LPSPI_TCR_CPOL_MASK) == LPSPI_TCR_CPOL_MASK;
}