7fa322afb8
ESP-NOW is a proprietary wireless communication protocol which supports connectionless communication between ESP32 and ESP8266 devices, using vendor specific WiFi frames. This commit adds support for this protocol through a new `espnow` module. This commit builds on original work done by @nickzoic, @shawwwn and with contributions from @zoland. Features include: - Use of (extended) ring buffers in py/ringbuf.[ch] for robust IO. - Signal strength (RSSI) monitoring. - Core support in `_espnow` C module, extended by `espnow.py` module. - Asyncio support via `aioespnow.py` module (separate to this commit). - Docs provided at `docs/library/espnow.rst`. Methods available in espnow.ESPNow class are: - active(True/False) - config(): set rx buffer size, read timeout and tx rate - recv()/irecv()/recvinto() to read incoming messages from peers - send() to send messages to peer devices - any() to test if a message is ready to read - irq() to set callback for received messages - stats() returns transfer stats: (tx_pkts, tx_pkt_responses, tx_failures, rx_pkts, lost_rx_pkts) - add_peer(mac, ...) registers a peer before sending messages - get_peer(mac) returns peer info: (mac, lmk, channel, ifidx, encrypt) - mod_peer(mac, ...) changes peer info parameters - get_peers() returns all peer info tuples - peers_table supports RSSI signal monitoring for received messages: {peer1: [rssi, time_ms], peer2: [rssi, time_ms], ...} ESP8266 is a pared down version of the ESP32 ESPNow support due to code size restrictions and differences in the low-level API. See docs for details. Also included is a test suite in tests/multi_espnow. This tests basic espnow data transfer, multiple transfers, various message sizes, encrypted messages (pmk and lmk), and asyncio support. Initial work is from https://github.com/micropython/micropython/pull/4115. Initial import of code is from: https://github.com/nickzoic/micropython/tree/espnow-4115.
281 lines
8.4 KiB
C
281 lines
8.4 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* Development of the code in this file was sponsored by Microbric Pty Ltd
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2016 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stdarg.h>
|
|
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/task.h"
|
|
#include "esp_system.h"
|
|
#include "nvs_flash.h"
|
|
#include "esp_task.h"
|
|
#include "soc/cpu.h"
|
|
#include "esp_log.h"
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
#include "esp32/spiram.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
#include "esp32s2/spiram.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
#include "esp32s3/spiram.h"
|
|
#endif
|
|
|
|
#include "py/stackctrl.h"
|
|
#include "py/nlr.h"
|
|
#include "py/compile.h"
|
|
#include "py/runtime.h"
|
|
#include "py/persistentcode.h"
|
|
#include "py/repl.h"
|
|
#include "py/gc.h"
|
|
#include "py/mphal.h"
|
|
#include "shared/readline/readline.h"
|
|
#include "shared/runtime/pyexec.h"
|
|
#include "uart.h"
|
|
#include "usb.h"
|
|
#include "usb_serial_jtag.h"
|
|
#include "modmachine.h"
|
|
#include "modnetwork.h"
|
|
#include "mpthreadport.h"
|
|
|
|
#if MICROPY_BLUETOOTH_NIMBLE
|
|
#include "extmod/modbluetooth.h"
|
|
#endif
|
|
|
|
#if MICROPY_ESPNOW
|
|
#include "modespnow.h"
|
|
#endif
|
|
|
|
// MicroPython runs as a task under FreeRTOS
|
|
#define MP_TASK_PRIORITY (ESP_TASK_PRIO_MIN + 1)
|
|
#define MP_TASK_STACK_SIZE (16 * 1024)
|
|
|
|
// Set the margin for detecting stack overflow, depending on the CPU architecture.
|
|
#if CONFIG_IDF_TARGET_ESP32C3
|
|
#define MP_TASK_STACK_LIMIT_MARGIN (2048)
|
|
#else
|
|
#define MP_TASK_STACK_LIMIT_MARGIN (1024)
|
|
#endif
|
|
|
|
int vprintf_null(const char *format, va_list ap) {
|
|
// do nothing: this is used as a log target during raw repl mode
|
|
return 0;
|
|
}
|
|
|
|
void mp_task(void *pvParameter) {
|
|
volatile uint32_t sp = (uint32_t)get_sp();
|
|
#if MICROPY_PY_THREAD
|
|
mp_thread_init(pxTaskGetStackStart(NULL), MP_TASK_STACK_SIZE / sizeof(uintptr_t));
|
|
#endif
|
|
#if CONFIG_USB_ENABLED
|
|
usb_init();
|
|
#elif CONFIG_ESP_CONSOLE_USB_SERIAL_JTAG
|
|
usb_serial_jtag_init();
|
|
#endif
|
|
#if MICROPY_HW_ENABLE_UART_REPL
|
|
uart_stdout_init();
|
|
#endif
|
|
machine_init();
|
|
|
|
size_t mp_task_heap_size;
|
|
void *mp_task_heap = NULL;
|
|
|
|
#if CONFIG_SPIRAM_USE_MALLOC
|
|
// SPIRAM is issued using MALLOC, fallback to normal allocation rules
|
|
mp_task_heap = NULL;
|
|
#elif CONFIG_ESP32_SPIRAM_SUPPORT
|
|
// Try to use the entire external SPIRAM directly for the heap
|
|
mp_task_heap = (void *)SOC_EXTRAM_DATA_LOW;
|
|
switch (esp_spiram_get_chip_size()) {
|
|
case ESP_SPIRAM_SIZE_16MBITS:
|
|
mp_task_heap_size = 2 * 1024 * 1024;
|
|
break;
|
|
case ESP_SPIRAM_SIZE_32MBITS:
|
|
case ESP_SPIRAM_SIZE_64MBITS:
|
|
mp_task_heap_size = 4 * 1024 * 1024;
|
|
break;
|
|
default:
|
|
// No SPIRAM, fallback to normal allocation
|
|
mp_task_heap = NULL;
|
|
break;
|
|
}
|
|
#elif CONFIG_ESP32S2_SPIRAM_SUPPORT || CONFIG_ESP32S3_SPIRAM_SUPPORT
|
|
// Try to use the entire external SPIRAM directly for the heap
|
|
size_t esp_spiram_size = esp_spiram_get_size();
|
|
if (esp_spiram_size > 0) {
|
|
mp_task_heap = (void *)SOC_EXTRAM_DATA_HIGH - esp_spiram_size;
|
|
mp_task_heap_size = esp_spiram_size;
|
|
}
|
|
#endif
|
|
|
|
if (mp_task_heap == NULL) {
|
|
// Allocate the uPy heap using malloc and get the largest available region,
|
|
// limiting to 1/2 total available memory to leave memory for the OS.
|
|
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 1, 0)
|
|
size_t heap_total = heap_caps_get_total_size(MALLOC_CAP_8BIT);
|
|
#else
|
|
multi_heap_info_t info;
|
|
heap_caps_get_info(&info, MALLOC_CAP_8BIT);
|
|
size_t heap_total = info.total_free_bytes + info.total_allocated_bytes;
|
|
#endif
|
|
mp_task_heap_size = MIN(heap_caps_get_largest_free_block(MALLOC_CAP_8BIT), heap_total / 2);
|
|
mp_task_heap = malloc(mp_task_heap_size);
|
|
}
|
|
|
|
soft_reset:
|
|
// initialise the stack pointer for the main thread
|
|
mp_stack_set_top((void *)sp);
|
|
mp_stack_set_limit(MP_TASK_STACK_SIZE - MP_TASK_STACK_LIMIT_MARGIN);
|
|
gc_init(mp_task_heap, mp_task_heap + mp_task_heap_size);
|
|
mp_init();
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_lib));
|
|
readline_init0();
|
|
|
|
MP_STATE_PORT(native_code_pointers) = MP_OBJ_NULL;
|
|
|
|
// initialise peripherals
|
|
machine_pins_init();
|
|
#if MICROPY_PY_MACHINE_I2S
|
|
machine_i2s_init0();
|
|
#endif
|
|
|
|
// run boot-up scripts
|
|
pyexec_frozen_module("_boot.py", false);
|
|
pyexec_file_if_exists("boot.py");
|
|
if (pyexec_mode_kind == PYEXEC_MODE_FRIENDLY_REPL) {
|
|
int ret = pyexec_file_if_exists("main.py");
|
|
if (ret & PYEXEC_FORCED_EXIT) {
|
|
goto soft_reset_exit;
|
|
}
|
|
}
|
|
|
|
for (;;) {
|
|
if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
|
|
vprintf_like_t vprintf_log = esp_log_set_vprintf(vprintf_null);
|
|
if (pyexec_raw_repl() != 0) {
|
|
break;
|
|
}
|
|
esp_log_set_vprintf(vprintf_log);
|
|
} else {
|
|
if (pyexec_friendly_repl() != 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
soft_reset_exit:
|
|
|
|
#if MICROPY_BLUETOOTH_NIMBLE
|
|
mp_bluetooth_deinit();
|
|
#endif
|
|
|
|
#if MICROPY_ESPNOW
|
|
espnow_deinit(mp_const_none);
|
|
MP_STATE_PORT(espnow_singleton) = NULL;
|
|
#endif
|
|
|
|
machine_timer_deinit_all();
|
|
|
|
#if MICROPY_PY_THREAD
|
|
mp_thread_deinit();
|
|
#endif
|
|
|
|
// Free any native code pointers that point to iRAM.
|
|
if (MP_STATE_PORT(native_code_pointers) != MP_OBJ_NULL) {
|
|
size_t len;
|
|
mp_obj_t *items;
|
|
mp_obj_list_get(MP_STATE_PORT(native_code_pointers), &len, &items);
|
|
for (size_t i = 0; i < len; ++i) {
|
|
heap_caps_free(MP_OBJ_TO_PTR(items[i]));
|
|
}
|
|
}
|
|
|
|
gc_sweep_all();
|
|
|
|
mp_hal_stdout_tx_str("MPY: soft reboot\r\n");
|
|
|
|
// deinitialise peripherals
|
|
machine_pwm_deinit_all();
|
|
// TODO: machine_rmt_deinit_all();
|
|
machine_pins_deinit();
|
|
machine_deinit();
|
|
#if MICROPY_PY_USOCKET_EVENTS
|
|
usocket_events_deinit();
|
|
#endif
|
|
|
|
mp_deinit();
|
|
fflush(stdout);
|
|
goto soft_reset;
|
|
}
|
|
|
|
void boardctrl_startup(void) {
|
|
esp_err_t ret = nvs_flash_init();
|
|
if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) {
|
|
nvs_flash_erase();
|
|
nvs_flash_init();
|
|
}
|
|
}
|
|
|
|
void app_main(void) {
|
|
// Hook for a board to run code at start up.
|
|
// This defaults to initialising NVS.
|
|
MICROPY_BOARD_STARTUP();
|
|
|
|
// Create and transfer control to the MicroPython task.
|
|
xTaskCreatePinnedToCore(mp_task, "mp_task", MP_TASK_STACK_SIZE / sizeof(StackType_t), NULL, MP_TASK_PRIORITY, &mp_main_task_handle, MP_TASK_COREID);
|
|
}
|
|
|
|
void nlr_jump_fail(void *val) {
|
|
printf("NLR jump failed, val=%p\n", val);
|
|
esp_restart();
|
|
}
|
|
|
|
// modussl_mbedtls uses this function but it's not enabled in ESP IDF
|
|
void mbedtls_debug_set_threshold(int threshold) {
|
|
(void)threshold;
|
|
}
|
|
|
|
void *esp_native_code_commit(void *buf, size_t len, void *reloc) {
|
|
len = (len + 3) & ~3;
|
|
uint32_t *p = heap_caps_malloc(len, MALLOC_CAP_EXEC);
|
|
if (p == NULL) {
|
|
m_malloc_fail(len);
|
|
}
|
|
if (MP_STATE_PORT(native_code_pointers) == MP_OBJ_NULL) {
|
|
MP_STATE_PORT(native_code_pointers) = mp_obj_new_list(0, NULL);
|
|
}
|
|
mp_obj_list_append(MP_STATE_PORT(native_code_pointers), MP_OBJ_TO_PTR(p));
|
|
if (reloc) {
|
|
mp_native_relocate(reloc, buf, (uintptr_t)p);
|
|
}
|
|
memcpy(p, buf, len);
|
|
return p;
|
|
}
|
|
|
|
MP_REGISTER_ROOT_POINTER(mp_obj_t native_code_pointers);
|