circuitpython/main.c
Scott Shawcroft 9d91111b1b
Move atmel-samd to tinyusb and support nRF flash.
This started while adding USB MIDI support (and descriptor support is
in this change.) When seeing that I'd have to implement the MIDI class
logic twice, once for atmel-samd and once for nrf, I decided to refactor
the USB stack so its shared across ports. This has led to a number of
changes that remove items from the ports folder and move them into
supervisor.

Furthermore, we had external SPI flash support for nrf pending so I
factored out the connection between the usb stack and the flash API as
well. This PR also includes the QSPI support for nRF.
2018-11-08 17:25:30 -08:00

472 lines
17 KiB
C
Executable File

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016-2017 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <string.h>
#include "extmod/vfs.h"
#include "extmod/vfs_fat.h"
#include "genhdr/mpversion.h"
#include "py/nlr.h"
#include "py/compile.h"
#include "py/frozenmod.h"
#include "py/mphal.h"
#include "py/runtime.h"
#include "py/repl.h"
#include "py/gc.h"
#include "py/stackctrl.h"
#include "lib/mp-readline/readline.h"
#include "lib/utils/pyexec.h"
#include "mpconfigboard.h"
#include "supervisor/cpu.h"
#include "supervisor/memory.h"
#include "supervisor/port.h"
#include "supervisor/filesystem.h"
#include "supervisor/shared/autoreload.h"
#include "supervisor/shared/translate.h"
#include "supervisor/shared/rgb_led_status.h"
#include "supervisor/shared/status_leds.h"
#include "supervisor/shared/stack.h"
#include "supervisor/serial.h"
#ifdef MICROPY_PY_NETWORK
#include "shared-module/network/__init__.h"
#endif
void do_str(const char *src, mp_parse_input_kind_t input_kind) {
mp_lexer_t *lex = mp_lexer_new_from_str_len(MP_QSTR__lt_stdin_gt_, src, strlen(src), 0);
if (lex == NULL) {
//printf("MemoryError: lexer could not allocate memory\n");
return;
}
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
qstr source_name = lex->source_name;
mp_parse_tree_t parse_tree = mp_parse(lex, input_kind);
mp_obj_t module_fun = mp_compile(&parse_tree, source_name, MP_EMIT_OPT_NONE, true);
mp_call_function_0(module_fun);
nlr_pop();
} else {
// uncaught exception
mp_obj_print_exception(&mp_plat_print, (mp_obj_t)nlr.ret_val);
}
}
void start_mp(supervisor_allocation* heap) {
reset_status_led();
autoreload_stop();
// Stack limit should be less than real stack size, so we have a chance
// to recover from limit hit. (Limit is measured in bytes.)
mp_stack_ctrl_init();
mp_stack_set_limit(stack_alloc->length - 1024);
#if MICROPY_MAX_STACK_USAGE
// _ezero (same as _ebss) is an int, so start 4 bytes above it.
mp_stack_set_bottom(stack_alloc->ptr);
mp_stack_fill_with_sentinel();
#endif
// Sync the file systems in case any used RAM from the GC to cache. As soon
// as we re-init the GC all bets are off on the cache.
filesystem_flush();
// Clear the readline history. It references the heap we're about to destroy.
readline_init0();
#if MICROPY_ENABLE_GC
gc_init(heap->ptr, heap->ptr + heap->length / 4);
#endif
mp_init();
mp_obj_list_init(mp_sys_path, 0);
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script)
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_));
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_lib));
// Frozen modules are in their own pseudo-dir, e.g., ".frozen".
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_FROZEN_FAKE_DIR_QSTR));
mp_obj_list_init(mp_sys_argv, 0);
#if MICROPY_PY_NETWORK
network_module_init();
#endif
}
void stop_mp(void) {
#if MICROPY_PY_NETWORK
network_module_deinit();
#endif
}
#define STRING_LIST(...) {__VA_ARGS__, ""}
// Look for the first file that exists in the list of filenames, using mp_import_stat().
// Return its index. If no file found, return -1.
const char* first_existing_file_in_list(const char ** filenames) {
for (int i = 0; filenames[i] != (char*)""; i++) {
mp_import_stat_t stat = mp_import_stat(filenames[i]);
if (stat == MP_IMPORT_STAT_FILE) {
return filenames[i];
}
}
return NULL;
}
void write_compressed(const compressed_string_t* compressed) {
char decompressed[compressed->length];
decompress(compressed, decompressed);
serial_write(decompressed);
}
bool maybe_run_list(const char ** filenames, pyexec_result_t* exec_result) {
const char* filename = first_existing_file_in_list(filenames);
if (filename == NULL) {
return false;
}
mp_hal_stdout_tx_str(filename);
const compressed_string_t* compressed = translate(" output:\n");
char decompressed[compressed->length];
decompress(compressed, decompressed);
mp_hal_stdout_tx_str(decompressed);
pyexec_file(filename, exec_result);
return true;
}
bool run_code_py(safe_mode_t safe_mode) {
bool serial_connected_at_start = serial_connected();
#ifdef CIRCUITPY_AUTORELOAD_DELAY_MS
if (serial_connected_at_start) {
serial_write("\n");
if (autoreload_is_enabled()) {
write_compressed(translate("Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.\n"));
} else if (safe_mode != NO_SAFE_MODE) {
write_compressed(translate("Running in safe mode! Auto-reload is off.\n"));
} else if (!autoreload_is_enabled()) {
write_compressed(translate("Auto-reload is off.\n"));
}
}
#endif
pyexec_result_t result;
result.return_code = 0;
result.exception_type = NULL;
result.exception_line = 0;
bool found_main = false;
if (safe_mode != NO_SAFE_MODE) {
write_compressed(translate("Running in safe mode! Not running saved code.\n"));
} else {
new_status_color(MAIN_RUNNING);
const char *supported_filenames[] = STRING_LIST("code.txt", "code.py", "main.py", "main.txt");
const char *double_extension_filenames[] = STRING_LIST("code.txt.py", "code.py.txt", "code.txt.txt","code.py.py",
"main.txt.py", "main.py.txt", "main.txt.txt","main.py.py");
stack_resize();
filesystem_flush();
supervisor_allocation* heap = allocate_remaining_memory();
start_mp(heap);
found_main = maybe_run_list(supported_filenames, &result);
if (!found_main){
found_main = maybe_run_list(double_extension_filenames, &result);
if (found_main) {
write_compressed(translate("WARNING: Your code filename has two extensions\n"));
}
}
stop_mp();
free_memory(heap);
reset_port();
reset_board();
reset_status_led();
if (result.return_code & PYEXEC_FORCED_EXIT) {
return reload_requested;
}
}
// Wait for connection or character.
bool serial_connected_before_animation = false;
rgb_status_animation_t animation;
prep_rgb_status_animation(&result, found_main, safe_mode, &animation);
while (true) {
#ifdef MICROPY_VM_HOOK_LOOP
MICROPY_VM_HOOK_LOOP
#endif
if (reload_requested) {
return true;
}
if (serial_connected() && serial_bytes_available()) {
// Skip REPL if reload was requested.
return (serial_read() == CHAR_CTRL_D);
}
if (!serial_connected_before_animation && serial_connected()) {
if (serial_connected_at_start) {
serial_write("\n\n");
}
if (!serial_connected_at_start) {
if (autoreload_is_enabled()) {
write_compressed(translate("Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.\n"));
} else {
write_compressed(translate("Auto-reload is off.\n"));
}
}
// Output a user safe mode string if its set.
#ifdef BOARD_USER_SAFE_MODE
if (safe_mode == USER_SAFE_MODE) {
serial_write("\n");
write_compressed(translate("You requested starting safe mode by "));
serial_write(BOARD_USER_SAFE_MODE_ACTION);
serial_write("\n");
write_compressed(translate("To exit, please reset the board without "));
serial_write(BOARD_USER_SAFE_MODE_ACTION);
serial_write("\n");
} else
#endif
if (safe_mode != NO_SAFE_MODE) {
serial_write("\n");
write_compressed(translate("You are running in safe mode which means something really bad happened.\n"));
if (safe_mode == HARD_CRASH) {
write_compressed(translate("Looks like our core CircuitPython code crashed hard. Whoops!\n"));
write_compressed(translate("Please file an issue here with the contents of your CIRCUITPY drive:\n"));
serial_write("https://github.com/adafruit/circuitpython/issues\n");
} else if (safe_mode == BROWNOUT) {
write_compressed(translate("The microcontroller's power dipped. Please make sure your power supply provides\n"));
write_compressed(translate("enough power for the whole circuit and press reset (after ejecting CIRCUITPY).\n"));
}
}
serial_write("\n");
write_compressed(translate("Press any key to enter the REPL. Use CTRL-D to reload."));
}
if (serial_connected_before_animation && !serial_connected()) {
serial_connected_at_start = false;
}
serial_connected_before_animation = serial_connected();
tick_rgb_status_animation(&animation);
}
}
void __attribute__ ((noinline)) run_boot_py(safe_mode_t safe_mode) {
// If not in safe mode, run boot before initing USB and capture output in a
// file.
if (filesystem_present() && safe_mode == NO_SAFE_MODE && MP_STATE_VM(vfs_mount_table) != NULL) {
static const char *boot_py_filenames[] = STRING_LIST("settings.txt", "settings.py", "boot.py", "boot.txt");
new_status_color(BOOT_RUNNING);
#ifdef CIRCUITPY_BOOT_OUTPUT_FILE
FIL file_pointer;
boot_output_file = &file_pointer;
// Get the base filesystem.
FATFS *fs = &((fs_user_mount_t *) MP_STATE_VM(vfs_mount_table)->obj)->fatfs;
bool have_boot_py = first_existing_file_in_list(boot_py_filenames) != NULL;
bool skip_boot_output = false;
// If there's no boot.py file that might write some changing output,
// read the existing copy of CIRCUITPY_BOOT_OUTPUT_FILE and see if its contents
// match the version info we would print anyway. If so, skip writing CIRCUITPY_BOOT_OUTPUT_FILE.
// This saves wear and tear on the flash and also prevents filesystem damage if power is lost
// during the write, which may happen due to bobbling the power connector or weak power.
static const size_t NUM_CHARS_TO_COMPARE = 160;
if (!have_boot_py && f_open(fs, boot_output_file, CIRCUITPY_BOOT_OUTPUT_FILE, FA_READ) == FR_OK) {
char file_contents[NUM_CHARS_TO_COMPARE];
UINT chars_read = 0;
f_read(boot_output_file, file_contents, NUM_CHARS_TO_COMPARE, &chars_read);
f_close(boot_output_file);
skip_boot_output =
// + 2 accounts for \r\n.
chars_read == strlen(MICROPY_FULL_VERSION_INFO) + 2 &&
strncmp(file_contents, MICROPY_FULL_VERSION_INFO, strlen(MICROPY_FULL_VERSION_INFO)) == 0;
}
if (!skip_boot_output) {
// Wait 1.5 seconds before opening CIRCUITPY_BOOT_OUTPUT_FILE for write,
// in case power is momentary or will fail shortly due to, say a low, battery.
mp_hal_delay_ms(1500);
// USB isn't up, so we can write the file.
filesystem_writable_by_python(true);
f_open(fs, boot_output_file, CIRCUITPY_BOOT_OUTPUT_FILE, FA_WRITE | FA_CREATE_ALWAYS);
// Switch the filesystem back to non-writable by Python now instead of later,
// since boot.py might change it back to writable.
filesystem_writable_by_python(false);
// Write version info to boot_out.txt.
mp_hal_stdout_tx_str(MICROPY_FULL_VERSION_INFO);
mp_hal_stdout_tx_str("\r\n");
}
#endif
// TODO(tannewt): Allocate temporary space to hold custom usb descriptors.
filesystem_flush();
supervisor_allocation* heap = allocate_remaining_memory();
start_mp(heap);
// TODO(tannewt): Re-add support for flashing boot error output.
bool found_boot = maybe_run_list(boot_py_filenames, NULL);
(void) found_boot;
#ifdef CIRCUITPY_BOOT_OUTPUT_FILE
if (!skip_boot_output) {
f_close(boot_output_file);
filesystem_flush();
}
boot_output_file = NULL;
#endif
// Reset to remove any state that boot.py setup. It should only be used to
// change internal state that's not in the heap.
reset_port();
reset_board();
stop_mp();
free_memory(heap);
}
}
int run_repl(void) {
int exit_code = PYEXEC_FORCED_EXIT;
stack_resize();
filesystem_flush();
supervisor_allocation* heap = allocate_remaining_memory();
start_mp(heap);
autoreload_suspend();
new_status_color(REPL_RUNNING);
if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
exit_code = pyexec_raw_repl();
} else {
exit_code = pyexec_friendly_repl();
}
reset_port();
reset_board();
stop_mp();
free_memory(heap);
autoreload_resume();
return exit_code;
}
int __attribute__((used)) main(void) {
memory_init();
// initialise the cpu and peripherals
safe_mode_t safe_mode = port_init();
// Turn on LEDs
init_status_leds();
rgb_led_status_init();
stack_init();
// Create a new filesystem only if we're not in a safe mode.
// A power brownout here could make it appear as if there's
// no SPI flash filesystem, and we might erase the existing one.
filesystem_init(safe_mode == NO_SAFE_MODE, false);
// Reset everything and prep MicroPython to run boot.py.
reset_port();
reset_board();
// Turn on autoreload by default but before boot.py in case it wants to change it.
autoreload_enable();
// By default our internal flash is readonly to local python code and
// writable over USB. Set it here so that boot.py can change it.
filesystem_writable_by_python(false);
run_boot_py(safe_mode);
// Start serial and HID after giving boot.py a chance to tweak behavior.
serial_init();
// Boot script is finished, so now go into REPL/main mode.
int exit_code = PYEXEC_FORCED_EXIT;
bool skip_repl = true;
bool first_run = true;
for (;;) {
if (!skip_repl) {
exit_code = run_repl();
}
if (exit_code == PYEXEC_FORCED_EXIT) {
if (!first_run) {
write_compressed(translate("soft reboot\n"));
}
first_run = false;
skip_repl = run_code_py(safe_mode);
} else if (exit_code != 0) {
break;
}
}
mp_deinit();
return 0;
}
void gc_collect(void) {
gc_collect_start();
mp_uint_t regs[10];
mp_uint_t sp = cpu_get_regs_and_sp(regs);
// This collects root pointers from the VFS mount table. Some of them may
// have lost their references in the VM even though they are mounted.
gc_collect_root((void**)&MP_STATE_VM(vfs_mount_table), sizeof(mp_vfs_mount_t) / sizeof(mp_uint_t));
// This naively collects all object references from an approximate stack
// range.
gc_collect_root((void**)sp, ((uint32_t)&_estack - sp) / sizeof(uint32_t));
gc_collect_end();
}
void NORETURN nlr_jump_fail(void *val) {
HardFault_Handler();
while (true) {}
}
void NORETURN __fatal_error(const char *msg) {
HardFault_Handler();
while (true) {}
}
#ifndef NDEBUG
void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
mp_printf(&mp_plat_print, "Assertion '%s' failed, at file %s:%d\n", expr, file, line);
__fatal_error("Assertion failed");
}
#endif