circuitpython/py/runtime.c
Damien George 78d702c300 py: Allow builtins to be overridden.
This patch adds a configuration option (MICROPY_CAN_OVERRIDE_BUILTINS)
which, when enabled, allows to override all names within the builtins
module.  A builtins override dict is created the first time the user
assigns to a name in the builtins model, and then that dict is searched
first on subsequent lookups.  Note that this implementation doesn't
allow deleting of names.

This patch also does some refactoring of builtins code, creating the
modbuiltins.c file.

Addresses issue #959.
2014-12-09 16:19:48 +00:00

1344 lines
50 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "mpconfig.h"
#include "nlr.h"
#include "misc.h"
#include "qstr.h"
#include "obj.h"
#include "objtuple.h"
#include "objlist.h"
#include "objmodule.h"
#include "parsenum.h"
#include "runtime0.h"
#include "runtime.h"
#include "emitglue.h"
#include "builtin.h"
#include "bc.h"
#include "smallint.h"
#include "objgenerator.h"
#include "lexer.h"
#include "parse.h"
#include "parsehelper.h"
#include "compile.h"
#include "stackctrl.h"
#include "gc.h"
#if 0 // print debugging info
#define DEBUG_PRINT (1)
#define DEBUG_printf DEBUG_printf
#define DEBUG_OP_printf(...) DEBUG_printf(__VA_ARGS__)
#else // don't print debugging info
#define DEBUG_printf(...) (void)0
#define DEBUG_OP_printf(...) (void)0
#endif
// pending exception object (MP_OBJ_NULL if not pending)
mp_obj_t mp_pending_exception;
// locals and globals need to be pointers because they can be the same in outer module scope
STATIC mp_obj_dict_t *dict_locals;
STATIC mp_obj_dict_t *dict_globals;
// dictionary for the __main__ module
STATIC mp_obj_dict_t dict_main;
const mp_obj_module_t mp_module___main__ = {
.base = { &mp_type_module },
.name = MP_QSTR___main__,
.globals = (mp_obj_dict_t*)&dict_main,
};
#if MICROPY_CAN_OVERRIDE_BUILTINS
mp_obj_dict_t *mp_module_builtins_override_dict;
#endif
void mp_init(void) {
qstr_init();
mp_stack_ctrl_init();
// no pending exceptions to start with
mp_pending_exception = MP_OBJ_NULL;
#if MICROPY_ENABLE_EMERGENCY_EXCEPTION_BUF
mp_init_emergency_exception_buf();
#endif
// call port specific initialization if any
#ifdef MICROPY_PORT_INIT_FUNC
MICROPY_PORT_INIT_FUNC;
#endif
// optimization disabled by default
mp_optimise_value = 0;
// init global module stuff
mp_module_init();
// initialise the __main__ module
mp_obj_dict_init(&dict_main, 1);
mp_obj_dict_store(&dict_main, MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR___main__));
// locals = globals for outer module (see Objects/frameobject.c/PyFrame_New())
dict_locals = dict_globals = &dict_main;
#if MICROPY_CAN_OVERRIDE_BUILTINS
// start with no extensions to builtins
mp_module_builtins_override_dict = NULL;
#endif
}
void mp_deinit(void) {
//mp_obj_dict_free(&dict_main);
mp_module_deinit();
// call port specific deinitialization if any
#ifdef MICROPY_PORT_INIT_FUNC
MICROPY_PORT_DEINIT_FUNC;
#endif
}
mp_obj_t mp_load_const_int(qstr qstr) {
DEBUG_OP_printf("load '%s'\n", qstr_str(qstr));
mp_uint_t len;
const byte* data = qstr_data(qstr, &len);
return mp_parse_num_integer((const char*)data, len, 0);
}
mp_obj_t mp_load_const_dec(qstr qstr) {
DEBUG_OP_printf("load '%s'\n", qstr_str(qstr));
mp_uint_t len;
const byte* data = qstr_data(qstr, &len);
return mp_parse_num_decimal((const char*)data, len, true, false);
}
mp_obj_t mp_load_const_str(qstr qstr) {
DEBUG_OP_printf("load '%s'\n", qstr_str(qstr));
return MP_OBJ_NEW_QSTR(qstr);
}
mp_obj_t mp_load_const_bytes(qstr qstr) {
DEBUG_OP_printf("load b'%s'\n", qstr_str(qstr));
mp_uint_t len;
const byte *data = qstr_data(qstr, &len);
return mp_obj_new_bytes(data, len);
}
mp_obj_t mp_load_name(qstr qstr) {
// logic: search locals, globals, builtins
DEBUG_OP_printf("load name %s\n", qstr_str(qstr));
// If we're at the outer scope (locals == globals), dispatch to load_global right away
if (dict_locals != dict_globals) {
mp_map_elem_t *elem = mp_map_lookup(&dict_locals->map, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
if (elem != NULL) {
return elem->value;
}
}
return mp_load_global(qstr);
}
mp_obj_t mp_load_global(qstr qstr) {
// logic: search globals, builtins
DEBUG_OP_printf("load global %s\n", qstr_str(qstr));
mp_map_elem_t *elem = mp_map_lookup(&dict_globals->map, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
if (elem == NULL) {
#if MICROPY_CAN_OVERRIDE_BUILTINS
if (mp_module_builtins_override_dict != NULL) {
// lookup in additional dynamic table of builtins first
elem = mp_map_lookup(&mp_module_builtins_override_dict->map, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
if (elem != NULL) {
return elem->value;
}
}
#endif
elem = mp_map_lookup((mp_map_t*)&mp_module_builtins_globals.map, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
if (elem == NULL) {
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_NameError,
"name not defined"));
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_NameError,
"name '%s' is not defined", qstr_str(qstr)));
}
}
}
return elem->value;
}
mp_obj_t mp_load_build_class(void) {
DEBUG_OP_printf("load_build_class\n");
#if MICROPY_CAN_OVERRIDE_BUILTINS
if (mp_module_builtins_override_dict != NULL) {
// lookup in additional dynamic table of builtins first
mp_map_elem_t *elem = mp_map_lookup(&mp_module_builtins_override_dict->map, MP_OBJ_NEW_QSTR(MP_QSTR___build_class__), MP_MAP_LOOKUP);
if (elem != NULL) {
return elem->value;
}
}
#endif
return (mp_obj_t)&mp_builtin___build_class___obj;
}
void mp_store_name(qstr qstr, mp_obj_t obj) {
DEBUG_OP_printf("store name %s <- %p\n", qstr_str(qstr), obj);
mp_obj_dict_store(dict_locals, MP_OBJ_NEW_QSTR(qstr), obj);
}
void mp_delete_name(qstr qstr) {
DEBUG_OP_printf("delete name %s\n", qstr_str(qstr));
// TODO convert KeyError to NameError if qstr not found
mp_obj_dict_delete(dict_locals, MP_OBJ_NEW_QSTR(qstr));
}
void mp_store_global(qstr qstr, mp_obj_t obj) {
DEBUG_OP_printf("store global %s <- %p\n", qstr_str(qstr), obj);
mp_obj_dict_store(dict_globals, MP_OBJ_NEW_QSTR(qstr), obj);
}
void mp_delete_global(qstr qstr) {
DEBUG_OP_printf("delete global %s\n", qstr_str(qstr));
// TODO convert KeyError to NameError if qstr not found
mp_obj_dict_delete(dict_globals, MP_OBJ_NEW_QSTR(qstr));
}
mp_obj_t mp_unary_op(mp_uint_t op, mp_obj_t arg) {
DEBUG_OP_printf("unary " UINT_FMT " %p\n", op, arg);
if (MP_OBJ_IS_SMALL_INT(arg)) {
mp_int_t val = MP_OBJ_SMALL_INT_VALUE(arg);
switch (op) {
case MP_UNARY_OP_BOOL:
return MP_BOOL(val != 0);
case MP_UNARY_OP_POSITIVE:
return arg;
case MP_UNARY_OP_NEGATIVE:
// check for overflow
if (val == MP_SMALL_INT_MIN) {
return mp_obj_new_int(-val);
} else {
return MP_OBJ_NEW_SMALL_INT(-val);
}
case MP_UNARY_OP_INVERT:
return MP_OBJ_NEW_SMALL_INT(~val);
default:
assert(0);
return arg;
}
} else {
mp_obj_type_t *type = mp_obj_get_type(arg);
if (type->unary_op != NULL) {
mp_obj_t result = type->unary_op(op, arg);
if (result != MP_OBJ_NULL) {
return result;
}
}
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError,
"unsupported type for operator"));
} else {
// TODO specify in error message what the operator is
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"bad operand type for unary operator: '%s'",
mp_obj_get_type_str(arg)));
}
}
}
mp_obj_t mp_binary_op(mp_uint_t op, mp_obj_t lhs, mp_obj_t rhs) {
DEBUG_OP_printf("binary " UINT_FMT " %p %p\n", op, lhs, rhs);
// TODO correctly distinguish inplace operators for mutable objects
// lookup logic that CPython uses for +=:
// check for implemented +=
// then check for implemented +
// then check for implemented seq.inplace_concat
// then check for implemented seq.concat
// then fail
// note that list does not implement + or +=, so that inplace_concat is reached first for +=
// deal with is
if (op == MP_BINARY_OP_IS) {
return MP_BOOL(lhs == rhs);
}
// deal with == and != for all types
if (op == MP_BINARY_OP_EQUAL || op == MP_BINARY_OP_NOT_EQUAL) {
if (mp_obj_equal(lhs, rhs)) {
if (op == MP_BINARY_OP_EQUAL) {
return mp_const_true;
} else {
return mp_const_false;
}
} else {
if (op == MP_BINARY_OP_EQUAL) {
return mp_const_false;
} else {
return mp_const_true;
}
}
}
// deal with exception_match for all types
if (op == MP_BINARY_OP_EXCEPTION_MATCH) {
// rhs must be issubclass(rhs, BaseException)
if (mp_obj_is_exception_type(rhs)) {
if (mp_obj_exception_match(lhs, rhs)) {
return mp_const_true;
} else {
return mp_const_false;
}
} else if (MP_OBJ_IS_TYPE(rhs, &mp_type_tuple)) {
mp_obj_tuple_t *tuple = rhs;
for (mp_uint_t i = 0; i < tuple->len; i++) {
rhs = tuple->items[i];
if (!mp_obj_is_exception_type(rhs)) {
goto unsupported_op;
}
if (mp_obj_exception_match(lhs, rhs)) {
return mp_const_true;
}
}
return mp_const_false;
}
goto unsupported_op;
}
if (MP_OBJ_IS_SMALL_INT(lhs)) {
mp_int_t lhs_val = MP_OBJ_SMALL_INT_VALUE(lhs);
if (MP_OBJ_IS_SMALL_INT(rhs)) {
mp_int_t rhs_val = MP_OBJ_SMALL_INT_VALUE(rhs);
// This is a binary operation: lhs_val op rhs_val
// We need to be careful to handle overflow; see CERT INT32-C
// Operations that can overflow:
// + result always fits in mp_int_t, then handled by SMALL_INT check
// - result always fits in mp_int_t, then handled by SMALL_INT check
// * checked explicitly
// / if lhs=MIN and rhs=-1; result always fits in mp_int_t, then handled by SMALL_INT check
// % if lhs=MIN and rhs=-1; result always fits in mp_int_t, then handled by SMALL_INT check
// << checked explicitly
switch (op) {
case MP_BINARY_OP_OR:
case MP_BINARY_OP_INPLACE_OR: lhs_val |= rhs_val; break;
case MP_BINARY_OP_XOR:
case MP_BINARY_OP_INPLACE_XOR: lhs_val ^= rhs_val; break;
case MP_BINARY_OP_AND:
case MP_BINARY_OP_INPLACE_AND: lhs_val &= rhs_val; break;
case MP_BINARY_OP_LSHIFT:
case MP_BINARY_OP_INPLACE_LSHIFT: {
if (rhs_val < 0) {
// negative shift not allowed
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "negative shift count"));
} else if (rhs_val >= BITS_PER_WORD || lhs_val > (MP_SMALL_INT_MAX >> rhs_val) || lhs_val < (MP_SMALL_INT_MIN >> rhs_val)) {
// left-shift will overflow, so use higher precision integer
lhs = mp_obj_new_int_from_ll(lhs_val);
goto generic_binary_op;
} else {
// use standard precision
lhs_val <<= rhs_val;
}
break;
}
case MP_BINARY_OP_RSHIFT:
case MP_BINARY_OP_INPLACE_RSHIFT:
if (rhs_val < 0) {
// negative shift not allowed
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "negative shift count"));
} else {
// standard precision is enough for right-shift
if (rhs_val >= BITS_PER_WORD) {
// Shifting to big amounts is underfined behavior
// in C and is CPU-dependent; propagate sign bit.
rhs_val = BITS_PER_WORD - 1;
}
lhs_val >>= rhs_val;
}
break;
case MP_BINARY_OP_ADD:
case MP_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break;
case MP_BINARY_OP_SUBTRACT:
case MP_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break;
case MP_BINARY_OP_MULTIPLY:
case MP_BINARY_OP_INPLACE_MULTIPLY: {
// If long long type exists and is larger than mp_int_t, then
// we can use the following code to perform overflow-checked multiplication.
// Otherwise (eg in x64 case) we must use mp_small_int_mul_overflow.
#if 0
// compute result using long long precision
long long res = (long long)lhs_val * (long long)rhs_val;
if (res > MP_SMALL_INT_MAX || res < MP_SMALL_INT_MIN) {
// result overflowed SMALL_INT, so return higher precision integer
return mp_obj_new_int_from_ll(res);
} else {
// use standard precision
lhs_val = (mp_int_t)res;
}
#endif
if (mp_small_int_mul_overflow(lhs_val, rhs_val)) {
// use higher precision
lhs = mp_obj_new_int_from_ll(lhs_val);
goto generic_binary_op;
} else {
// use standard precision
return MP_OBJ_NEW_SMALL_INT(lhs_val * rhs_val);
}
break;
}
case MP_BINARY_OP_FLOOR_DIVIDE:
case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE:
if (rhs_val == 0) {
goto zero_division;
}
lhs_val = mp_small_int_floor_divide(lhs_val, rhs_val);
break;
#if MICROPY_PY_BUILTINS_FLOAT
case MP_BINARY_OP_TRUE_DIVIDE:
case MP_BINARY_OP_INPLACE_TRUE_DIVIDE:
if (rhs_val == 0) {
goto zero_division;
}
return mp_obj_new_float((mp_float_t)lhs_val / (mp_float_t)rhs_val);
#endif
case MP_BINARY_OP_MODULO:
case MP_BINARY_OP_INPLACE_MODULO: {
lhs_val = mp_small_int_modulo(lhs_val, rhs_val);
break;
}
case MP_BINARY_OP_POWER:
case MP_BINARY_OP_INPLACE_POWER:
if (rhs_val < 0) {
#if MICROPY_PY_BUILTINS_FLOAT
lhs = mp_obj_new_float(lhs_val);
goto generic_binary_op;
#else
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "negative power with no float support"));
#endif
} else {
mp_int_t ans = 1;
while (rhs_val > 0) {
if (rhs_val & 1) {
if (mp_small_int_mul_overflow(ans, lhs_val)) {
goto power_overflow;
}
ans *= lhs_val;
}
if (rhs_val == 1) {
break;
}
rhs_val /= 2;
if (mp_small_int_mul_overflow(lhs_val, lhs_val)) {
goto power_overflow;
}
lhs_val *= lhs_val;
}
lhs_val = ans;
}
break;
power_overflow:
// use higher precision
lhs = mp_obj_new_int_from_ll(MP_OBJ_SMALL_INT_VALUE(lhs));
goto generic_binary_op;
case MP_BINARY_OP_LESS: return MP_BOOL(lhs_val < rhs_val); break;
case MP_BINARY_OP_MORE: return MP_BOOL(lhs_val > rhs_val); break;
case MP_BINARY_OP_LESS_EQUAL: return MP_BOOL(lhs_val <= rhs_val); break;
case MP_BINARY_OP_MORE_EQUAL: return MP_BOOL(lhs_val >= rhs_val); break;
default:
goto unsupported_op;
}
// TODO: We just should make mp_obj_new_int() inline and use that
if (MP_SMALL_INT_FITS(lhs_val)) {
return MP_OBJ_NEW_SMALL_INT(lhs_val);
} else {
return mp_obj_new_int(lhs_val);
}
#if MICROPY_PY_BUILTINS_FLOAT
} else if (MP_OBJ_IS_TYPE(rhs, &mp_type_float)) {
mp_obj_t res = mp_obj_float_binary_op(op, lhs_val, rhs);
if (res == MP_OBJ_NULL) {
goto unsupported_op;
} else {
return res;
}
#if MICROPY_PY_BUILTINS_COMPLEX
} else if (MP_OBJ_IS_TYPE(rhs, &mp_type_complex)) {
mp_obj_t res = mp_obj_complex_binary_op(op, lhs_val, 0, rhs);
if (res == MP_OBJ_NULL) {
goto unsupported_op;
} else {
return res;
}
#endif
#endif
}
}
/* deal with `in`
*
* NOTE `a in b` is `b.__contains__(a)`, hence why the generic dispatch
* needs to go below with swapped arguments
*/
if (op == MP_BINARY_OP_IN) {
mp_obj_type_t *type = mp_obj_get_type(rhs);
if (type->binary_op != NULL) {
mp_obj_t res = type->binary_op(op, rhs, lhs);
if (res != MP_OBJ_NULL) {
return res;
}
}
if (type->getiter != NULL) {
/* second attempt, walk the iterator */
mp_obj_t iter = mp_getiter(rhs);
mp_obj_t next;
while ((next = mp_iternext(iter)) != MP_OBJ_STOP_ITERATION) {
if (mp_obj_equal(next, lhs)) {
return mp_const_true;
}
}
return mp_const_false;
}
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError,
"object not iterable"));
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"'%s' object is not iterable", mp_obj_get_type_str(rhs)));
}
}
// generic binary_op supplied by type
mp_obj_type_t *type;
generic_binary_op:
type = mp_obj_get_type(lhs);
if (type->binary_op != NULL) {
mp_obj_t result = type->binary_op(op, lhs, rhs);
if (result != MP_OBJ_NULL) {
return result;
}
}
// TODO implement dispatch for reverse binary ops
unsupported_op:
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError,
"unsupported type for operator"));
} else {
// TODO specify in error message what the operator is
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"unsupported operand types for binary operator: '%s', '%s'",
mp_obj_get_type_str(lhs), mp_obj_get_type_str(rhs)));
}
zero_division:
nlr_raise(mp_obj_new_exception_msg(&mp_type_ZeroDivisionError, "division by zero"));
}
mp_obj_t mp_call_function_0(mp_obj_t fun) {
return mp_call_function_n_kw(fun, 0, 0, NULL);
}
mp_obj_t mp_call_function_1(mp_obj_t fun, mp_obj_t arg) {
return mp_call_function_n_kw(fun, 1, 0, &arg);
}
mp_obj_t mp_call_function_2(mp_obj_t fun, mp_obj_t arg1, mp_obj_t arg2) {
mp_obj_t args[2];
args[0] = arg1;
args[1] = arg2;
return mp_call_function_n_kw(fun, 2, 0, args);
}
// args contains, eg: arg0 arg1 key0 value0 key1 value1
mp_obj_t mp_call_function_n_kw(mp_obj_t fun_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
// TODO improve this: fun object can specify its type and we parse here the arguments,
// passing to the function arrays of fixed and keyword arguments
DEBUG_OP_printf("calling function %p(n_args=" UINT_FMT ", n_kw=" UINT_FMT ", args=%p)\n", fun_in, n_args, n_kw, args);
// get the type
mp_obj_type_t *type = mp_obj_get_type(fun_in);
// do the call
if (type->call != NULL) {
return type->call(fun_in, n_args, n_kw, args);
}
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError,
"object not callable"));
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"'%s' object is not callable", mp_obj_get_type_str(fun_in)));
}
}
// args contains: fun self/NULL arg(0) ... arg(n_args-2) arg(n_args-1) kw_key(0) kw_val(0) ... kw_key(n_kw-1) kw_val(n_kw-1)
// if n_args==0 and n_kw==0 then there are only fun and self/NULL
mp_obj_t mp_call_method_n_kw(mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
DEBUG_OP_printf("call method (fun=%p, self=%p, n_args=" UINT_FMT ", n_kw=" UINT_FMT ", args=%p)\n", args[0], args[1], n_args, n_kw, args);
int adjust = (args[1] == NULL) ? 0 : 1;
return mp_call_function_n_kw(args[0], n_args + adjust, n_kw, args + 2 - adjust);
}
mp_obj_t mp_call_method_n_kw_var(bool have_self, mp_uint_t n_args_n_kw, const mp_obj_t *args) {
mp_obj_t fun = *args++;
mp_obj_t self = MP_OBJ_NULL;
if (have_self) {
self = *args++; // may be MP_OBJ_NULL
}
uint n_args = n_args_n_kw & 0xff;
uint n_kw = (n_args_n_kw >> 8) & 0xff;
mp_obj_t pos_seq = args[n_args + 2 * n_kw]; // map be MP_OBJ_NULL
mp_obj_t kw_dict = args[n_args + 2 * n_kw + 1]; // map be MP_OBJ_NULL
DEBUG_OP_printf("call method var (fun=%p, self=%p, n_args=%u, n_kw=%u, args=%p, seq=%p, dict=%p)\n", fun, self, n_args, n_kw, args, pos_seq, kw_dict);
// We need to create the following array of objects:
// args[0 .. n_args] unpacked(pos_seq) args[n_args .. n_args + 2 * n_kw] unpacked(kw_dict)
// TODO: optimize one day to avoid constructing new arg array? Will be hard.
// The new args array
mp_obj_t *args2;
uint args2_alloc;
uint args2_len = 0;
// Try to get a hint for the size of the kw_dict
uint kw_dict_len = 0;
if (kw_dict != MP_OBJ_NULL && MP_OBJ_IS_TYPE(kw_dict, &mp_type_dict)) {
kw_dict_len = mp_obj_dict_len(kw_dict);
}
// Extract the pos_seq sequence to the new args array.
// Note that it can be arbitrary iterator.
if (pos_seq == MP_OBJ_NULL) {
// no sequence
// allocate memory for the new array of args
args2_alloc = 1 + n_args + 2 * (n_kw + kw_dict_len);
args2 = m_new(mp_obj_t, args2_alloc);
// copy the self
if (self != MP_OBJ_NULL) {
args2[args2_len++] = self;
}
// copy the fixed pos args
mp_seq_copy(args2 + args2_len, args, n_args, mp_obj_t);
args2_len += n_args;
} else if (MP_OBJ_IS_TYPE(pos_seq, &mp_type_tuple) || MP_OBJ_IS_TYPE(pos_seq, &mp_type_list)) {
// optimise the case of a tuple and list
// get the items
mp_uint_t len;
mp_obj_t *items;
mp_obj_get_array(pos_seq, &len, &items);
// allocate memory for the new array of args
args2_alloc = 1 + n_args + len + 2 * (n_kw + kw_dict_len);
args2 = m_new(mp_obj_t, args2_alloc);
// copy the self
if (self != MP_OBJ_NULL) {
args2[args2_len++] = self;
}
// copy the fixed and variable position args
mp_seq_cat(args2 + args2_len, args, n_args, items, len, mp_obj_t);
args2_len += n_args + len;
} else {
// generic iterator
// allocate memory for the new array of args
args2_alloc = 1 + n_args + 2 * (n_kw + kw_dict_len) + 3;
args2 = m_new(mp_obj_t, args2_alloc);
// copy the self
if (self != MP_OBJ_NULL) {
args2[args2_len++] = self;
}
// copy the fixed position args
mp_seq_copy(args2 + args2_len, args, n_args, mp_obj_t);
// extract the variable position args from the iterator
mp_obj_t iterable = mp_getiter(pos_seq);
mp_obj_t item;
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
if (args2_len >= args2_alloc) {
args2 = m_renew(mp_obj_t, args2, args2_alloc, args2_alloc * 2);
args2_alloc *= 2;
}
args2[args2_len++] = item;
}
}
// The size of the args2 array now is the number of positional args.
uint pos_args_len = args2_len;
// Copy the fixed kw args.
mp_seq_copy(args2 + args2_len, args + n_args, 2 * n_kw, mp_obj_t);
args2_len += 2 * n_kw;
// Extract (key,value) pairs from kw_dict dictionary and append to args2.
// Note that it can be arbitrary iterator.
if (kw_dict == MP_OBJ_NULL) {
// pass
} else if (MP_OBJ_IS_TYPE(kw_dict, &mp_type_dict)) {
// dictionary
mp_map_t *map = mp_obj_dict_get_map(kw_dict);
assert(args2_len + 2 * map->used <= args2_alloc); // should have enough, since kw_dict_len is in this case hinted correctly above
for (uint i = 0; i < map->alloc; i++) {
if (map->table[i].key != MP_OBJ_NULL) {
args2[args2_len++] = map->table[i].key;
args2[args2_len++] = map->table[i].value;
}
}
} else {
// generic mapping
// TODO is calling 'items' on the mapping the correct thing to do here?
mp_obj_t dest[2];
mp_load_method(kw_dict, MP_QSTR_items, dest);
mp_obj_t iterable = mp_getiter(mp_call_method_n_kw(0, 0, dest));
mp_obj_t item;
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
if (args2_len + 1 >= args2_alloc) {
uint new_alloc = args2_alloc * 2;
if (new_alloc < 4) {
new_alloc = 4;
}
args2 = m_renew(mp_obj_t, args2, args2_alloc, new_alloc);
args2_alloc = new_alloc;
}
mp_obj_t *items;
mp_obj_get_array_fixed_n(item, 2, &items);
args2[args2_len++] = items[0];
args2[args2_len++] = items[1];
}
}
mp_obj_t res = mp_call_function_n_kw(fun, pos_args_len, (args2_len - pos_args_len) / 2, args2);
m_del(mp_obj_t, args2, args2_alloc);
return res;
}
// unpacked items are stored in reverse order into the array pointed to by items
void mp_unpack_sequence(mp_obj_t seq_in, mp_uint_t num, mp_obj_t *items) {
mp_uint_t seq_len;
if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(seq_in, &mp_type_list)) {
mp_obj_t *seq_items;
if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple)) {
mp_obj_tuple_get(seq_in, &seq_len, &seq_items);
} else {
mp_obj_list_get(seq_in, &seq_len, &seq_items);
}
if (seq_len < num) {
goto too_short;
} else if (seq_len > num) {
goto too_long;
}
for (mp_uint_t i = 0; i < num; i++) {
items[i] = seq_items[num - 1 - i];
}
} else {
mp_obj_t iterable = mp_getiter(seq_in);
for (seq_len = 0; seq_len < num; seq_len++) {
mp_obj_t el = mp_iternext(iterable);
if (el == MP_OBJ_STOP_ITERATION) {
goto too_short;
}
items[num - 1 - seq_len] = el;
}
if (mp_iternext(iterable) != MP_OBJ_STOP_ITERATION) {
goto too_long;
}
}
return;
too_short:
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError,
"wrong number of values to unpack"));
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
"need more than %d values to unpack", seq_len));
}
too_long:
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError,
"wrong number of values to unpack"));
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
"too many values to unpack (expected %d)", num));
}
}
// unpacked items are stored in reverse order into the array pointed to by items
void mp_unpack_ex(mp_obj_t seq_in, mp_uint_t num_in, mp_obj_t *items) {
mp_uint_t num_left = num_in & 0xff;
mp_uint_t num_right = (num_in >> 8) & 0xff;
DEBUG_OP_printf("unpack ex " UINT_FMT " " UINT_FMT "\n", num_left, num_right);
mp_uint_t seq_len;
if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(seq_in, &mp_type_list)) {
mp_obj_t *seq_items;
if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple)) {
mp_obj_tuple_get(seq_in, &seq_len, &seq_items);
} else {
if (num_left == 0 && num_right == 0) {
// *a, = b # sets a to b if b is a list
items[0] = seq_in;
return;
}
mp_obj_list_get(seq_in, &seq_len, &seq_items);
}
if (seq_len < num_left + num_right) {
goto too_short;
}
for (mp_uint_t i = 0; i < num_right; i++) {
items[i] = seq_items[seq_len - 1 - i];
}
items[num_right] = mp_obj_new_list(seq_len - num_left - num_right, seq_items + num_left);
for (mp_uint_t i = 0; i < num_left; i++) {
items[num_right + 1 + i] = seq_items[num_left - 1 - i];
}
} else {
// Generic iterable; this gets a bit messy: we unpack known left length to the
// items destination array, then the rest to a dynamically created list. Once the
// iterable is exhausted, we take from this list for the right part of the items.
// TODO Improve to waste less memory in the dynamically created list.
mp_obj_t iterable = mp_getiter(seq_in);
mp_obj_t item;
for (seq_len = 0; seq_len < num_left; seq_len++) {
item = mp_iternext(iterable);
if (item == MP_OBJ_STOP_ITERATION) {
goto too_short;
}
items[num_left + num_right + 1 - 1 - seq_len] = item;
}
mp_obj_list_t *rest = mp_obj_new_list(0, NULL);
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
mp_obj_list_append(rest, item);
}
if (rest->len < num_right) {
goto too_short;
}
items[num_right] = rest;
for (mp_uint_t i = 0; i < num_right; i++) {
items[num_right - 1 - i] = rest->items[rest->len - num_right + i];
}
mp_obj_list_set_len(rest, rest->len - num_right);
}
return;
too_short:
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError,
"wrong number of values to unpack"));
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
"need more than %d values to unpack", seq_len));
}
}
mp_obj_t mp_load_attr(mp_obj_t base, qstr attr) {
DEBUG_OP_printf("load attr %p.%s\n", base, qstr_str(attr));
// use load_method
mp_obj_t dest[2];
mp_load_method(base, attr, dest);
if (dest[1] == MP_OBJ_NULL) {
// load_method returned just a normal attribute
return dest[0];
} else {
// load_method returned a method, so build a bound method object
return mp_obj_new_bound_meth(dest[0], dest[1]);
}
}
// no attribute found, returns: dest[0] == MP_OBJ_NULL, dest[1] == MP_OBJ_NULL
// normal attribute found, returns: dest[0] == <attribute>, dest[1] == MP_OBJ_NULL
// method attribute found, returns: dest[0] == <method>, dest[1] == <self>
void mp_load_method_maybe(mp_obj_t base, qstr attr, mp_obj_t *dest) {
// clear output to indicate no attribute/method found yet
dest[0] = MP_OBJ_NULL;
dest[1] = MP_OBJ_NULL;
// get the type
mp_obj_type_t *type = mp_obj_get_type(base);
// look for built-in names
if (0) {
#if MICROPY_CPYTHON_COMPAT
} else if (attr == MP_QSTR___class__) {
// a.__class__ is equivalent to type(a)
dest[0] = type;
#endif
} else if (attr == MP_QSTR___next__ && type->iternext != NULL) {
dest[0] = (mp_obj_t)&mp_builtin_next_obj;
dest[1] = base;
} else if (type->load_attr != NULL) {
// this type can do its own load, so call it
type->load_attr(base, attr, dest);
} else if (type->locals_dict != NULL) {
// generic method lookup
// this is a lookup in the object (ie not class or type)
assert(MP_OBJ_IS_TYPE(type->locals_dict, &mp_type_dict)); // Micro Python restriction, for now
mp_map_t *locals_map = mp_obj_dict_get_map(type->locals_dict);
mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP);
if (elem != NULL) {
// check if the methods are functions, static or class methods
// see http://docs.python.org/3/howto/descriptor.html
if (MP_OBJ_IS_TYPE(elem->value, &mp_type_staticmethod)) {
// return just the function
dest[0] = ((mp_obj_static_class_method_t*)elem->value)->fun;
} else if (MP_OBJ_IS_TYPE(elem->value, &mp_type_classmethod)) {
// return a bound method, with self being the type of this object
dest[0] = ((mp_obj_static_class_method_t*)elem->value)->fun;
dest[1] = mp_obj_get_type(base);
} else if (MP_OBJ_IS_TYPE(elem->value, &mp_type_type)) {
// Don't try to bind types
dest[0] = elem->value;
} else if (mp_obj_is_callable(elem->value)) {
// return a bound method, with self being this object
dest[0] = elem->value;
dest[1] = base;
} else {
// class member is a value, so just return that value
dest[0] = elem->value;
}
}
}
}
void mp_load_method(mp_obj_t base, qstr attr, mp_obj_t *dest) {
DEBUG_OP_printf("load method %p.%s\n", base, qstr_str(attr));
mp_load_method_maybe(base, attr, dest);
if (dest[0] == MP_OBJ_NULL) {
// no attribute/method called attr
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_AttributeError,
"no such attribute"));
} else {
// following CPython, we give a more detailed error message for type objects
if (MP_OBJ_IS_TYPE(base, &mp_type_type)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_AttributeError,
"type object '%s' has no attribute '%s'",
qstr_str(((mp_obj_type_t*)base)->name), qstr_str(attr)));
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_AttributeError,
"'%s' object has no attribute '%s'",
mp_obj_get_type_str(base), qstr_str(attr)));
}
}
}
}
void mp_store_attr(mp_obj_t base, qstr attr, mp_obj_t value) {
DEBUG_OP_printf("store attr %p.%s <- %p\n", base, qstr_str(attr), value);
mp_obj_type_t *type = mp_obj_get_type(base);
if (type->store_attr != NULL) {
if (type->store_attr(base, attr, value)) {
return;
}
}
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_AttributeError,
"no such attribute"));
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_AttributeError,
"'%s' object has no attribute '%s'",
mp_obj_get_type_str(base), qstr_str(attr)));
}
}
mp_obj_t mp_getiter(mp_obj_t o_in) {
assert(o_in);
mp_obj_type_t *type = mp_obj_get_type(o_in);
if (type->getiter != NULL) {
mp_obj_t iter = type->getiter(o_in);
if (iter == MP_OBJ_NULL) {
goto not_iterable;
}
return iter;
} else {
// check for __iter__ method
mp_obj_t dest[2];
mp_load_method_maybe(o_in, MP_QSTR___iter__, dest);
if (dest[0] != MP_OBJ_NULL) {
// __iter__ exists, call it and return its result
return mp_call_method_n_kw(0, 0, dest);
} else {
mp_load_method_maybe(o_in, MP_QSTR___getitem__, dest);
if (dest[0] != MP_OBJ_NULL) {
// __getitem__ exists, create an iterator
return mp_obj_new_getitem_iter(dest);
} else {
// object not iterable
not_iterable:
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError,
"object not iterable"));
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"'%s' object is not iterable", mp_obj_get_type_str(o_in)));
}
}
}
}
}
// may return MP_OBJ_STOP_ITERATION as an optimisation instead of raise StopIteration()
// may also raise StopIteration()
mp_obj_t mp_iternext_allow_raise(mp_obj_t o_in) {
mp_obj_type_t *type = mp_obj_get_type(o_in);
if (type->iternext != NULL) {
return type->iternext(o_in);
} else {
// check for __next__ method
mp_obj_t dest[2];
mp_load_method_maybe(o_in, MP_QSTR___next__, dest);
if (dest[0] != MP_OBJ_NULL) {
// __next__ exists, call it and return its result
return mp_call_method_n_kw(0, 0, dest);
} else {
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError,
"object not an iterator"));
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"'%s' object is not an iterator", mp_obj_get_type_str(o_in)));
}
}
}
}
// will always return MP_OBJ_STOP_ITERATION instead of raising StopIteration() (or any subclass thereof)
// may raise other exceptions
mp_obj_t mp_iternext(mp_obj_t o_in) {
mp_obj_type_t *type = mp_obj_get_type(o_in);
if (type->iternext != NULL) {
return type->iternext(o_in);
} else {
// check for __next__ method
mp_obj_t dest[2];
mp_load_method_maybe(o_in, MP_QSTR___next__, dest);
if (dest[0] != MP_OBJ_NULL) {
// __next__ exists, call it and return its result
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
mp_obj_t ret = mp_call_method_n_kw(0, 0, dest);
nlr_pop();
return ret;
} else {
if (mp_obj_is_subclass_fast(mp_obj_get_type(nlr.ret_val), &mp_type_StopIteration)) {
return MP_OBJ_STOP_ITERATION;
} else {
nlr_raise(nlr.ret_val);
}
}
} else {
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError,
"object not an iterator"));
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"'%s' object is not an iterator", mp_obj_get_type_str(o_in)));
}
}
}
}
// TODO: Unclear what to do with StopIterarion exception here.
mp_vm_return_kind_t mp_resume(mp_obj_t self_in, mp_obj_t send_value, mp_obj_t throw_value, mp_obj_t *ret_val) {
assert((send_value != MP_OBJ_NULL) ^ (throw_value != MP_OBJ_NULL));
mp_obj_type_t *type = mp_obj_get_type(self_in);
if (type == &mp_type_gen_instance) {
return mp_obj_gen_resume(self_in, send_value, throw_value, ret_val);
}
if (type->iternext != NULL && send_value == mp_const_none) {
mp_obj_t ret = type->iternext(self_in);
if (ret != MP_OBJ_NULL) {
*ret_val = ret;
return MP_VM_RETURN_YIELD;
} else {
// Emulate raise StopIteration()
// Special case, handled in vm.c
*ret_val = MP_OBJ_NULL;
return MP_VM_RETURN_NORMAL;
}
}
mp_obj_t dest[3]; // Reserve slot for send() arg
if (send_value == mp_const_none) {
mp_load_method_maybe(self_in, MP_QSTR___next__, dest);
if (dest[0] != MP_OBJ_NULL) {
*ret_val = mp_call_method_n_kw(0, 0, dest);
return MP_VM_RETURN_YIELD;
}
}
if (send_value != MP_OBJ_NULL) {
mp_load_method(self_in, MP_QSTR_send, dest);
dest[2] = send_value;
*ret_val = mp_call_method_n_kw(1, 0, dest);
return MP_VM_RETURN_YIELD;
}
if (throw_value != MP_OBJ_NULL) {
if (mp_obj_is_subclass_fast(mp_obj_get_type(throw_value), &mp_type_GeneratorExit)) {
mp_load_method_maybe(self_in, MP_QSTR_close, dest);
if (dest[0] != MP_OBJ_NULL) {
*ret_val = mp_call_method_n_kw(0, 0, dest);
// We assume one can't "yield" from close()
return MP_VM_RETURN_NORMAL;
}
}
mp_load_method_maybe(self_in, MP_QSTR_throw, dest);
if (dest[0] != MP_OBJ_NULL) {
*ret_val = mp_call_method_n_kw(1, 0, &throw_value);
// If .throw() method returned, we assume it's value to yield
// - any exception would be thrown with nlr_raise().
return MP_VM_RETURN_YIELD;
}
// If there's nowhere to throw exception into, then we assume that object
// is just incapable to handle it, so any exception thrown into it
// will be propagated up. This behavior is approved by test_pep380.py
// test_delegation_of_close_to_non_generator(),
// test_delegating_throw_to_non_generator()
*ret_val = throw_value;
return MP_VM_RETURN_EXCEPTION;
}
assert(0);
return MP_VM_RETURN_NORMAL; // Should be unreachable
}
mp_obj_t mp_make_raise_obj(mp_obj_t o) {
DEBUG_printf("raise %p\n", o);
if (mp_obj_is_exception_type(o)) {
// o is an exception type (it is derived from BaseException (or is BaseException))
// create and return a new exception instance by calling o
// TODO could have an option to disable traceback, then builtin exceptions (eg TypeError)
// could have const instances in ROM which we return here instead
return mp_call_function_n_kw(o, 0, 0, NULL);
} else if (mp_obj_is_exception_instance(o)) {
// o is an instance of an exception, so use it as the exception
return o;
} else {
// o cannot be used as an exception, so return a type error (which will be raised by the caller)
return mp_obj_new_exception_msg(&mp_type_TypeError, "exceptions must derive from BaseException");
}
}
mp_obj_t mp_import_name(qstr name, mp_obj_t fromlist, mp_obj_t level) {
DEBUG_printf("import name %s\n", qstr_str(name));
// build args array
mp_obj_t args[5];
args[0] = MP_OBJ_NEW_QSTR(name);
args[1] = mp_const_none; // TODO should be globals
args[2] = mp_const_none; // TODO should be locals
args[3] = fromlist;
args[4] = level; // must be 0; we don't yet support other values
// TODO lookup __import__ and call that instead of going straight to builtin implementation
return mp_builtin___import__(5, args);
}
mp_obj_t mp_import_from(mp_obj_t module, qstr name) {
DEBUG_printf("import from %p %s\n", module, qstr_str(name));
mp_obj_t dest[2];
mp_load_method_maybe(module, name, dest);
if (dest[1] != MP_OBJ_NULL) {
// Hopefully we can't import bound method from an object
import_error:
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ImportError, "cannot import name %s", qstr_str(name)));
}
if (dest[0] != MP_OBJ_NULL) {
return dest[0];
}
// See if it's a package, then can try FS import
if (!mp_obj_is_package(module)) {
goto import_error;
}
mp_load_method_maybe(module, MP_QSTR___name__, dest);
mp_uint_t pkg_name_len;
const char *pkg_name = mp_obj_str_get_data(dest[0], &pkg_name_len);
const uint dot_name_len = pkg_name_len + 1 + qstr_len(name);
char *dot_name = alloca(dot_name_len);
memcpy(dot_name, pkg_name, pkg_name_len);
dot_name[pkg_name_len] = '.';
memcpy(dot_name + pkg_name_len + 1, qstr_str(name), qstr_len(name));
qstr dot_name_q = qstr_from_strn(dot_name, dot_name_len);
mp_obj_t args[5];
args[0] = MP_OBJ_NEW_QSTR(dot_name_q);
args[1] = mp_const_none; // TODO should be globals
args[2] = mp_const_none; // TODO should be locals
args[3] = mp_const_true; // Pass sentinel "non empty" value to force returning of leaf module
args[4] = MP_OBJ_NEW_SMALL_INT(0);
// TODO lookup __import__ and call that instead of going straight to builtin implementation
return mp_builtin___import__(5, args);
}
void mp_import_all(mp_obj_t module) {
DEBUG_printf("import all %p\n", module);
// TODO: Support __all__
mp_map_t *map = mp_obj_dict_get_map(mp_obj_module_get_globals(module));
for (uint i = 0; i < map->alloc; i++) {
if (MP_MAP_SLOT_IS_FILLED(map, i)) {
qstr name = MP_OBJ_QSTR_VALUE(map->table[i].key);
if (*qstr_str(name) != '_') {
mp_store_name(name, map->table[i].value);
}
}
}
}
mp_obj_dict_t *mp_locals_get(void) {
return dict_locals;
}
void mp_locals_set(mp_obj_dict_t *d) {
DEBUG_OP_printf("mp_locals_set(%p)\n", d);
dict_locals = d;
}
mp_obj_dict_t *mp_globals_get(void) {
return dict_globals;
}
void mp_globals_set(mp_obj_dict_t *d) {
DEBUG_OP_printf("mp_globals_set(%p)\n", d);
dict_globals = d;
}
// this is implemented in this file so it can optimise access to locals/globals
mp_obj_t mp_parse_compile_execute(mp_lexer_t *lex, mp_parse_input_kind_t parse_input_kind, mp_obj_dict_t *globals, mp_obj_dict_t *locals) {
// parse the string
mp_parse_error_kind_t parse_error_kind;
mp_parse_node_t pn = mp_parse(lex, parse_input_kind, &parse_error_kind);
if (pn == MP_PARSE_NODE_NULL) {
// parse error; raise exception
mp_obj_t exc = mp_parse_make_exception(lex, parse_error_kind);
mp_lexer_free(lex);
nlr_raise(exc);
}
qstr source_name = lex->source_name;
mp_lexer_free(lex);
// save context and set new context
mp_obj_dict_t *old_globals = mp_globals_get();
mp_obj_dict_t *old_locals = mp_locals_get();
mp_globals_set(globals);
mp_locals_set(locals);
// compile the string
mp_obj_t module_fun = mp_compile(pn, source_name, MP_EMIT_OPT_NONE, false);
// check if there was a compile error
if (mp_obj_is_exception_instance(module_fun)) {
mp_globals_set(old_globals);
mp_locals_set(old_locals);
nlr_raise(module_fun);
}
// for compile only
if (MICROPY_PY_BUILTINS_COMPILE && globals == NULL) {
mp_globals_set(old_globals);
mp_locals_set(old_locals);
return module_fun;
}
// complied successfully, execute it
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
mp_obj_t ret = mp_call_function_0(module_fun);
nlr_pop();
mp_globals_set(old_globals);
mp_locals_set(old_locals);
return ret;
} else {
// exception; restore context and re-raise same exception
mp_globals_set(old_globals);
mp_locals_set(old_locals);
nlr_raise(nlr.ret_val);
}
}
void *m_malloc_fail(size_t num_bytes) {
DEBUG_printf("memory allocation failed, allocating " UINT_FMT " bytes\n", num_bytes);
if (0) {
// dummy
#if MICROPY_ENABLE_GC
} else if (gc_is_locked()) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_MemoryError,
"memory allocation failed, heap is locked"));
#endif
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_MemoryError,
"memory allocation failed, allocating " UINT_FMT " bytes", num_bytes));
}
}
NORETURN void mp_not_implemented(const char *msg) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_NotImplementedError, msg));
}