circuitpython/main.c
Scott Shawcroft af2ac0aa60
Merge pull request #5602 from aivarannamaa/skip-main-script-in-raw-mode-soft-reboot
Don't run main script when soft-rebooting in raw mode
2021-11-23 10:32:48 -08:00

934 lines
32 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016-2017 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <string.h>
#include "extmod/vfs.h"
#include "extmod/vfs_fat.h"
#include "genhdr/mpversion.h"
#include "py/nlr.h"
#include "py/compile.h"
#include "py/frozenmod.h"
#include "py/mphal.h"
#include "py/runtime.h"
#include "py/repl.h"
#include "py/gc.h"
#include "py/stackctrl.h"
#include "shared/readline/readline.h"
#include "shared/runtime/pyexec.h"
#include "background.h"
#include "mpconfigboard.h"
#include "supervisor/background_callback.h"
#include "supervisor/board.h"
#include "supervisor/cpu.h"
#include "supervisor/filesystem.h"
#include "supervisor/memory.h"
#include "supervisor/port.h"
#include "supervisor/serial.h"
#include "supervisor/shared/autoreload.h"
#include "supervisor/shared/safe_mode.h"
#include "supervisor/shared/stack.h"
#include "supervisor/shared/status_leds.h"
#include "supervisor/shared/traceback.h"
#include "supervisor/shared/translate.h"
#include "supervisor/shared/workflow.h"
#include "supervisor/usb.h"
#include "supervisor/workflow.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "shared-bindings/microcontroller/Processor.h"
#include "shared-bindings/supervisor/Runtime.h"
#if CIRCUITPY_ALARM
#include "shared-bindings/alarm/__init__.h"
#endif
#if CIRCUITPY_ATEXIT
#include "shared-module/atexit/__init__.h"
#endif
#if CIRCUITPY_BLEIO
#include "shared-bindings/_bleio/__init__.h"
#include "supervisor/shared/bluetooth/bluetooth.h"
#endif
#if CIRCUITPY_BOARD
#include "shared-module/board/__init__.h"
#endif
#if CIRCUITPY_CANIO
#include "common-hal/canio/CAN.h"
#endif
#if CIRCUITPY_DISPLAYIO
#include "shared-module/displayio/__init__.h"
#endif
#if CIRCUITPY_KEYPAD
#include "shared-module/keypad/__init__.h"
#endif
#if CIRCUITPY_MEMORYMONITOR
#include "shared-module/memorymonitor/__init__.h"
#endif
#if CIRCUITPY_USB_HID
#include "shared-module/usb_hid/__init__.h"
#endif
#if CIRCUITPY_WIFI
#include "shared-bindings/wifi/__init__.h"
#endif
#if CIRCUITPY_BOOT_COUNTER
#include "shared-bindings/nvm/ByteArray.h"
uint8_t value_out = 0;
#endif
#if MICROPY_ENABLE_PYSTACK
static size_t PLACE_IN_DTCM_BSS(_pystack[CIRCUITPY_PYSTACK_SIZE / sizeof(size_t)]);
#endif
static void reset_devices(void) {
#if CIRCUITPY_BLEIO_HCI
bleio_reset();
#endif
}
STATIC void start_mp(supervisor_allocation *heap) {
autoreload_stop();
supervisor_workflow_reset();
// Stack limit should be less than real stack size, so we have a chance
// to recover from limit hit. (Limit is measured in bytes.)
mp_stack_ctrl_init();
if (stack_get_bottom() != NULL) {
mp_stack_set_limit(stack_get_length() - 1024);
}
#if MICROPY_MAX_STACK_USAGE
// _ezero (same as _ebss) is an int, so start 4 bytes above it.
if (stack_get_bottom() != NULL) {
mp_stack_set_bottom(stack_get_bottom());
mp_stack_fill_with_sentinel();
}
#endif
// Sync the file systems in case any used RAM from the GC to cache. As soon
// as we re-init the GC all bets are off on the cache.
filesystem_flush();
// Clear the readline history. It references the heap we're about to destroy.
readline_init0();
#if MICROPY_ENABLE_PYSTACK
mp_pystack_init(_pystack, _pystack + (sizeof(_pystack) / sizeof(size_t)));
#endif
#if MICROPY_ENABLE_GC
gc_init(heap->ptr, heap->ptr + get_allocation_length(heap) / 4);
#endif
mp_init();
mp_obj_list_init(mp_sys_path, 0);
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script)
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_));
// Frozen modules are in their own pseudo-dir, e.g., ".frozen".
// Prioritize .frozen over /lib.
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_FROZEN_FAKE_DIR_QSTR));
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_lib));
mp_obj_list_init(mp_sys_argv, 0);
#if CIRCUITPY_ALARM
// Record which alarm woke us up, if any. An object may be created so the heap must be functional.
shared_alarm_save_wake_alarm(common_hal_alarm_create_wake_alarm());
// Reset alarm module only after we retrieved the wakeup alarm.
alarm_reset();
#endif
}
STATIC void stop_mp(void) {
#if MICROPY_VFS
mp_vfs_mount_t *vfs = MP_STATE_VM(vfs_mount_table);
// Unmount all heap allocated vfs mounts.
while (gc_nbytes(vfs) > 0) {
vfs = vfs->next;
}
MP_STATE_VM(vfs_mount_table) = vfs;
MP_STATE_VM(vfs_cur) = vfs;
#endif
background_callback_reset();
#if CIRCUITPY_USB
usb_background();
#endif
gc_deinit();
}
#define STRING_LIST(...) {__VA_ARGS__, ""}
// Look for the first file that exists in the list of filenames, using mp_import_stat().
// Return its index. If no file found, return -1.
STATIC const char *first_existing_file_in_list(const char *const *filenames) {
for (int i = 0; filenames[i] != (char *)""; i++) {
mp_import_stat_t stat = mp_import_stat(filenames[i]);
if (stat == MP_IMPORT_STAT_FILE) {
return filenames[i];
}
}
return NULL;
}
STATIC bool maybe_run_list(const char *const *filenames, pyexec_result_t *exec_result) {
const char *filename = first_existing_file_in_list(filenames);
if (filename == NULL) {
return false;
}
mp_hal_stdout_tx_str(filename);
serial_write_compressed(translate(" output:\n"));
pyexec_file(filename, exec_result);
#if CIRCUITPY_ATEXIT
shared_module_atexit_execute(exec_result);
#endif
return true;
}
STATIC void count_strn(void *data, const char *str, size_t len) {
*(size_t *)data += len;
}
STATIC void cleanup_after_vm(supervisor_allocation *heap, mp_obj_t exception) {
// Get the traceback of any exception from this run off the heap.
// MP_OBJ_SENTINEL means "this run does not contribute to traceback storage, don't touch it"
// MP_OBJ_NULL (=0) means "this run completed successfully, clear any stored traceback"
if (exception != MP_OBJ_SENTINEL) {
free_memory(prev_traceback_allocation);
// ReloadException is exempt from traceback printing in pyexec_file(), so treat it as "no
// traceback" here too.
if (exception && exception != MP_OBJ_FROM_PTR(&MP_STATE_VM(mp_reload_exception))) {
size_t traceback_len = 0;
mp_print_t print_count = {&traceback_len, count_strn};
mp_obj_print_exception(&print_count, exception);
prev_traceback_allocation = allocate_memory(align32_size(traceback_len + 1), false, true);
// Empirically, this never fails in practice - even when the heap is totally filled up
// with single-block-sized objects referenced by a root pointer, exiting the VM frees
// up several hundred bytes, sufficient for the traceback (which tends to be shortened
// because there wasn't memory for the full one). There may be convoluted ways of
// making it fail, but at this point I believe they are not worth spending code on.
if (prev_traceback_allocation != NULL) {
vstr_t vstr;
vstr_init_fixed_buf(&vstr, traceback_len, (char *)prev_traceback_allocation->ptr);
mp_print_t print = {&vstr, (mp_print_strn_t)vstr_add_strn};
mp_obj_print_exception(&print, exception);
((char *)prev_traceback_allocation->ptr)[traceback_len] = '\0';
}
} else {
prev_traceback_allocation = NULL;
}
}
// Reset port-independent devices, like CIRCUITPY_BLEIO_HCI.
reset_devices();
#if CIRCUITPY_ATEXIT
atexit_reset();
#endif
// Turn off the display and flush the filesystem before the heap disappears.
#if CIRCUITPY_DISPLAYIO
reset_displays();
#endif
#if CIRCUITPY_MEMORYMONITOR
memorymonitor_reset();
#endif
filesystem_flush();
stop_mp();
free_memory(heap);
supervisor_move_memory();
#if CIRCUITPY_CANIO
common_hal_canio_reset();
#endif
#if CIRCUITPY_KEYPAD
keypad_reset();
#endif
// reset_board_busses() first because it may release pins from the never_reset state, so that
// reset_port() can reset them.
#if CIRCUITPY_BOARD
reset_board_busses();
#endif
reset_port();
reset_board();
}
STATIC void print_code_py_status_message(safe_mode_t safe_mode) {
if (autoreload_is_enabled()) {
serial_write_compressed(translate("Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.\n"));
} else {
serial_write_compressed(translate("Auto-reload is off.\n"));
}
if (safe_mode != NO_SAFE_MODE) {
serial_write_compressed(translate("Running in safe mode! Not running saved code.\n"));
}
}
STATIC bool run_code_py(safe_mode_t safe_mode) {
bool serial_connected_at_start = serial_connected();
bool printed_safe_mode_message = false;
#if CIRCUITPY_AUTORELOAD_DELAY_MS > 0
if (serial_connected_at_start) {
serial_write("\r\n");
print_code_py_status_message(safe_mode);
print_safe_mode_message(safe_mode);
printed_safe_mode_message = true;
}
#endif
pyexec_result_t result;
result.return_code = 0;
result.exception = MP_OBJ_NULL;
result.exception_line = 0;
bool skip_repl;
bool skip_wait = false;
bool found_main = false;
uint8_t next_code_options = 0;
// Collects stickiness bits that apply in the current situation.
uint8_t next_code_stickiness_situation = SUPERVISOR_NEXT_CODE_OPT_NEWLY_SET;
if (safe_mode == NO_SAFE_MODE) {
static const char *const supported_filenames[] = STRING_LIST(
"code.txt", "code.py", "main.py", "main.txt");
#if CIRCUITPY_FULL_BUILD
static const char *const double_extension_filenames[] = STRING_LIST(
"code.txt.py", "code.py.txt", "code.txt.txt","code.py.py",
"main.txt.py", "main.py.txt", "main.txt.txt","main.py.py");
#endif
stack_resize();
filesystem_flush();
supervisor_allocation *heap = allocate_remaining_memory();
// Prepare the VM state. Includes an alarm check/reset for sleep.
start_mp(heap);
#if CIRCUITPY_USB
usb_setup_with_vm();
#endif
// Check if a different run file has been allocated
if (next_code_allocation) {
((next_code_info_t *)next_code_allocation->ptr)->options &= ~SUPERVISOR_NEXT_CODE_OPT_NEWLY_SET;
next_code_options = ((next_code_info_t *)next_code_allocation->ptr)->options;
if (((next_code_info_t *)next_code_allocation->ptr)->filename[0] != '\0') {
const char *next_list[] = {((next_code_info_t *)next_code_allocation->ptr)->filename, ""};
// This is where the user's python code is actually executed:
found_main = maybe_run_list(next_list, &result);
if (!found_main) {
serial_write(((next_code_info_t *)next_code_allocation->ptr)->filename);
serial_write_compressed(translate(" not found.\n"));
}
}
}
// Otherwise, default to the standard list of filenames
if (!found_main) {
// This is where the user's python code is actually executed:
found_main = maybe_run_list(supported_filenames, &result);
// If that didn't work, double check the extensions
#if CIRCUITPY_FULL_BUILD
if (!found_main) {
found_main = maybe_run_list(double_extension_filenames, &result);
if (found_main) {
serial_write_compressed(translate("WARNING: Your code filename has two extensions\n"));
}
}
#else
(void)found_main;
#endif
}
// Print done before resetting everything so that we get the message over
// BLE before it is reset and we have a delay before reconnect.
if (reload_requested && result.return_code == PYEXEC_EXCEPTION) {
serial_write_compressed(translate("\nCode stopped by auto-reload.\n"));
} else {
serial_write_compressed(translate("\nCode done running.\n"));
}
// Finished executing python code. Cleanup includes a board reset.
cleanup_after_vm(heap, result.exception);
// If a new next code file was set, that is a reason to keep it (obviously). Stuff this into
// the options because it can be treated like any other reason-for-stickiness bit. The
// source is different though: it comes from the options that will apply to the next run,
// while the rest of next_code_options is what applied to this run.
if (next_code_allocation != NULL && (((next_code_info_t *)next_code_allocation->ptr)->options & SUPERVISOR_NEXT_CODE_OPT_NEWLY_SET)) {
next_code_options |= SUPERVISOR_NEXT_CODE_OPT_NEWLY_SET;
}
if (reload_requested) {
next_code_stickiness_situation |= SUPERVISOR_NEXT_CODE_OPT_STICKY_ON_RELOAD;
} else if (result.return_code == 0) {
next_code_stickiness_situation |= SUPERVISOR_NEXT_CODE_OPT_STICKY_ON_SUCCESS;
if (next_code_options & SUPERVISOR_NEXT_CODE_OPT_RELOAD_ON_SUCCESS) {
skip_repl = true;
skip_wait = true;
}
} else {
next_code_stickiness_situation |= SUPERVISOR_NEXT_CODE_OPT_STICKY_ON_ERROR;
// Deep sleep cannot be skipped
// TODO: settings in deep sleep should persist, using a new sleep memory API
if (next_code_options & SUPERVISOR_NEXT_CODE_OPT_RELOAD_ON_ERROR
&& !(result.return_code & PYEXEC_DEEP_SLEEP)) {
skip_repl = true;
skip_wait = true;
}
}
if (result.return_code & PYEXEC_FORCED_EXIT) {
skip_repl = reload_requested;
skip_wait = true;
}
}
// Program has finished running.
bool printed_press_any_key = false;
#if CIRCUITPY_DISPLAYIO
size_t time_to_epaper_refresh = 1;
#endif
// Setup LED blinks.
#if CIRCUITPY_STATUS_LED
uint32_t color;
uint8_t blink_count;
bool led_active = false;
#if CIRCUITPY_ALARM
if (result.return_code & PYEXEC_DEEP_SLEEP) {
color = BLACK;
blink_count = 0;
} else
#endif
if (result.return_code != PYEXEC_EXCEPTION) {
if (safe_mode == NO_SAFE_MODE) {
color = ALL_DONE;
blink_count = ALL_DONE_BLINKS;
} else {
color = SAFE_MODE;
blink_count = SAFE_MODE_BLINKS;
}
} else {
color = EXCEPTION;
blink_count = EXCEPTION_BLINKS;
}
size_t pattern_start = supervisor_ticks_ms32();
size_t single_blink_time = (OFF_ON_RATIO + 1) * BLINK_TIME_MS;
size_t blink_time = single_blink_time * blink_count;
size_t total_time = blink_time + LED_SLEEP_TIME_MS;
#endif
#if CIRCUITPY_ALARM
bool fake_sleeping = false;
#endif
while (!skip_wait) {
RUN_BACKGROUND_TASKS;
// If a reload was requested by the supervisor or autoreload, return
if (reload_requested) {
next_code_stickiness_situation |= SUPERVISOR_NEXT_CODE_OPT_STICKY_ON_RELOAD;
// Should the STICKY_ON_SUCCESS and STICKY_ON_ERROR bits be cleared in
// next_code_stickiness_situation? I can see arguments either way, but I'm deciding
// "no" for now, mainly because it's a bit less code. At this point, we have both a
// success or error and a reload, so let's have both of the respective options take
// effect (in OR combination).
reload_requested = false;
skip_repl = true;
break;
}
// If interrupted by keyboard, return
if (serial_connected() && serial_bytes_available()) {
// Skip REPL if reload was requested.
skip_repl = serial_read() == CHAR_CTRL_D;
if (skip_repl) {
supervisor_set_run_reason(RUN_REASON_REPL_RELOAD);
}
break;
}
// Check for a deep sleep alarm and restart the VM. This can happen if
// an alarm alerts faster than our USB delay or if we pretended to deep
// sleep.
#if CIRCUITPY_ALARM
if (fake_sleeping && common_hal_alarm_woken_from_sleep()) {
serial_write_compressed(translate("Woken up by alarm.\n"));
supervisor_set_run_reason(RUN_REASON_STARTUP);
skip_repl = true;
break;
}
#endif
// If messages haven't been printed yet, print them
if (!printed_press_any_key && serial_connected()) {
if (!serial_connected_at_start) {
print_code_py_status_message(safe_mode);
}
if (!printed_safe_mode_message) {
print_safe_mode_message(safe_mode);
printed_safe_mode_message = true;
}
serial_write("\r\n");
serial_write_compressed(translate("Press any key to enter the REPL. Use CTRL-D to reload.\n"));
printed_press_any_key = true;
}
if (!serial_connected()) {
serial_connected_at_start = false;
printed_press_any_key = false;
}
// Sleep until our next interrupt.
#if CIRCUITPY_ALARM
if (result.return_code & PYEXEC_DEEP_SLEEP) {
// Make sure we have been awake long enough for USB to connect (enumeration delay).
int64_t connecting_delay_ticks = CIRCUITPY_USB_CONNECTED_SLEEP_DELAY * 1024 - port_get_raw_ticks(NULL);
// Until it's safe to decide whether we're real/fake sleeping
if (fake_sleeping) {
// This waits until a pretend deep sleep alarm occurs. They are set
// during common_hal_alarm_set_deep_sleep_alarms. On some platforms
// it may also return due to another interrupt, that's why we check
// for deep sleep alarms above. If it wasn't a deep sleep alarm,
// then we'll idle here again.
common_hal_alarm_pretending_deep_sleep();
} else if (connecting_delay_ticks < 0) {
// Entering deep sleep (may be fake or real.)
board_deinit();
if (!supervisor_workflow_active()) {
// Enter true deep sleep. When we wake up we'll be back at the
// top of main(), not in this loop.
common_hal_alarm_enter_deep_sleep();
// Does not return.
} else {
serial_write_compressed(translate("Pretending to deep sleep until alarm, CTRL-C or file write.\n"));
fake_sleeping = true;
}
} else {
// Loop while checking the time. We can't idle because we don't want to override a
// time alarm set for the deep sleep.
}
} else
#endif
{
// Refresh the ePaper display if we have one. That way it'll show an error message.
#if CIRCUITPY_DISPLAYIO
if (time_to_epaper_refresh > 0) {
time_to_epaper_refresh = maybe_refresh_epaperdisplay();
}
#if !CIRCUITPY_STATUS_LED
port_interrupt_after_ticks(time_to_epaper_refresh);
#endif
#endif
#if CIRCUITPY_STATUS_LED
uint32_t tick_diff = supervisor_ticks_ms32() - pattern_start;
// By default, don't sleep.
size_t time_to_next_change = 0;
if (tick_diff < blink_time) {
uint32_t blink_diff = tick_diff % (single_blink_time);
if (blink_diff >= BLINK_TIME_MS) {
if (led_active) {
new_status_color(BLACK);
status_led_deinit();
led_active = false;
}
time_to_next_change = single_blink_time - blink_diff;
} else {
if (!led_active) {
status_led_init();
new_status_color(color);
led_active = true;
}
time_to_next_change = BLINK_TIME_MS - blink_diff;
}
} else if (tick_diff > total_time) {
pattern_start = supervisor_ticks_ms32();
} else {
if (led_active) {
new_status_color(BLACK);
status_led_deinit();
led_active = false;
}
time_to_next_change = total_time - tick_diff;
}
#if CIRCUITPY_DISPLAYIO
if (time_to_epaper_refresh > 0 && time_to_next_change > 0) {
time_to_next_change = MIN(time_to_next_change, time_to_epaper_refresh);
}
#endif
// time_to_next_change is in ms and ticks are slightly shorter so
// we'll undersleep just a little. It shouldn't matter.
port_interrupt_after_ticks(time_to_next_change);
#endif
port_idle_until_interrupt();
}
}
// free code allocation if unused
if ((next_code_options & next_code_stickiness_situation) == 0) {
free_memory(next_code_allocation);
next_code_allocation = NULL;
}
// Done waiting, start the board back up.
#if CIRCUITPY_STATUS_LED
if (led_active) {
new_status_color(BLACK);
status_led_deinit();
}
#endif
#if CIRCUITPY_ALARM
if (fake_sleeping) {
board_init();
}
#endif
return skip_repl;
}
vstr_t *boot_output;
STATIC void __attribute__ ((noinline)) run_boot_py(safe_mode_t safe_mode) {
// If not in safe mode, run boot before initing USB and capture output in a file.
// There is USB setup to do even if boot.py is not actually run.
const bool ok_to_run = filesystem_present()
&& safe_mode == NO_SAFE_MODE
&& MP_STATE_VM(vfs_mount_table) != NULL;
static const char *const boot_py_filenames[] = STRING_LIST("boot.py", "boot.txt");
// Do USB setup even if boot.py is not run.
supervisor_allocation *heap = allocate_remaining_memory();
start_mp(heap);
#if CIRCUITPY_USB
// Set up default USB values after boot.py VM starts but before running boot.py.
usb_set_defaults();
#endif
pyexec_result_t result = {0, MP_OBJ_NULL, 0};
if (ok_to_run) {
#ifdef CIRCUITPY_BOOT_OUTPUT_FILE
vstr_t boot_text;
vstr_init(&boot_text, 512);
boot_output = &boot_text;
#endif
// Write version info
mp_printf(&mp_plat_print, "%s\nBoard ID:%s\n", MICROPY_FULL_VERSION_INFO, CIRCUITPY_BOARD_ID);
bool found_boot = maybe_run_list(boot_py_filenames, &result);
(void)found_boot;
#ifdef CIRCUITPY_BOOT_OUTPUT_FILE
// Get the base filesystem.
fs_user_mount_t *vfs = (fs_user_mount_t *)MP_STATE_VM(vfs_mount_table)->obj;
FATFS *fs = &vfs->fatfs;
boot_output = NULL;
bool write_boot_output = true;
FIL boot_output_file;
if (f_open(fs, &boot_output_file, CIRCUITPY_BOOT_OUTPUT_FILE, FA_READ) == FR_OK) {
char *file_contents = m_new(char, boot_text.alloc);
UINT chars_read;
if (f_read(&boot_output_file, file_contents, 1 + boot_text.len, &chars_read) == FR_OK) {
write_boot_output =
(chars_read != boot_text.len) || (memcmp(boot_text.buf, file_contents, chars_read) != 0);
}
// no need to f_close the file
}
if (write_boot_output) {
// Wait 1 second before opening CIRCUITPY_BOOT_OUTPUT_FILE for write,
// in case power is momentary or will fail shortly due to, say a low, battery.
mp_hal_delay_ms(1000);
// USB isn't up, so we can write the file.
// operating at the oofatfs (f_open) layer means the usb concurrent write permission
// is not even checked!
f_open(fs, &boot_output_file, CIRCUITPY_BOOT_OUTPUT_FILE, FA_WRITE | FA_CREATE_ALWAYS);
UINT chars_written;
f_write(&boot_output_file, boot_text.buf, boot_text.len, &chars_written);
f_close(&boot_output_file);
filesystem_flush();
}
#endif
}
#if CIRCUITPY_USB
// Some data needs to be carried over from the USB settings in boot.py
// to the next VM, while the heap is still available.
// Its size can vary, so save it temporarily on the stack,
// and then when the heap goes away, copy it in into a
// storage_allocation.
size_t size = usb_boot_py_data_size();
uint8_t usb_boot_py_data[size];
usb_get_boot_py_data(usb_boot_py_data, size);
#endif
cleanup_after_vm(heap, result.exception);
#if CIRCUITPY_USB
// Now give back the data we saved from the heap going away.
usb_return_boot_py_data(usb_boot_py_data, size);
#endif
}
STATIC int run_repl(void) {
int exit_code = PYEXEC_FORCED_EXIT;
stack_resize();
filesystem_flush();
supervisor_allocation *heap = allocate_remaining_memory();
start_mp(heap);
#if CIRCUITPY_USB
usb_setup_with_vm();
#endif
autoreload_suspend(AUTORELOAD_LOCK_REPL);
// Set the status LED to the REPL color before running the REPL. For
// NeoPixels and DotStars this will be sticky but for PWM or single LED it
// won't. This simplifies pin sharing because they won't be in use when
// actually in the REPL.
#if CIRCUITPY_STATUS_LED
status_led_init();
new_status_color(REPL_RUNNING);
status_led_deinit();
#endif
if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
exit_code = pyexec_raw_repl();
} else {
exit_code = pyexec_friendly_repl();
}
#if CIRCUITPY_ATEXIT
pyexec_result_t result;
shared_module_atexit_execute(&result);
if (result.return_code == PYEXEC_DEEP_SLEEP) {
exit_code = PYEXEC_DEEP_SLEEP;
}
#endif
cleanup_after_vm(heap, MP_OBJ_SENTINEL);
#if CIRCUITPY_STATUS_LED
status_led_init();
new_status_color(BLACK);
status_led_deinit();
#endif
autoreload_resume(AUTORELOAD_LOCK_REPL);
return exit_code;
}
int __attribute__((used)) main(void) {
// initialise the cpu and peripherals
safe_mode_t safe_mode = port_init();
// Turn on RX and TX LEDs if we have them.
init_rxtx_leds();
#if CIRCUITPY_BOOT_COUNTER
// Increment counter before possibly entering safe mode
common_hal_nvm_bytearray_get_bytes(&common_hal_mcu_nvm_obj,0,1,&value_out);
++value_out;
common_hal_nvm_bytearray_set_bytes(&common_hal_mcu_nvm_obj,0,&value_out,1);
#endif
// Wait briefly to give a reset window where we'll enter safe mode after the reset.
if (safe_mode == NO_SAFE_MODE) {
safe_mode = wait_for_safe_mode_reset();
}
stack_init();
#if CIRCUITPY_BLEIO
// Early init so that a reset press can cause BLE public advertising.
supervisor_bluetooth_init();
#endif
// Create a new filesystem only if we're not in a safe mode.
// A power brownout here could make it appear as if there's
// no SPI flash filesystem, and we might erase the existing one.
filesystem_init(safe_mode == NO_SAFE_MODE, false);
// displays init after filesystem, since they could share the flash SPI
board_init();
// Start the debug serial
serial_early_init();
// Reset everything and prep MicroPython to run boot.py.
reset_port();
// Port-independent devices, like CIRCUITPY_BLEIO_HCI.
reset_devices();
reset_board();
// This is first time we are running CircuitPython after a reset or power-up.
supervisor_set_run_reason(RUN_REASON_STARTUP);
// If not in safe mode turn on autoreload by default but before boot.py in case it wants to change it.
if (safe_mode == NO_SAFE_MODE) {
autoreload_enable();
}
// By default our internal flash is readonly to local python code and
// writable over USB. Set it here so that boot.py can change it.
filesystem_set_internal_concurrent_write_protection(true);
filesystem_set_internal_writable_by_usb(true);
run_boot_py(safe_mode);
// Start USB after giving boot.py a chance to tweak behavior.
#if CIRCUITPY_USB
// Setup USB connection after heap is available.
// It needs the heap to build descriptors.
usb_init();
#endif
// Set up any other serial connection.
serial_init();
#if CIRCUITPY_BLEIO
supervisor_bluetooth_enable_workflow();
supervisor_start_bluetooth();
#endif
// Boot script is finished, so now go into REPL/main mode.
int exit_code = PYEXEC_FORCED_EXIT;
bool skip_repl = true;
bool first_run = true;
for (;;) {
if (!skip_repl) {
exit_code = run_repl();
supervisor_set_run_reason(RUN_REASON_REPL_RELOAD);
}
if (exit_code == PYEXEC_FORCED_EXIT) {
if (!first_run) {
serial_write_compressed(translate("soft reboot\n"));
}
first_run = false;
if (pyexec_mode_kind == PYEXEC_MODE_FRIENDLY_REPL) {
skip_repl = run_code_py(safe_mode);
} else {
skip_repl = false;
}
} else if (exit_code != 0) {
break;
}
}
mp_deinit();
return 0;
}
void gc_collect(void) {
gc_collect_start();
mp_uint_t regs[10];
mp_uint_t sp = cpu_get_regs_and_sp(regs);
// This collects root pointers from the VFS mount table. Some of them may
// have lost their references in the VM even though they are mounted.
gc_collect_root((void **)&MP_STATE_VM(vfs_mount_table), sizeof(mp_vfs_mount_t) / sizeof(mp_uint_t));
background_callback_gc_collect();
#if CIRCUITPY_ALARM
common_hal_alarm_gc_collect();
#endif
#if CIRCUITPY_ATEXIT
atexit_gc_collect();
#endif
#if CIRCUITPY_DISPLAYIO
displayio_gc_collect();
#endif
#if CIRCUITPY_BLEIO
common_hal_bleio_gc_collect();
#endif
#if CIRCUITPY_USB_HID
usb_hid_gc_collect();
#endif
#if CIRCUITPY_WIFI
common_hal_wifi_gc_collect();
#endif
// This naively collects all object references from an approximate stack
// range.
gc_collect_root((void **)sp, ((uint32_t)port_stack_get_top() - sp) / sizeof(uint32_t));
gc_collect_end();
}
void NORETURN nlr_jump_fail(void *val) {
reset_into_safe_mode(MICROPY_NLR_JUMP_FAIL);
while (true) {
}
}
#ifndef NDEBUG
static void NORETURN __fatal_error(const char *msg) {
reset_into_safe_mode(MICROPY_FATAL_ERROR);
while (true) {
}
}
void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
mp_printf(&mp_plat_print, "Assertion '%s' failed, at file %s:%d\n", expr, file, line);
__fatal_error("Assertion failed");
}
#endif