2023-03-29 11:49:32 -07:00

1270 lines
41 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2019 Damien P. George
* Copyright (c) 2015 Galen Hazelwood
* Copyright (c) 2015-2017 Paul Sokolovsky
* Copyright (c) 2020 Lucian Copeland for Adafruit Industries
* Copyright (c) 2022 Jeff Epler for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/socketpool/Socket.h"
#include "py/gc.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "shared-bindings/socketpool/SocketPool.h"
#include "shared/runtime/interrupt_char.h"
#include "shared/netutils/netutils.h"
#include "supervisor/port.h"
#include "supervisor/shared/tick.h"
#include "supervisor/workflow.h"
#include "lwip/dns.h"
#include "lwip/err.h"
#include "lwip/igmp.h"
#include "lwip/init.h"
#include "lwip/netdb.h"
#include "lwip/priv/tcp_priv.h"
#include "lwip/raw.h"
#include "lwip/sys.h"
#include "lwip/tcp.h"
#include "lwip/timeouts.h"
#include "lwip/udp.h"
#define MICROPY_PY_LWIP_SOCK_RAW (1)
#if 0 // print debugging info
#define DEBUG_printf DEBUG_printf
#else // don't print debugging info
#define DEBUG_printf(...) (void)0
#endif
// Timeout between closing a TCP socket and doing a tcp_abort on that
// socket, if the connection isn't closed cleanly in that time.
#define MICROPY_PY_LWIP_TCP_CLOSE_TIMEOUT_MS (10000)
// All socket options should be globally distinct,
// because we ignore option levels for efficiency.
#define IP_ADD_MEMBERSHIP 0x400
#define IP_DROP_MEMBERSHIP 0x401
/******************************************************************************/
// Table to convert lwIP err_t codes to socket errno codes, from the lwIP
// socket API.
// Extension to lwIP error codes
// Matches lwIP 2.0.3
#undef _ERR_BADF
#define _ERR_BADF -17
static const int error_lookup_table[] = {
0, /* ERR_OK 0 No error, everything OK */
MP_ENOMEM, /* ERR_MEM -1 Out of memory error */
MP_ENOBUFS, /* ERR_BUF -2 Buffer error */
MP_EWOULDBLOCK, /* ERR_TIMEOUT -3 Timeout */
MP_EHOSTUNREACH, /* ERR_RTE -4 Routing problem */
MP_EINPROGRESS, /* ERR_INPROGRESS -5 Operation in progress */
MP_EINVAL, /* ERR_VAL -6 Illegal value */
MP_EWOULDBLOCK, /* ERR_WOULDBLOCK -7 Operation would block */
MP_EADDRINUSE, /* ERR_USE -8 Address in use */
MP_EALREADY, /* ERR_ALREADY -9 Already connecting */
MP_EALREADY, /* ERR_ISCONN -10 Conn already established */
MP_ENOTCONN, /* ERR_CONN -11 Not connected */
-1, /* ERR_IF -12 Low-level netif error */
MP_ECONNABORTED, /* ERR_ABRT -13 Connection aborted */
MP_ECONNRESET, /* ERR_RST -14 Connection reset */
MP_ENOTCONN, /* ERR_CLSD -15 Connection closed */
MP_EIO, /* ERR_ARG -16 Illegal argument. */
MP_EBADF, /* _ERR_BADF -17 Closed socket (null pcb) */
};
/*******************************************************************************/
// The socket object provided by lwip.socket.
#define MOD_NETWORK_AF_INET (SOCKETPOOL_AF_INET)
#define MOD_NETWORK_AF_INET6 (SOCKETPOOL_AF_INET6)
#define MOD_NETWORK_SOCK_STREAM (SOCKETPOOL_SOCK_STREAM)
#define MOD_NETWORK_SOCK_DGRAM (SOCKETPOOL_SOCK_DGRAM)
#define MOD_NETWORK_SOCK_RAW (SOCKETPOOL_SOCK_RAW)
#define MAX_SOCKETS (8)
static inline void poll_sockets(void) {
#ifdef MICROPY_EVENT_POLL_HOOK
MICROPY_EVENT_POLL_HOOK;
#else
RUN_BACKGROUND_TASKS;
if (MP_STATE_THREAD(mp_pending_exception) != MP_OBJ_NULL) {
mp_handle_pending(true);
}
mp_hal_delay_ms(1);
#endif
}
STATIC struct tcp_pcb *volatile *lwip_socket_incoming_array(socketpool_socket_obj_t *socket) {
if (socket->incoming.connection.alloc == 0) {
return &socket->incoming.connection.tcp.item;
} else {
return &socket->incoming.connection.tcp.array[0];
}
}
STATIC void lwip_socket_free_incoming(socketpool_socket_obj_t *socket) {
bool socket_is_listener =
socket->type == MOD_NETWORK_SOCK_STREAM
&& socket->pcb.tcp->state == LISTEN;
if (!socket_is_listener) {
if (socket->incoming.pbuf != NULL) {
pbuf_free(socket->incoming.pbuf);
socket->incoming.pbuf = NULL;
}
} else {
uint8_t alloc = socket->incoming.connection.alloc;
struct tcp_pcb *volatile *tcp_array = lwip_socket_incoming_array(socket);
for (uint8_t i = 0; i < alloc; ++i) {
// Deregister callback and abort
if (tcp_array[i] != NULL) {
tcp_poll(tcp_array[i], NULL, 0);
tcp_abort(tcp_array[i]);
tcp_array[i] = NULL;
}
}
}
}
/*******************************************************************************/
// Callback functions for the lwIP raw API.
static inline void exec_user_callback(socketpool_socket_obj_t *socket) {
#if 0
if (socket->callback != MP_OBJ_NULL) {
// Schedule the user callback to execute outside the lwIP context
mp_sched_schedule(socket->callback, MP_OBJ_FROM_PTR(socket));
}
#endif
supervisor_workflow_request_background();
}
#if MICROPY_PY_LWIP_SOCK_RAW
// Callback for incoming raw packets.
#if LWIP_VERSION_MAJOR < 2
STATIC u8_t _lwip_raw_incoming(void *arg, struct raw_pcb *pcb, struct pbuf *p, ip_addr_t *addr)
#else
STATIC u8_t _lwip_raw_incoming(void *arg, struct raw_pcb *pcb, struct pbuf *p, const ip_addr_t *addr)
#endif
{
socketpool_socket_obj_t *socket = (socketpool_socket_obj_t *)arg;
if (socket->incoming.pbuf != NULL) {
pbuf_free(p);
} else {
socket->incoming.pbuf = p;
memcpy(&socket->peer, addr, sizeof(socket->peer));
}
return 1; // we ate the packet
}
#endif
// Callback for incoming UDP packets. We simply stash the packet and the source address,
// in case we need it for recvfrom.
#if LWIP_VERSION_MAJOR < 2
STATIC void _lwip_udp_incoming(void *arg, struct udp_pcb *upcb, struct pbuf *p, ip_addr_t *addr, u16_t port)
#else
STATIC void _lwip_udp_incoming(void *arg, struct udp_pcb *upcb, struct pbuf *p, const ip_addr_t *addr, u16_t port)
#endif
{
socketpool_socket_obj_t *socket = (socketpool_socket_obj_t *)arg;
if (socket->incoming.pbuf != NULL) {
// That's why they call it "unreliable". No room in the inn, drop the packet.
pbuf_free(p);
} else {
socket->incoming.pbuf = p;
socket->peer_port = (mp_uint_t)port;
memcpy(&socket->peer, addr, sizeof(socket->peer));
}
}
// Callback for general tcp errors.
STATIC void _lwip_tcp_error(void *arg, err_t err) {
socketpool_socket_obj_t *socket = (socketpool_socket_obj_t *)arg;
// Free any incoming buffers or connections that are stored
lwip_socket_free_incoming(socket);
// Pass the error code back via the connection variable.
socket->state = err;
// If we got here, the lwIP stack either has deallocated or will deallocate the pcb.
socket->pcb.tcp = NULL;
}
// Callback for tcp connection requests. Error code err is unused. (See tcp.h)
STATIC err_t _lwip_tcp_connected(void *arg, struct tcp_pcb *tpcb, err_t err) {
socketpool_socket_obj_t *socket = (socketpool_socket_obj_t *)arg;
socket->state = STATE_CONNECTED;
return ERR_OK;
}
// Handle errors (eg connection aborted) on TCP PCBs that have been put on the
// accept queue but are not yet actually accepted.
STATIC void _lwip_tcp_err_unaccepted(void *arg, err_t err) {
struct tcp_pcb *pcb = (struct tcp_pcb *)arg;
// The ->connected entry is repurposed to store the parent socket; this is safe
// because it's only ever used by lwIP if tcp_connect is called on the TCP PCB.
socketpool_socket_obj_t *socket = (socketpool_socket_obj_t *)pcb->connected;
// Array is not volatile because thiss callback is executed within the lwIP context
uint8_t alloc = socket->incoming.connection.alloc;
struct tcp_pcb **tcp_array = (struct tcp_pcb **)lwip_socket_incoming_array(socket);
// Search for PCB on the accept queue of the parent socket
struct tcp_pcb **shift_down = NULL;
uint8_t i = socket->incoming.connection.iget;
do {
if (shift_down == NULL) {
if (tcp_array[i] == pcb) {
shift_down = &tcp_array[i];
}
} else {
*shift_down = tcp_array[i];
shift_down = &tcp_array[i];
}
if (++i >= alloc) {
i = 0;
}
} while (i != socket->incoming.connection.iput);
// PCB found in queue, remove it
if (shift_down != NULL) {
*shift_down = NULL;
socket->incoming.connection.iput = shift_down - tcp_array;
}
}
// By default, a child socket of listen socket is created with recv
// handler which discards incoming pbuf's. We don't want to do that,
// so set this handler which requests lwIP to keep pbuf's and deliver
// them later. We cannot cache pbufs in child socket on Python side,
// until it is created in accept().
STATIC err_t _lwip_tcp_recv_unaccepted(void *arg, struct tcp_pcb *pcb, struct pbuf *p, err_t err) {
return ERR_BUF;
}
// Callback for incoming tcp connections.
STATIC err_t _lwip_tcp_accept(void *arg, struct tcp_pcb *newpcb, err_t err) {
// err can be ERR_MEM to notify us that there was no memory for an incoming connection
if (err != ERR_OK) {
return ERR_OK;
}
socketpool_socket_obj_t *socket = (socketpool_socket_obj_t *)arg;
tcp_recv(newpcb, _lwip_tcp_recv_unaccepted);
// Search for an empty slot to store the new connection
struct tcp_pcb *volatile *slot = &lwip_socket_incoming_array(socket)[socket->incoming.connection.iput];
if (*slot == NULL) {
// Have an empty slot to store waiting connection
*slot = newpcb;
if (++socket->incoming.connection.iput >= socket->incoming.connection.alloc) {
socket->incoming.connection.iput = 0;
}
// Schedule user accept callback
exec_user_callback(socket);
// Set the error callback to handle the case of a dropped connection before we
// have a chance to take it off the accept queue.
// The ->connected entry is repurposed to store the parent socket; this is safe
// because it's only ever used by lwIP if tcp_connect is called on the TCP PCB.
newpcb->connected = (void *)socket;
tcp_arg(newpcb, newpcb);
tcp_err(newpcb, _lwip_tcp_err_unaccepted);
return ERR_OK;
}
DEBUG_printf("_lwip_tcp_accept: No room to queue pcb waiting for accept\n");
return ERR_BUF;
}
// Callback for inbound tcp packets.
STATIC err_t _lwip_tcp_recv(void *arg, struct tcp_pcb *tcpb, struct pbuf *p, err_t err) {
socketpool_socket_obj_t *socket = (socketpool_socket_obj_t *)arg;
if (p == NULL) {
// Other side has closed connection.
DEBUG_printf("_lwip_tcp_recv[%p]: other side closed connection\n", socket);
socket->state = STATE_PEER_CLOSED;
exec_user_callback(socket);
return ERR_OK;
}
if (socket->incoming.pbuf == NULL) {
socket->incoming.pbuf = p;
} else {
#ifdef SOCKET_SINGLE_PBUF
return ERR_BUF;
#else
pbuf_cat(socket->incoming.pbuf, p);
#endif
}
exec_user_callback(socket);
return ERR_OK;
}
/*******************************************************************************/
// Functions for socket send/receive operations. Socket send/recv and friends call
// these to do the work.
// Helper function for send/sendto to handle raw/UDP packets.
STATIC mp_uint_t lwip_raw_udp_send(socketpool_socket_obj_t *socket, const byte *buf, mp_uint_t len, ip_addr_t *dest, uint32_t port, int *_errno) {
if (len > 0xffff) {
// Any packet that big is probably going to fail the pbuf_alloc anyway, but may as well try
len = 0xffff;
}
MICROPY_PY_LWIP_ENTER
struct pbuf *p = pbuf_alloc(PBUF_TRANSPORT, len, PBUF_RAM);
if (p == NULL) {
MICROPY_PY_LWIP_EXIT
*_errno = MP_ENOMEM;
return -1;
}
memcpy(p->payload, buf, len);
err_t err;
if (dest == NULL) {
#if MICROPY_PY_LWIP_SOCK_RAW
if (socket->type == MOD_NETWORK_SOCK_RAW) {
err = raw_send(socket->pcb.raw, p);
} else
#endif
{
err = udp_send(socket->pcb.udp, p);
}
} else {
#if MICROPY_PY_LWIP_SOCK_RAW
if (socket->type == MOD_NETWORK_SOCK_RAW) {
err = raw_sendto(socket->pcb.raw, p, dest);
} else
#endif
{
err = udp_sendto(socket->pcb.udp, p, dest, port);
}
}
pbuf_free(p);
MICROPY_PY_LWIP_EXIT
// udp_sendto can return 1 on occasion for ESP8266 port. It's not known why
// but it seems that the send actually goes through without error in this case.
// So we treat such cases as a success until further investigation.
if (err != ERR_OK && err != 1) {
*_errno = error_lookup_table[-err];
return -1;
}
return len;
}
// Helper function for recv/recvfrom to handle raw/UDP packets
STATIC mp_uint_t lwip_raw_udp_receive(socketpool_socket_obj_t *socket, byte *buf, mp_uint_t len, byte *ip, uint32_t *port, int *_errno) {
if (socket->incoming.pbuf == NULL) {
if (socket->timeout == 0) {
// Non-blocking socket.
*_errno = MP_EAGAIN;
return -1;
}
// Wait for data to arrive on UDP socket.
mp_uint_t start = mp_hal_ticks_ms();
while (socket->incoming.pbuf == NULL) {
if (socket->timeout != (unsigned)-1 && mp_hal_ticks_ms() - start > socket->timeout) {
*_errno = MP_ETIMEDOUT;
return -1;
}
poll_sockets();
}
}
if (ip != NULL) {
memcpy(ip, &socket->peer, sizeof(socket->peer));
*port = socket->peer_port;
}
struct pbuf *p = socket->incoming.pbuf;
MICROPY_PY_LWIP_ENTER
u16_t result = pbuf_copy_partial(p, buf, ((p->tot_len > len) ? len : p->tot_len), 0);
pbuf_free(p);
socket->incoming.pbuf = NULL;
MICROPY_PY_LWIP_EXIT
return (mp_uint_t)result;
}
// For use in stream virtual methods
#define STREAM_ERROR_CHECK(socket) \
if (socket->state < 0) { \
*_errno = error_lookup_table[-socket->state]; \
return MP_STREAM_ERROR; \
} \
assert(socket->pcb.tcp);
// Version of above for use when lock is held
#define STREAM_ERROR_CHECK_WITH_LOCK(socket) \
if (socket->state < 0) { \
*_errno = error_lookup_table[-socket->state]; \
MICROPY_PY_LWIP_EXIT \
return MP_STREAM_ERROR; \
} \
assert(socket->pcb.tcp);
// Helper function for send/sendto to handle TCP packets
STATIC mp_uint_t lwip_tcp_send(socketpool_socket_obj_t *socket, const byte *buf, mp_uint_t len, int *_errno) {
// Check for any pending errors
STREAM_ERROR_CHECK(socket);
MICROPY_PY_LWIP_ENTER
u16_t available = tcp_sndbuf(socket->pcb.tcp);
if (available == 0) {
// Non-blocking socket
if (socket->timeout == 0) {
MICROPY_PY_LWIP_EXIT
*_errno = MP_EAGAIN;
return MP_STREAM_ERROR;
}
mp_uint_t start = mp_hal_ticks_ms();
// Assume that STATE_PEER_CLOSED may mean half-closed connection, where peer closed it
// sending direction, but not receiving. Consequently, check for both STATE_CONNECTED
// and STATE_PEER_CLOSED as normal conditions and still waiting for buffers to be sent.
// If peer fully closed socket, we would have socket->state set to ERR_RST (connection
// reset) by error callback.
// Avoid sending too small packets, so wait until at least 16 bytes available
while (socket->state >= STATE_CONNECTED && (available = tcp_sndbuf(socket->pcb.tcp)) < 16) {
MICROPY_PY_LWIP_EXIT
if (socket->timeout != (unsigned)-1 && mp_hal_ticks_ms() - start > socket->timeout) {
*_errno = MP_ETIMEDOUT;
return MP_STREAM_ERROR;
}
poll_sockets();
MICROPY_PY_LWIP_REENTER
}
// While we waited, something could happen
STREAM_ERROR_CHECK_WITH_LOCK(socket);
}
u16_t write_len = MIN(available, len);
// If tcp_write returns ERR_MEM then there's currently not enough memory to
// queue the write, so wait and keep trying until it succeeds (with 10s limit).
// Note: if the socket is non-blocking then this code will actually block until
// there's enough memory to do the write, but by this stage we have already
// committed to being able to write the data.
err_t err;
for (int i = 0; i < 200; ++i) {
err = tcp_write(socket->pcb.tcp, buf, write_len, TCP_WRITE_FLAG_COPY);
if (err != ERR_MEM) {
break;
}
if (err == ERR_MEM && write_len > TCP_MSS) {
// Decreasing the amount sent to the next lower number of MSS
write_len = (write_len - 1) / TCP_MSS * TCP_MSS;
continue;
}
err = tcp_output(socket->pcb.tcp);
if (err != ERR_OK) {
break;
}
MICROPY_PY_LWIP_EXIT
mp_hal_delay_ms(50);
MICROPY_PY_LWIP_REENTER
}
// If the output buffer is getting full then send the data to the lower layers
if (err == ERR_OK && tcp_sndbuf(socket->pcb.tcp) < TCP_SND_BUF / 4) {
err = tcp_output(socket->pcb.tcp);
}
MICROPY_PY_LWIP_EXIT
if (err != ERR_OK) {
*_errno = error_lookup_table[-err];
return MP_STREAM_ERROR;
}
return write_len;
}
// Helper function for recv/recvfrom to handle TCP packets
STATIC mp_uint_t lwip_tcp_receive(socketpool_socket_obj_t *socket, byte *buf, mp_uint_t len, int *_errno) {
// Check for any pending errors
STREAM_ERROR_CHECK(socket);
if (socket->incoming.pbuf == NULL) {
// Non-blocking socket
if (socket->timeout == 0) {
if (socket->state == STATE_PEER_CLOSED) {
return 0;
}
*_errno = MP_EAGAIN;
return -1;
}
mp_uint_t start = mp_hal_ticks_ms();
while (socket->state == STATE_CONNECTED && socket->incoming.pbuf == NULL) {
if (socket->timeout != (unsigned)-1 && mp_hal_ticks_ms() - start > socket->timeout) {
*_errno = MP_ETIMEDOUT;
return -1;
}
poll_sockets();
}
if (socket->state == STATE_PEER_CLOSED) {
if (socket->incoming.pbuf == NULL) {
// socket closed and no data left in buffer
return 0;
}
} else if (socket->state != STATE_CONNECTED) {
if (socket->state >= STATE_NEW) {
*_errno = MP_ENOTCONN;
} else {
*_errno = error_lookup_table[-socket->state];
}
return -1;
}
}
MICROPY_PY_LWIP_ENTER
assert(socket->pcb.tcp != NULL);
struct pbuf *p = socket->incoming.pbuf;
mp_uint_t remaining = p->len - socket->recv_offset;
if (len > remaining) {
len = remaining;
}
memcpy(buf, (byte *)p->payload + socket->recv_offset, len);
remaining -= len;
if (remaining == 0) {
socket->incoming.pbuf = p->next;
// If we don't ref here, free() will free the entire chain,
// if we ref, it does what we need: frees 1st buf, and decrements
// next buf's refcount back to 1.
pbuf_ref(p->next);
pbuf_free(p);
socket->recv_offset = 0;
} else {
socket->recv_offset += len;
}
tcp_recved(socket->pcb.tcp, len);
MICROPY_PY_LWIP_EXIT
return len;
}
STATIC socketpool_socket_obj_t *open_socket_objs[MAX_SOCKETS];
STATIC bool user_socket[MAX_SOCKETS];
void socket_user_reset(void) {
for (size_t i = 0; i < MP_ARRAY_SIZE(open_socket_objs); i++) {
if (open_socket_objs[i] && user_socket[i]) {
socketpool_socket_close(open_socket_objs[i]);
open_socket_objs[i] = NULL;
user_socket[i] = false;
}
}
}
// The writes below send an event to the socket select task so that it redoes the
// select with the new open socket set.
STATIC bool register_open_socket(socketpool_socket_obj_t *obj) {
for (size_t i = 0; i < MP_ARRAY_SIZE(open_socket_objs); i++) {
if (!open_socket_objs[i]) {
open_socket_objs[i] = obj;
DEBUG_printf("register_open_socket(%p) -> %d\n", obj, i);
user_socket[i] = false;
return true;
}
}
DEBUG_printf("register_open_socket(%p) fails due to full table\n", obj);
return false;
}
STATIC void unregister_open_socket(socketpool_socket_obj_t *obj) {
for (size_t i = 0; i < MP_ARRAY_SIZE(open_socket_objs); i++) {
if (open_socket_objs[i] == obj) {
DEBUG_printf("unregister_open_socket(%p) clears %d\n", obj, i);
open_socket_objs[i] = NULL;
user_socket[i] = false;
return;
}
}
DEBUG_printf("unregister_open_socket(%p) fails due to missing entry\n", obj);
}
STATIC void mark_user_socket(socketpool_socket_obj_t *obj) {
for (size_t i = 0; i < MP_ARRAY_SIZE(open_socket_objs); i++) {
if (open_socket_objs[i] == obj) {
DEBUG_printf("mark_user_socket(%p) -> %d\n", obj, i);
user_socket[i] = true;
return;
}
}
DEBUG_printf("mark_user_socket(%p) fails due to missing entry\n", obj);
}
bool socketpool_socket(socketpool_socketpool_obj_t *self,
socketpool_socketpool_addressfamily_t family, socketpool_socketpool_sock_t type,
socketpool_socket_obj_t *socket) {
if (!register_open_socket(socket)) {
DEBUG_printf("collecting garbage to open socket\n");
gc_collect();
if (!register_open_socket(socket)) {
return false;
}
}
socket->timeout = -1;
socket->recv_offset = 0;
socket->domain = SOCKETPOOL_AF_INET;
socket->type = type;
socket->callback = MP_OBJ_NULL;
socket->state = STATE_NEW;
switch (socket->type) {
case SOCKETPOOL_SOCK_STREAM:
socket->pcb.tcp = tcp_new();
socket->incoming.connection.alloc = 0;
socket->incoming.connection.tcp.item = NULL;
break;
case SOCKETPOOL_SOCK_DGRAM:
socket->pcb.udp = udp_new();
socket->incoming.pbuf = NULL;
break;
#if MICROPY_PY_LWIP_SOCK_RAW
case SOCKETPOOL_SOCK_RAW: {
socket->pcb.raw = raw_new(0);
break;
}
#endif
default:
return false;
}
if (socket->pcb.tcp == NULL) {
return false;
}
switch (socket->type) {
case MOD_NETWORK_SOCK_STREAM: {
// Register the socket object as our callback argument.
tcp_arg(socket->pcb.tcp, (void *)socket);
break;
}
case MOD_NETWORK_SOCK_DGRAM: {
socket->state = STATE_ACTIVE_UDP;
// Register our receive callback now. Since UDP sockets don't require binding or connection
// before use, there's no other good time to do it.
udp_recv(socket->pcb.udp, _lwip_udp_incoming, (void *)socket);
break;
}
#if MICROPY_PY_LWIP_SOCK_RAW
case MOD_NETWORK_SOCK_RAW: {
// Register our receive callback now. Since raw sockets don't require binding or connection
// before use, there's no other good time to do it.
raw_recv(socket->pcb.raw, _lwip_raw_incoming, (void *)socket);
break;
}
#endif
}
return true;
}
socketpool_socket_obj_t *common_hal_socketpool_socket(socketpool_socketpool_obj_t *self,
socketpool_socketpool_addressfamily_t family, socketpool_socketpool_sock_t type) {
if (family != SOCKETPOOL_AF_INET) {
mp_raise_NotImplementedError(translate("Only IPv4 sockets supported"));
}
// we must allocate sockets long-lived because we depend on their object-identity
socketpool_socket_obj_t *socket = m_new_ll_obj_with_finaliser(socketpool_socket_obj_t);
socket->base.type = &socketpool_socket_type;
if (!socketpool_socket(self, family, type, socket)) {
mp_raise_RuntimeError(translate("Out of sockets"));
}
mark_user_socket(socket);
return socket;
}
int socketpool_socket_accept(socketpool_socket_obj_t *self, uint8_t *ip, uint32_t *port, socketpool_socket_obj_t *accepted) {
if (self->type != MOD_NETWORK_SOCK_STREAM) {
return -MP_EOPNOTSUPP;
}
if (common_hal_socketpool_socket_get_closed(self)) {
return -MP_EBADF;
}
MICROPY_PY_LWIP_ENTER
if (self->pcb.tcp == NULL) {
MICROPY_PY_LWIP_EXIT
return -MP_EBADF;
}
// I need to do this because "tcp_accepted", later, is a macro.
struct tcp_pcb *listener = self->pcb.tcp;
if (listener->state != LISTEN) {
MICROPY_PY_LWIP_EXIT
return -MP_EINVAL;
}
// accept incoming connection
struct tcp_pcb *volatile *incoming_connection = &lwip_socket_incoming_array(self)[self->incoming.connection.iget];
if (*incoming_connection == NULL) {
if (self->timeout == 0) {
MICROPY_PY_LWIP_EXIT
return -MP_EAGAIN;
} else if (self->timeout != (unsigned)-1) {
mp_uint_t retries = self->timeout / 100;
while (*incoming_connection == NULL && !mp_hal_is_interrupted()) {
MICROPY_PY_LWIP_EXIT
if (retries-- == 0) {
return -MP_ETIMEDOUT;
}
mp_hal_delay_ms(100);
MICROPY_PY_LWIP_REENTER
}
} else {
while (*incoming_connection == NULL && !mp_hal_is_interrupted()) {
MICROPY_PY_LWIP_EXIT
poll_sockets();
MICROPY_PY_LWIP_REENTER
}
}
}
if (*incoming_connection == NULL) {
// We were interrupted.
return 0;
}
// Close the accepted socket because we have another we accepted.
if (!common_hal_socketpool_socket_get_closed(accepted)) {
common_hal_socketpool_socket_close(accepted);
}
// We get a new pcb handle...
accepted->pcb.tcp = *incoming_connection;
if (++self->incoming.connection.iget >= self->incoming.connection.alloc) {
self->incoming.connection.iget = 0;
}
*incoming_connection = NULL;
// ...and set up the new socket for it.
accepted->domain = MOD_NETWORK_AF_INET;
accepted->type = MOD_NETWORK_SOCK_STREAM;
accepted->incoming.pbuf = NULL;
accepted->timeout = self->timeout;
accepted->state = STATE_CONNECTED;
accepted->recv_offset = 0;
accepted->callback = MP_OBJ_NULL;
tcp_arg(accepted->pcb.tcp, (void *)accepted);
tcp_err(accepted->pcb.tcp, _lwip_tcp_error);
tcp_recv(accepted->pcb.tcp, _lwip_tcp_recv);
tcp_accepted(listener);
MICROPY_PY_LWIP_EXIT
// output values
memcpy(ip, &(accepted->pcb.tcp->remote_ip), NETUTILS_IPV4ADDR_BUFSIZE);
*port = (mp_uint_t)accepted->pcb.tcp->remote_port;
return 1;
}
socketpool_socket_obj_t *common_hal_socketpool_socket_accept(socketpool_socket_obj_t *socket,
uint8_t *ip, uint32_t *port) {
// Create new socket object, do it here because we must not raise an out-of-memory
// exception when the LWIP concurrency lock is held
socketpool_socket_obj_t *accepted = m_new_ll_obj_with_finaliser(socketpool_socket_obj_t);
socketpool_socket_reset(accepted);
int ret = socketpool_socket_accept(socket, ip, port, accepted);
if (ret <= 0) {
m_del_obj(socketpool_socket_obj_t, accepted);
if (ret == 0) {
// Interrupted.
return mp_const_none;
}
mp_raise_OSError(-ret);
}
DEBUG_printf("registering socket in socketpool_socket_accept()\n");
if (!register_open_socket(accepted)) {
DEBUG_printf("collecting garbage to open socket\n");
gc_collect();
if (!register_open_socket(accepted)) {
mp_raise_RuntimeError(translate("Out of sockets"));
}
}
mark_user_socket(accepted);
return MP_OBJ_FROM_PTR(accepted);
}
bool common_hal_socketpool_socket_bind(socketpool_socket_obj_t *socket,
const char *host, size_t hostlen, uint32_t port) {
// get address
ip_addr_t bind_addr;
const ip_addr_t *bind_addr_ptr = &bind_addr;
if (hostlen > 0) {
socketpool_resolve_host_raise(socket->pool, host, &bind_addr);
} else {
bind_addr_ptr = IP_ANY_TYPE;
}
ip_set_option(socket->pcb.ip, SOF_REUSEADDR);
err_t err = ERR_ARG;
switch (socket->type) {
case MOD_NETWORK_SOCK_STREAM: {
err = tcp_bind(socket->pcb.tcp, bind_addr_ptr, port);
break;
}
case MOD_NETWORK_SOCK_DGRAM: {
err = udp_bind(socket->pcb.udp, bind_addr_ptr, port);
break;
}
}
if (err != ERR_OK) {
mp_raise_OSError(error_lookup_table[-err]);
}
return mp_const_none;
}
STATIC err_t _lwip_tcp_close_poll(void *arg, struct tcp_pcb *pcb) {
// Connection has not been cleanly closed so just abort it to free up memory
tcp_poll(pcb, NULL, 0);
tcp_abort(pcb);
return ERR_OK;
}
void socketpool_socket_close(socketpool_socket_obj_t *socket) {
unregister_open_socket(socket);
MICROPY_PY_LWIP_ENTER
if (socket->pcb.tcp == NULL) { // already closed
MICROPY_PY_LWIP_EXIT
return;
}
lwip_socket_free_incoming(socket);
switch (socket->type) {
case SOCKETPOOL_SOCK_STREAM: {
// Deregister callback (pcb.tcp is set to NULL below so must deregister now)
tcp_arg(socket->pcb.tcp, NULL);
if (socket->pcb.tcp->state != LISTEN) {
tcp_err(socket->pcb.tcp, NULL);
tcp_recv(socket->pcb.tcp, NULL);
// Schedule a callback to abort the connection if it's not cleanly closed after
// the given timeout. The callback must be set before calling tcp_close since
// the latter may free the pcb; if it doesn't then the callback will be active.
tcp_poll(socket->pcb.tcp, _lwip_tcp_close_poll, MICROPY_PY_LWIP_TCP_CLOSE_TIMEOUT_MS / 500);
}
if (tcp_close(socket->pcb.tcp) != ERR_OK) {
DEBUG_printf("lwip_close: had to call tcp_abort()\n");
tcp_abort(socket->pcb.tcp);
}
break;
}
case SOCKETPOOL_SOCK_DGRAM:
udp_recv(socket->pcb.udp, NULL, NULL);
udp_remove(socket->pcb.udp);
break;
#if MICROPY_PY_LWIP_SOCK_RAW
case SOCKETPOOL_SOCK_RAW:
raw_recv(socket->pcb.raw, NULL, NULL);
raw_remove(socket->pcb.raw);
break;
#endif
}
socket->pcb.tcp = NULL;
socket->state = _ERR_BADF;
MICROPY_PY_LWIP_EXIT
}
void common_hal_socketpool_socket_close(socketpool_socket_obj_t *socket) {
socketpool_socket_close(socket);
}
void common_hal_socketpool_socket_connect(socketpool_socket_obj_t *socket,
const char *host, size_t hostlen, uint32_t port) {
if (socket->pcb.tcp == NULL) {
mp_raise_OSError(MP_EBADF);
}
// get address
ip_addr_t dest;
socketpool_resolve_host_raise(socket->pool, host, &dest);
err_t err = ERR_ARG;
switch (socket->type) {
case MOD_NETWORK_SOCK_STREAM: {
if (socket->state != STATE_NEW) {
if (socket->state == STATE_CONNECTED) {
mp_raise_OSError(MP_EISCONN);
} else {
mp_raise_OSError(MP_EALREADY);
}
}
// Register our receive callback.
MICROPY_PY_LWIP_ENTER
tcp_recv(socket->pcb.tcp, _lwip_tcp_recv);
tcp_err(socket->pcb.tcp, _lwip_tcp_error);
socket->state = STATE_CONNECTING;
err = tcp_connect(socket->pcb.tcp, &dest, port, _lwip_tcp_connected);
if (err != ERR_OK) {
MICROPY_PY_LWIP_EXIT
socket->state = STATE_NEW;
mp_raise_OSError(error_lookup_table[-err]);
}
socket->peer_port = (mp_uint_t)port;
memcpy(socket->peer, &dest, sizeof(socket->peer));
MICROPY_PY_LWIP_EXIT
// And now we wait...
if (socket->timeout != (unsigned)-1) {
for (mp_uint_t retries = socket->timeout / 100; retries--;) {
mp_hal_delay_ms(100);
if (socket->state != STATE_CONNECTING) {
break;
}
}
if (socket->state == STATE_CONNECTING) {
mp_raise_OSError(MP_EINPROGRESS);
}
} else {
while (socket->state == STATE_CONNECTING) {
poll_sockets();
}
}
if (socket->state == STATE_CONNECTED) {
err = ERR_OK;
} else {
err = socket->state;
}
break;
}
case MOD_NETWORK_SOCK_DGRAM: {
err = udp_connect(socket->pcb.udp, &dest, port);
break;
}
#if MICROPY_PY_LWIP_SOCK_RAW
case MOD_NETWORK_SOCK_RAW: {
err = raw_connect(socket->pcb.raw, &dest);
break;
}
#endif
}
if (err != ERR_OK) {
mp_raise_OSError(error_lookup_table[-err]);
}
}
bool common_hal_socketpool_socket_get_closed(socketpool_socket_obj_t *socket) {
return !socket->pcb.tcp;
}
bool common_hal_socketpool_socket_get_connected(socketpool_socket_obj_t *socket) {
return socket->state == STATE_CONNECTED;
}
bool common_hal_socketpool_socket_listen(socketpool_socket_obj_t *socket, int backlog) {
if (socket->type != MOD_NETWORK_SOCK_STREAM) {
mp_raise_OSError(MP_EOPNOTSUPP);
}
struct tcp_pcb *new_pcb = tcp_listen_with_backlog(socket->pcb.tcp, (u8_t)backlog);
if (new_pcb == NULL) {
mp_raise_OSError(MP_ENOMEM);
}
socket->pcb.tcp = new_pcb;
// Allocate memory for the backlog of connections
if (backlog <= 1) {
socket->incoming.connection.alloc = 0;
socket->incoming.connection.tcp.item = NULL;
} else {
socket->incoming.connection.alloc = backlog;
socket->incoming.connection.tcp.array = m_new0(struct tcp_pcb *, backlog);
}
socket->incoming.connection.iget = 0;
socket->incoming.connection.iput = 0;
tcp_accept(new_pcb, _lwip_tcp_accept);
// Socket is no longer considered "new" for purposes of polling
socket->state = STATE_LISTENING;
return mp_const_none;
}
mp_uint_t common_hal_socketpool_socket_recvfrom_into(socketpool_socket_obj_t *socket,
uint8_t *buf, uint32_t len, uint8_t *ip, uint32_t *port) {
int _errno;
mp_uint_t ret = 0;
switch (socket->type) {
case SOCKETPOOL_SOCK_STREAM: {
memcpy(ip, &socket->peer, sizeof(socket->peer));
*port = (mp_uint_t)socket->peer_port;
ret = lwip_tcp_receive(socket, (byte *)buf, len, &_errno);
break;
}
case SOCKETPOOL_SOCK_DGRAM:
#if MICROPY_PY_LWIP_SOCK_RAW
case SOCKETPOOL_SOCK_RAW:
#endif
ret = lwip_raw_udp_receive(socket, (byte *)buf, len, ip, port, &_errno);
break;
}
if (ret == (unsigned)-1) {
mp_raise_OSError(_errno);
}
return ret;
}
int socketpool_socket_recv_into(socketpool_socket_obj_t *socket,
const uint8_t *buf, uint32_t len) {
mp_uint_t ret = 0;
int _errno = 0;
switch (socket->type) {
case SOCKETPOOL_SOCK_STREAM: {
ret = lwip_tcp_receive(socket, (byte *)buf, len, &_errno);
break;
}
case SOCKETPOOL_SOCK_DGRAM:
#if MICROPY_PY_LWIP_SOCK_RAW
case SOCKETPOOL_SOCK_RAW:
#endif
ret = lwip_raw_udp_receive(socket, (byte *)buf, len, NULL, NULL, &_errno);
break;
}
if (ret == (unsigned)-1) {
return -_errno;
}
return ret;
}
mp_uint_t common_hal_socketpool_socket_recv_into(socketpool_socket_obj_t *self, const uint8_t *buf, uint32_t len) {
int received = socketpool_socket_recv_into(self, buf, len);
if (received < 0) {
mp_raise_OSError(-received);
}
return received;
}
int socketpool_socket_send(socketpool_socket_obj_t *socket, const uint8_t *buf, uint32_t len) {
mp_uint_t ret = 0;
int _errno = 0;
switch (socket->type) {
case SOCKETPOOL_SOCK_STREAM: {
ret = lwip_tcp_send(socket, buf, len, &_errno);
break;
}
case SOCKETPOOL_SOCK_DGRAM:
#if MICROPY_PY_LWIP_SOCK_RAW
case SOCKETPOOL_SOCK_RAW:
#endif
ret = lwip_raw_udp_send(socket, buf, len, NULL, 0, &_errno);
break;
}
if (ret == (unsigned)-1) {
return -_errno;
}
return ret;
}
mp_uint_t common_hal_socketpool_socket_send(socketpool_socket_obj_t *self, const uint8_t *buf, uint32_t len) {
int sent = socketpool_socket_send(self, buf, len);
if (sent < 0) {
mp_raise_OSError(-sent);
}
return sent;
}
mp_uint_t common_hal_socketpool_socket_sendto(socketpool_socket_obj_t *socket,
const char *host, size_t hostlen, uint32_t port, const uint8_t *buf, uint32_t len) {
int _errno;
ip_addr_t ip;
socketpool_resolve_host_raise(socket->pool, host, &ip);
mp_uint_t ret = 0;
switch (socket->type) {
case SOCKETPOOL_SOCK_STREAM: {
ret = lwip_tcp_send(socket, buf, len, &_errno);
break;
}
case SOCKETPOOL_SOCK_DGRAM:
#if MICROPY_PY_LWIP_SOCK_RAW
case SOCKETPOOL_SOCK_RAW:
#endif
ret = lwip_raw_udp_send(socket, buf, len, &ip, port, &_errno);
break;
}
if (ret == (unsigned)-1) {
mp_raise_OSError(_errno);
}
return ret;
}
void common_hal_socketpool_socket_settimeout(socketpool_socket_obj_t *self, uint32_t timeout_ms) {
self->timeout = timeout_ms;
}
int common_hal_socketpool_socket_setsockopt(socketpool_socket_obj_t *self, int level, int optname, const void *value, size_t optlen) {
if (level == SOCKETPOOL_IPPROTO_TCP && optname == SOCKETPOOL_TCP_NODELAY) {
int one = 1;
bool enable = optlen == sizeof(&one) && memcmp(value, &one, optlen);
if (enable) {
tcp_set_flags(self->pcb.tcp, TF_NODELAY);
} else {
tcp_clear_flags(self->pcb.tcp, TF_NODELAY);
}
return 0;
}
return -MP_EOPNOTSUPP;
}
bool common_hal_socketpool_readable(socketpool_socket_obj_t *self) {
MICROPY_PY_LWIP_ENTER;
bool result = self->incoming.pbuf != NULL;
if (self->state == STATE_PEER_CLOSED) {
result = true;
}
if (self->type == SOCKETPOOL_SOCK_STREAM && self->pcb.tcp->state == LISTEN) {
struct tcp_pcb *volatile *incoming_connection = &lwip_socket_incoming_array(self)[self->incoming.connection.iget];
result = (incoming_connection != NULL);
}
MICROPY_PY_LWIP_EXIT;
return result;
}
bool common_hal_socketpool_writable(socketpool_socket_obj_t *self) {
bool result = false;
MICROPY_PY_LWIP_ENTER;
switch (self->type) {
case SOCKETPOOL_SOCK_STREAM: {
result = tcp_sndbuf(self->pcb.tcp) != 0;
break;
}
case SOCKETPOOL_SOCK_DGRAM:
#if MICROPY_PY_LWIP_SOCK_RAW
case SOCKETPOOL_SOCK_RAW:
#endif
result = true;
break;
}
MICROPY_PY_LWIP_EXIT;
return result;
}
void socketpool_socket_move(socketpool_socket_obj_t *self, socketpool_socket_obj_t *sock) {
*sock = *self;
self->state = _ERR_BADF;
// Reregister the callbacks with the new socket copy.
MICROPY_PY_LWIP_ENTER;
tcp_arg(self->pcb.tcp, NULL);
tcp_err(self->pcb.tcp, NULL);
tcp_recv(self->pcb.tcp, NULL);
self->pcb.tcp = NULL;
tcp_arg(sock->pcb.tcp, (void *)sock);
tcp_err(sock->pcb.tcp, _lwip_tcp_error);
tcp_recv(sock->pcb.tcp, _lwip_tcp_recv);
MICROPY_PY_LWIP_EXIT;
}
void socketpool_socket_reset(socketpool_socket_obj_t *self) {
if (self->base.type == &socketpool_socket_type) {
return;
}
self->base.type = &socketpool_socket_type;
self->pcb.tcp = NULL;
self->state = _ERR_BADF;
}