Damien George c66d86c5ce stmhal: Big cleanup; merge gpio into Pin; make names consistent.
This is an attempt to clean up the Micro Python API on the pyboard.
Gpio functionality is now in the Pin object, which seems more natural.
Constants for MODE and PULL are now in pyb.Pin.  Names of some
classes have been adjusted to conform to CamelCase.  Other
miscellaneous changes and clean up here and there.
2014-04-18 22:38:09 +01:00

373 lines
12 KiB
C

#include <stdio.h>
#include <stm32f4xx_hal.h>
#include <string.h>
#include "misc.h"
#include "nlr.h"
#include "mpconfig.h"
#include "qstr.h"
#include "obj.h"
#include "runtime.h"
#include "adc.h"
#include "pin.h"
#include "genhdr/pins.h"
#include "timer.h"
// Usage Model:
//
// adc = pyb.ADC(pin)
// val = adc.read()
//
// adc = pyb.ADCAll(resolution)
// val = adc.read_channel(channel)
// val = adc.read_core_temp()
// val = adc.read_core_vbat()
// val = adc.read_core_vref()
/* ADC defintions */
#define ADCx (ADC1)
#define ADCx_CLK_ENABLE __ADC1_CLK_ENABLE
#define ADC_NUM_CHANNELS (19)
#define ADC_NUM_GPIO_CHANNELS (16)
#if defined(STM32F405xx) || defined(STM32F415xx) || \
defined(STM32F407xx) || defined(STM32F417xx) || \
defined(STM32F401xC) || defined(STM32F401xE)
#define VBAT_DIV (2)
#elif defined(STM32F427xx) || defined(STM32F429xx) || \
defined(STM32F437xx) || defined(STM32F439xx)
#define VBAT_DIV (4)
#endif
/* Core temperature sensor definitions */
#define CORE_TEMP_V25 (943) /* (0.76v/3.3v)*(2^ADC resoultion) */
#define CORE_TEMP_AVG_SLOPE (3) /* (2.5mv/3.3v)*(2^ADC resoultion) */
typedef struct _pyb_obj_adc_t {
mp_obj_base_t base;
mp_obj_t pin_name;
int channel;
ADC_HandleTypeDef handle;
} pyb_obj_adc_t;
void adc_init_single(pyb_obj_adc_t *adc_obj) {
if (!IS_ADC_CHANNEL(adc_obj->channel)) {
return;
}
if (adc_obj->channel < ADC_NUM_GPIO_CHANNELS) {
// Channels 0-16 correspond to real pins. Configure the GPIO pin in
// ADC mode.
const pin_obj_t *pin = pin_adc1[adc_obj->channel];
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.Pin = pin->pin_mask;
GPIO_InitStructure.Mode = GPIO_MODE_ANALOG;
GPIO_InitStructure.Pull = GPIO_NOPULL;
HAL_GPIO_Init(pin->gpio, &GPIO_InitStructure);
}
ADCx_CLK_ENABLE();
ADC_HandleTypeDef *adcHandle = &adc_obj->handle;
adcHandle->Instance = ADCx;
adcHandle->Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2;
adcHandle->Init.Resolution = ADC_RESOLUTION12b;
adcHandle->Init.ScanConvMode = DISABLE;
adcHandle->Init.ContinuousConvMode = DISABLE;
adcHandle->Init.DiscontinuousConvMode = DISABLE;
adcHandle->Init.NbrOfDiscConversion = 0;
adcHandle->Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
adcHandle->Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1;
adcHandle->Init.DataAlign = ADC_DATAALIGN_RIGHT;
adcHandle->Init.NbrOfConversion = 1;
adcHandle->Init.DMAContinuousRequests = DISABLE;
adcHandle->Init.EOCSelection = DISABLE;
HAL_ADC_Init(adcHandle);
ADC_ChannelConfTypeDef sConfig;
sConfig.Channel = adc_obj->channel;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_15CYCLES;
sConfig.Offset = 0;
HAL_ADC_ConfigChannel(adcHandle, &sConfig);
}
uint32_t adc_read_channel(ADC_HandleTypeDef *adcHandle) {
uint32_t rawValue = 0;
HAL_ADC_Start(adcHandle);
if (HAL_ADC_PollForConversion(adcHandle, 10) == HAL_OK && HAL_ADC_GetState(adcHandle) == HAL_ADC_STATE_EOC_REG) {
rawValue = HAL_ADC_GetValue(adcHandle);
}
HAL_ADC_Stop(adcHandle);
return rawValue;
}
/******************************************************************************/
/* Micro Python bindings : adc object (single channel) */
STATIC void adc_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_obj_adc_t *self = self_in;
print(env, "<ADC on ");
mp_obj_print_helper(print, env, self->pin_name, PRINT_STR);
print(env, " channel=%lu>", self->channel);
}
STATIC mp_obj_t adc_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
// check number of arguments
mp_check_nargs(n_args, 1, 1, n_kw, false);
// 1st argument is the pin name
mp_obj_t pin_obj = args[0];
uint32_t channel;
if (MP_OBJ_IS_INT(pin_obj)) {
channel = mp_obj_get_int(pin_obj);
} else {
const pin_obj_t *pin = pin_find(pin_obj);
if ((pin->adc_num & PIN_ADC1) == 0) {
// No ADC1 function on that pin
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %s does not have ADC capabilities", pin->name));
}
channel = pin->adc_channel;
}
if (!IS_ADC_CHANNEL(channel)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "not a valid ADC Channel: %d", channel));
}
if (pin_adc1[channel] == NULL) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "channel %d not available on this board", channel));
}
pyb_obj_adc_t *o = m_new_obj(pyb_obj_adc_t);
memset(o, 0, sizeof(*o));
o->base.type = &pyb_adc_type;
o->pin_name = pin_obj;
o->channel = channel;
adc_init_single(o);
return o;
}
STATIC mp_obj_t adc_read(mp_obj_t self_in) {
pyb_obj_adc_t *self = self_in;
uint32_t data = adc_read_channel(&self->handle);
return mp_obj_new_int(data);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_read_obj, adc_read);
STATIC mp_obj_t adc_read_timed(mp_obj_t self_in, mp_obj_t buf_in, mp_obj_t freq_in) {
pyb_obj_adc_t *self = self_in;
buffer_info_t bufinfo;
mp_get_buffer_raise(buf_in, &bufinfo);
// Init TIM6 at the required frequency (in Hz)
timer_tim6_init(mp_obj_get_int(freq_in));
// Start timer
HAL_TIM_Base_Start(&TIM6_Handle);
// This uses the timer in polling mode to do the sampling
// TODO use DMA
for (uint i = 0; i < bufinfo.len; i++) {
// Wait for the timer to trigger
while (__HAL_TIM_GET_FLAG(&TIM6_Handle, TIM_FLAG_UPDATE) == RESET) {
}
__HAL_TIM_CLEAR_FLAG(&TIM6_Handle, TIM_FLAG_UPDATE);
((byte*)bufinfo.buf)[i] = adc_read_channel(&self->handle) >> 4;
}
// Stop timer
HAL_TIM_Base_Stop(&TIM6_Handle);
return mp_obj_new_int(bufinfo.len);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(adc_read_timed_obj, adc_read_timed);
STATIC const mp_map_elem_t adc_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&adc_read_obj},
{ MP_OBJ_NEW_QSTR(MP_QSTR_read_timed), (mp_obj_t)&adc_read_timed_obj},
};
STATIC MP_DEFINE_CONST_DICT(adc_locals_dict, adc_locals_dict_table);
const mp_obj_type_t pyb_adc_type = {
{ &mp_type_type },
.name = MP_QSTR_ADC,
.print = adc_print,
.make_new = adc_make_new,
.locals_dict = (mp_obj_t)&adc_locals_dict,
};
/******************************************************************************/
/* adc all object */
typedef struct _pyb_adc_all_obj_t {
mp_obj_base_t base;
ADC_HandleTypeDef handle;
} pyb_adc_all_obj_t;
void adc_init_all(pyb_adc_all_obj_t *adc_all, uint32_t resolution) {
switch (resolution) {
case 6: resolution = ADC_RESOLUTION6b; break;
case 8: resolution = ADC_RESOLUTION8b; break;
case 10: resolution = ADC_RESOLUTION10b; break;
case 12: resolution = ADC_RESOLUTION12b; break;
default:
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
"resolution %d not supported", resolution));
}
for (uint32_t channel = 0; channel < ADC_NUM_GPIO_CHANNELS; channel++) {
// Channels 0-16 correspond to real pins. Configure the GPIO pin in
// ADC mode.
const pin_obj_t *pin = pin_adc1[channel];
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.Pin = pin->pin_mask;
GPIO_InitStructure.Mode = GPIO_MODE_ANALOG;
GPIO_InitStructure.Pull = GPIO_NOPULL;
HAL_GPIO_Init(pin->gpio, &GPIO_InitStructure);
}
ADCx_CLK_ENABLE();
ADC_HandleTypeDef *adcHandle = &adc_all->handle;
adcHandle->Instance = ADCx;
adcHandle->Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2;
adcHandle->Init.Resolution = resolution;
adcHandle->Init.ScanConvMode = DISABLE;
adcHandle->Init.ContinuousConvMode = DISABLE;
adcHandle->Init.DiscontinuousConvMode = DISABLE;
adcHandle->Init.NbrOfDiscConversion = 0;
adcHandle->Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
adcHandle->Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1;
adcHandle->Init.DataAlign = ADC_DATAALIGN_RIGHT;
adcHandle->Init.NbrOfConversion = 1;
adcHandle->Init.DMAContinuousRequests = DISABLE;
adcHandle->Init.EOCSelection = DISABLE;
HAL_ADC_Init(adcHandle);
}
uint32_t adc_config_and_read_channel(ADC_HandleTypeDef *adcHandle, uint32_t channel) {
ADC_ChannelConfTypeDef sConfig;
sConfig.Channel = channel;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_15CYCLES;
sConfig.Offset = 0;
HAL_ADC_ConfigChannel(adcHandle, &sConfig);
return adc_read_channel(adcHandle);
}
int adc_get_resolution(ADC_HandleTypeDef *adcHandle) {
uint32_t res_reg = __HAL_ADC_GET_RESOLUTION(adcHandle);
switch (res_reg) {
case ADC_RESOLUTION6b: return 6;
case ADC_RESOLUTION8b: return 8;
case ADC_RESOLUTION10b: return 10;
}
return 12;
}
int adc_read_core_temp(ADC_HandleTypeDef *adcHandle) {
int32_t raw_value = adc_config_and_read_channel(adcHandle, ADC_CHANNEL_TEMPSENSOR);
// Note: constants assume 12-bit resolution, so we scale the raw value to
// be 12-bits.
raw_value <<= (12 - adc_get_resolution(adcHandle));
return ((raw_value - CORE_TEMP_V25) / CORE_TEMP_AVG_SLOPE) + 25;
}
float adc_read_core_vbat(ADC_HandleTypeDef *adcHandle) {
uint32_t raw_value = adc_config_and_read_channel(adcHandle, ADC_CHANNEL_VBAT);
// Note: constants assume 12-bit resolution, so we scale the raw value to
// be 12-bits.
raw_value <<= (12 - adc_get_resolution(adcHandle));
return raw_value * VBAT_DIV / 4096.0f * 3.3f;
}
float adc_read_core_vref(ADC_HandleTypeDef *adcHandle) {
uint32_t raw_value = adc_config_and_read_channel(adcHandle, ADC_CHANNEL_VREFINT);
// Note: constants assume 12-bit resolution, so we scale the raw value to
// be 12-bits.
raw_value <<= (12 - adc_get_resolution(adcHandle));
return raw_value * VBAT_DIV / 4096.0f * 3.3f;
}
/******************************************************************************/
/* Micro Python bindings : adc_all object */
STATIC mp_obj_t adc_all_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
// check number of arguments
mp_check_nargs(n_args, 1, 1, n_kw, false);
// make ADCAll object
pyb_adc_all_obj_t *o = m_new_obj(pyb_adc_all_obj_t);
o->base.type = &pyb_adc_all_type;
adc_init_all(o, mp_obj_get_int(args[0])); // args[0] is the resolution
return o;
}
STATIC mp_obj_t adc_all_read_channel(mp_obj_t self_in, mp_obj_t channel) {
pyb_adc_all_obj_t *self = self_in;
uint32_t chan = mp_obj_get_int(channel);
uint32_t data = adc_config_and_read_channel(&self->handle, chan);
return mp_obj_new_int(data);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(adc_all_read_channel_obj, adc_all_read_channel);
STATIC mp_obj_t adc_all_read_core_temp(mp_obj_t self_in) {
pyb_adc_all_obj_t *self = self_in;
int data = adc_read_core_temp(&self->handle);
return mp_obj_new_int(data);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_temp_obj, adc_all_read_core_temp);
STATIC mp_obj_t adc_all_read_core_vbat(mp_obj_t self_in) {
pyb_adc_all_obj_t *self = self_in;
float data = adc_read_core_vbat(&self->handle);
return mp_obj_new_float(data);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_vbat_obj, adc_all_read_core_vbat);
STATIC mp_obj_t adc_all_read_core_vref(mp_obj_t self_in) {
pyb_adc_all_obj_t *self = self_in;
float data = adc_read_core_vref(&self->handle);
return mp_obj_new_float(data);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_vref_obj, adc_all_read_core_vref);
STATIC const mp_map_elem_t adc_all_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_read_channel), (mp_obj_t)&adc_all_read_channel_obj},
{ MP_OBJ_NEW_QSTR(MP_QSTR_read_core_temp), (mp_obj_t)&adc_all_read_core_temp_obj},
{ MP_OBJ_NEW_QSTR(MP_QSTR_read_core_vbat), (mp_obj_t)&adc_all_read_core_vbat_obj},
{ MP_OBJ_NEW_QSTR(MP_QSTR_read_core_vref), (mp_obj_t)&adc_all_read_core_vref_obj},
};
STATIC MP_DEFINE_CONST_DICT(adc_all_locals_dict, adc_all_locals_dict_table);
const mp_obj_type_t pyb_adc_all_type = {
{ &mp_type_type },
.name = MP_QSTR_ADCAll,
.make_new = adc_all_make_new,
.locals_dict = (mp_obj_t)&adc_all_locals_dict,
};