Damien George a03e6c1e05 stm32/irq: Define IRQ priorities directly as encoded hardware values.
For a given IRQn (eg UART) there's no need to carry around both a PRI and
SUBPRI value (eg IRQ_PRI_UART, IRQ_SUBPRI_UART).  Instead, the IRQ_PRI_UART
value has been changed in this patch to be the encoded hardware value,
using NVIC_EncodePriority.  This way the NVIC_SetPriority function can be
used directly, instead of going through HAL_NVIC_SetPriority which must do
extra processing to encode the PRI+SUBPRI.

For a priority grouping of 4 (4 bits for preempt priority, 0 bits for the
sub-priority), which is used in the stm32 port, the IRQ_PRI_xxx constants
remain unchanged in their value.

This patch also "fixes" the use of raise_irq_pri() which should be passed
the encoded value (but as mentioned above the unencoded value is the same
as the encoded value for priority grouping 4, so there was no bug from this
error).
2018-05-02 14:41:02 +10:00

1094 lines
41 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2014-2018 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include "py/objtuple.h"
#include "py/objarray.h"
#include "py/runtime.h"
#include "py/gc.h"
#include "py/binary.h"
#include "py/stream.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "bufhelper.h"
#include "can.h"
#include "irq.h"
#if MICROPY_HW_ENABLE_CAN
#define MASK16 (0)
#define LIST16 (1)
#define MASK32 (2)
#define LIST32 (3)
enum {
CAN_STATE_STOPPED,
CAN_STATE_ERROR_ACTIVE,
CAN_STATE_ERROR_WARNING,
CAN_STATE_ERROR_PASSIVE,
CAN_STATE_BUS_OFF,
};
/// \moduleref pyb
/// \class CAN - controller area network communication bus
///
/// CAN implements the standard CAN communications protocol. At
/// the physical level it consists of 2 lines: RX and TX. Note that
/// to connect the pyboard to a CAN bus you must use a CAN transceiver
/// to convert the CAN logic signals from the pyboard to the correct
/// voltage levels on the bus.
///
/// Note that this driver does not yet support filter configuration
/// (it defaults to a single filter that lets through all messages),
/// or bus timing configuration (except for setting the prescaler).
///
/// Example usage (works without anything connected):
///
/// from pyb import CAN
/// can = pyb.CAN(1, pyb.CAN.LOOPBACK)
/// can.send('message!', 123) # send message with id 123
/// can.recv(0) # receive message on FIFO 0
typedef enum _rx_state_t {
RX_STATE_FIFO_EMPTY = 0,
RX_STATE_MESSAGE_PENDING,
RX_STATE_FIFO_FULL,
RX_STATE_FIFO_OVERFLOW,
} rx_state_t;
typedef struct _pyb_can_obj_t {
mp_obj_base_t base;
mp_obj_t rxcallback0;
mp_obj_t rxcallback1;
mp_uint_t can_id : 8;
bool is_enabled : 1;
bool extframe : 1;
byte rx_state0;
byte rx_state1;
uint16_t num_error_warning;
uint16_t num_error_passive;
uint16_t num_bus_off;
CAN_HandleTypeDef can;
} pyb_can_obj_t;
STATIC mp_obj_t pyb_can_deinit(mp_obj_t self_in);
STATIC uint8_t can2_start_bank = 14;
// assumes Init parameters have been set up correctly
STATIC bool can_init(pyb_can_obj_t *can_obj) {
CAN_TypeDef *CANx = NULL;
uint32_t sce_irq = 0;
const pin_obj_t *pins[2];
switch (can_obj->can_id) {
#if defined(MICROPY_HW_CAN1_TX)
case PYB_CAN_1:
CANx = CAN1;
sce_irq = CAN1_SCE_IRQn;
pins[0] = MICROPY_HW_CAN1_TX;
pins[1] = MICROPY_HW_CAN1_RX;
__CAN1_CLK_ENABLE();
break;
#endif
#if defined(MICROPY_HW_CAN2_TX)
case PYB_CAN_2:
CANx = CAN2;
sce_irq = CAN2_SCE_IRQn;
pins[0] = MICROPY_HW_CAN2_TX;
pins[1] = MICROPY_HW_CAN2_RX;
__CAN1_CLK_ENABLE(); // CAN2 is a "slave" and needs CAN1 enabled as well
__CAN2_CLK_ENABLE();
break;
#endif
default:
return false;
}
// init GPIO
uint32_t mode = MP_HAL_PIN_MODE_ALT;
uint32_t pull = MP_HAL_PIN_PULL_UP;
for (int i = 0; i < 2; i++) {
if (!mp_hal_pin_config_alt(pins[i], mode, pull, AF_FN_CAN, can_obj->can_id)) {
return false;
}
}
// init CANx
can_obj->can.Instance = CANx;
HAL_CAN_Init(&can_obj->can);
can_obj->is_enabled = true;
can_obj->num_error_warning = 0;
can_obj->num_error_passive = 0;
can_obj->num_bus_off = 0;
__HAL_CAN_ENABLE_IT(&can_obj->can, CAN_IT_ERR | CAN_IT_BOF | CAN_IT_EPV | CAN_IT_EWG);
NVIC_SetPriority(sce_irq, IRQ_PRI_CAN);
HAL_NVIC_EnableIRQ(sce_irq);
return true;
}
void can_init0(void) {
for (uint i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_can_obj_all)); i++) {
MP_STATE_PORT(pyb_can_obj_all)[i] = NULL;
}
}
void can_deinit(void) {
for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_can_obj_all)); i++) {
pyb_can_obj_t *can_obj = MP_STATE_PORT(pyb_can_obj_all)[i];
if (can_obj != NULL) {
pyb_can_deinit(can_obj);
}
}
}
STATIC void can_clearfilter(uint32_t f) {
CAN_FilterConfTypeDef filter;
filter.FilterIdHigh = 0;
filter.FilterIdLow = 0;
filter.FilterMaskIdHigh = 0;
filter.FilterMaskIdLow = 0;
filter.FilterFIFOAssignment = CAN_FILTER_FIFO0;
filter.FilterNumber = f;
filter.FilterMode = CAN_FILTERMODE_IDMASK;
filter.FilterScale = CAN_FILTERSCALE_16BIT;
filter.FilterActivation = DISABLE;
filter.BankNumber = can2_start_bank;
HAL_CAN_ConfigFilter(NULL, &filter);
}
STATIC int can_receive(CAN_TypeDef *can, int fifo, CanRxMsgTypeDef *msg, uint32_t timeout_ms) {
volatile uint32_t *rfr;
if (fifo == CAN_FIFO0) {
rfr = &can->RF0R;
} else {
rfr = &can->RF1R;
}
// Wait for a message to become available, with timeout
uint32_t start = HAL_GetTick();
while ((*rfr & 3) == 0) {
MICROPY_EVENT_POLL_HOOK
if (HAL_GetTick() - start >= timeout_ms) {
return -MP_ETIMEDOUT;
}
}
// Read message data
CAN_FIFOMailBox_TypeDef *box = &can->sFIFOMailBox[fifo];
msg->IDE = box->RIR & 4;
if (msg->IDE == CAN_ID_STD) {
msg->StdId = box->RIR >> 21;
} else {
msg->ExtId = box->RIR >> 3;
}
msg->RTR = box->RIR & 2;
msg->DLC = box->RDTR & 0xf;
msg->FMI = box->RDTR >> 8 & 0xff;
uint32_t rdlr = box->RDLR;
msg->Data[0] = rdlr;
msg->Data[1] = rdlr >> 8;
msg->Data[2] = rdlr >> 16;
msg->Data[3] = rdlr >> 24;
uint32_t rdhr = box->RDHR;
msg->Data[4] = rdhr;
msg->Data[5] = rdhr >> 8;
msg->Data[6] = rdhr >> 16;
msg->Data[7] = rdhr >> 24;
// Release (free) message from FIFO
*rfr |= CAN_RF0R_RFOM0;
return 0; // success
}
// We have our own version of CAN transmit so we can handle Timeout=0 correctly.
STATIC HAL_StatusTypeDef CAN_Transmit(CAN_HandleTypeDef *hcan, uint32_t Timeout) {
uint32_t transmitmailbox;
uint32_t tickstart;
uint32_t rqcpflag;
uint32_t txokflag;
// Check the parameters
assert_param(IS_CAN_IDTYPE(hcan->pTxMsg->IDE));
assert_param(IS_CAN_RTR(hcan->pTxMsg->RTR));
assert_param(IS_CAN_DLC(hcan->pTxMsg->DLC));
// Select one empty transmit mailbox
if ((hcan->Instance->TSR&CAN_TSR_TME0) == CAN_TSR_TME0) {
transmitmailbox = CAN_TXMAILBOX_0;
rqcpflag = CAN_FLAG_RQCP0;
txokflag = CAN_FLAG_TXOK0;
} else if ((hcan->Instance->TSR&CAN_TSR_TME1) == CAN_TSR_TME1) {
transmitmailbox = CAN_TXMAILBOX_1;
rqcpflag = CAN_FLAG_RQCP1;
txokflag = CAN_FLAG_TXOK1;
} else if ((hcan->Instance->TSR&CAN_TSR_TME2) == CAN_TSR_TME2) {
transmitmailbox = CAN_TXMAILBOX_2;
rqcpflag = CAN_FLAG_RQCP2;
txokflag = CAN_FLAG_TXOK2;
} else {
transmitmailbox = CAN_TXSTATUS_NOMAILBOX;
}
if (transmitmailbox != CAN_TXSTATUS_NOMAILBOX) {
// Set up the Id
hcan->Instance->sTxMailBox[transmitmailbox].TIR &= CAN_TI0R_TXRQ;
if (hcan->pTxMsg->IDE == CAN_ID_STD) {
assert_param(IS_CAN_STDID(hcan->pTxMsg->StdId));
hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->StdId << 21) | \
hcan->pTxMsg->RTR);
} else {
assert_param(IS_CAN_EXTID(hcan->pTxMsg->ExtId));
hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->ExtId << 3) | \
hcan->pTxMsg->IDE | \
hcan->pTxMsg->RTR);
}
// Set up the DLC
hcan->pTxMsg->DLC &= (uint8_t)0x0000000F;
hcan->Instance->sTxMailBox[transmitmailbox].TDTR &= (uint32_t)0xFFFFFFF0;
hcan->Instance->sTxMailBox[transmitmailbox].TDTR |= hcan->pTxMsg->DLC;
// Set up the data field
hcan->Instance->sTxMailBox[transmitmailbox].TDLR = (((uint32_t)hcan->pTxMsg->Data[3] << 24) |
((uint32_t)hcan->pTxMsg->Data[2] << 16) |
((uint32_t)hcan->pTxMsg->Data[1] << 8) |
((uint32_t)hcan->pTxMsg->Data[0]));
hcan->Instance->sTxMailBox[transmitmailbox].TDHR = (((uint32_t)hcan->pTxMsg->Data[7] << 24) |
((uint32_t)hcan->pTxMsg->Data[6] << 16) |
((uint32_t)hcan->pTxMsg->Data[5] << 8) |
((uint32_t)hcan->pTxMsg->Data[4]));
// Request transmission
hcan->Instance->sTxMailBox[transmitmailbox].TIR |= CAN_TI0R_TXRQ;
if (Timeout == 0) {
return HAL_OK;
}
// Get tick
tickstart = HAL_GetTick();
// Check End of transmission flag
while (!(__HAL_CAN_TRANSMIT_STATUS(hcan, transmitmailbox))) {
// Check for the Timeout
if (Timeout != HAL_MAX_DELAY) {
if ((HAL_GetTick() - tickstart) > Timeout) {
// When the timeout expires, we try to abort the transmission of the packet
__HAL_CAN_CANCEL_TRANSMIT(hcan, transmitmailbox);
while (!__HAL_CAN_GET_FLAG(hcan, rqcpflag)) {
}
if (__HAL_CAN_GET_FLAG(hcan, txokflag)) {
// The abort attempt failed and the message was sent properly
return HAL_OK;
} else {
return HAL_TIMEOUT;
}
}
}
}
return HAL_OK;
} else {
return HAL_BUSY;
}
}
/******************************************************************************/
// MicroPython bindings
STATIC void pyb_can_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_can_obj_t *self = self_in;
if (!self->is_enabled) {
mp_printf(print, "CAN(%u)", self->can_id);
} else {
qstr mode;
switch (self->can.Init.Mode) {
case CAN_MODE_NORMAL: mode = MP_QSTR_NORMAL; break;
case CAN_MODE_LOOPBACK: mode = MP_QSTR_LOOPBACK; break;
case CAN_MODE_SILENT: mode = MP_QSTR_SILENT; break;
case CAN_MODE_SILENT_LOOPBACK: default: mode = MP_QSTR_SILENT_LOOPBACK; break;
}
mp_printf(print, "CAN(%u, CAN.%q, extframe=%q, auto_restart=%q)",
self->can_id,
mode,
self->extframe ? MP_QSTR_True : MP_QSTR_False,
(self->can.Instance->MCR & CAN_MCR_ABOM) ? MP_QSTR_True : MP_QSTR_False);
}
}
// init(mode, extframe=False, prescaler=100, *, sjw=1, bs1=6, bs2=8)
STATIC mp_obj_t pyb_can_init_helper(pyb_can_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_mode, ARG_extframe, ARG_prescaler, ARG_sjw, ARG_bs1, ARG_bs2, ARG_auto_restart };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = CAN_MODE_NORMAL} },
{ MP_QSTR_extframe, MP_ARG_BOOL, {.u_bool = false} },
{ MP_QSTR_prescaler, MP_ARG_INT, {.u_int = 100} },
{ MP_QSTR_sjw, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_bs1, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 6} },
{ MP_QSTR_bs2, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
{ MP_QSTR_auto_restart, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
self->extframe = args[ARG_extframe].u_bool;
// set the CAN configuration values
memset(&self->can, 0, sizeof(self->can));
CAN_InitTypeDef *init = &self->can.Init;
init->Mode = args[ARG_mode].u_int << 4; // shift-left so modes fit in a small-int
init->Prescaler = args[ARG_prescaler].u_int;
init->SJW = ((args[ARG_sjw].u_int - 1) & 3) << 24;
init->BS1 = ((args[ARG_bs1].u_int - 1) & 0xf) << 16;
init->BS2 = ((args[ARG_bs2].u_int - 1) & 7) << 20;
init->TTCM = DISABLE;
init->ABOM = args[ARG_auto_restart].u_bool ? ENABLE : DISABLE;
init->AWUM = DISABLE;
init->NART = DISABLE;
init->RFLM = DISABLE;
init->TXFP = DISABLE;
// init CAN (if it fails, it's because the port doesn't exist)
if (!can_init(self)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "CAN(%d) doesn't exist", self->can_id));
}
return mp_const_none;
}
/// \classmethod \constructor(bus, ...)
///
/// Construct a CAN object on the given bus. `bus` can be 1-2, or 'YA' or 'YB'.
/// With no additional parameters, the CAN object is created but not
/// initialised (it has the settings from the last initialisation of
/// the bus, if any). If extra arguments are given, the bus is initialised.
/// See `init` for parameters of initialisation.
///
/// The physical pins of the CAN busses are:
///
/// - `CAN(1)` is on `YA`: `(RX, TX) = (Y3, Y4) = (PB8, PB9)`
/// - `CAN(2)` is on `YB`: `(RX, TX) = (Y5, Y6) = (PB12, PB13)`
STATIC mp_obj_t pyb_can_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// work out port
mp_uint_t can_idx;
if (MP_OBJ_IS_STR(args[0])) {
const char *port = mp_obj_str_get_str(args[0]);
if (0) {
#ifdef MICROPY_HW_CAN1_NAME
} else if (strcmp(port, MICROPY_HW_CAN1_NAME) == 0) {
can_idx = PYB_CAN_1;
#endif
#ifdef MICROPY_HW_CAN2_NAME
} else if (strcmp(port, MICROPY_HW_CAN2_NAME) == 0) {
can_idx = PYB_CAN_2;
#endif
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "CAN(%s) doesn't exist", port));
}
} else {
can_idx = mp_obj_get_int(args[0]);
}
if (can_idx < 1 || can_idx > MP_ARRAY_SIZE(MP_STATE_PORT(pyb_can_obj_all))) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "CAN(%d) doesn't exist", can_idx));
}
pyb_can_obj_t *self;
if (MP_STATE_PORT(pyb_can_obj_all)[can_idx - 1] == NULL) {
self = m_new_obj(pyb_can_obj_t);
self->base.type = &pyb_can_type;
self->can_id = can_idx;
self->is_enabled = false;
MP_STATE_PORT(pyb_can_obj_all)[can_idx - 1] = self;
} else {
self = MP_STATE_PORT(pyb_can_obj_all)[can_idx - 1];
}
if (!self->is_enabled || n_args > 1) {
if (self->is_enabled) {
// The caller is requesting a reconfiguration of the hardware
// this can only be done if the hardware is in init mode
pyb_can_deinit(self);
}
self->rxcallback0 = mp_const_none;
self->rxcallback1 = mp_const_none;
self->rx_state0 = RX_STATE_FIFO_EMPTY;
self->rx_state1 = RX_STATE_FIFO_EMPTY;
if (n_args > 1 || n_kw > 0) {
// start the peripheral
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_can_init_helper(self, n_args - 1, args + 1, &kw_args);
}
}
return self;
}
STATIC mp_obj_t pyb_can_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return pyb_can_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_init_obj, 1, pyb_can_init);
/// \method deinit()
/// Turn off the CAN bus.
STATIC mp_obj_t pyb_can_deinit(mp_obj_t self_in) {
pyb_can_obj_t *self = self_in;
self->is_enabled = false;
HAL_CAN_DeInit(&self->can);
if (self->can.Instance == CAN1) {
HAL_NVIC_DisableIRQ(CAN1_RX0_IRQn);
HAL_NVIC_DisableIRQ(CAN1_RX1_IRQn);
HAL_NVIC_DisableIRQ(CAN1_SCE_IRQn);
__CAN1_FORCE_RESET();
__CAN1_RELEASE_RESET();
__CAN1_CLK_DISABLE();
#if defined(CAN2)
} else if (self->can.Instance == CAN2) {
HAL_NVIC_DisableIRQ(CAN2_RX0_IRQn);
HAL_NVIC_DisableIRQ(CAN2_RX1_IRQn);
HAL_NVIC_DisableIRQ(CAN2_SCE_IRQn);
__CAN2_FORCE_RESET();
__CAN2_RELEASE_RESET();
__CAN2_CLK_DISABLE();
#endif
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_can_deinit_obj, pyb_can_deinit);
// Force a software restart of the controller, to allow transmission after a bus error
STATIC mp_obj_t pyb_can_restart(mp_obj_t self_in) {
pyb_can_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (!self->is_enabled) {
mp_raise_ValueError(NULL);
}
CAN_TypeDef *can = self->can.Instance;
can->MCR |= CAN_MCR_INRQ;
while ((can->MSR & CAN_MSR_INAK) == 0) {
}
can->MCR &= ~CAN_MCR_INRQ;
while ((can->MSR & CAN_MSR_INAK)) {
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_can_restart_obj, pyb_can_restart);
// Get the state of the controller
STATIC mp_obj_t pyb_can_state(mp_obj_t self_in) {
pyb_can_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_int_t state = CAN_STATE_STOPPED;
if (self->is_enabled) {
CAN_TypeDef *can = self->can.Instance;
if (can->ESR & CAN_ESR_BOFF) {
state = CAN_STATE_BUS_OFF;
} else if (can->ESR & CAN_ESR_EPVF) {
state = CAN_STATE_ERROR_PASSIVE;
} else if (can->ESR & CAN_ESR_EWGF) {
state = CAN_STATE_ERROR_WARNING;
} else {
state = CAN_STATE_ERROR_ACTIVE;
}
}
return MP_OBJ_NEW_SMALL_INT(state);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_can_state_obj, pyb_can_state);
// Get info about error states and TX/RX buffers
STATIC mp_obj_t pyb_can_info(size_t n_args, const mp_obj_t *args) {
pyb_can_obj_t *self = MP_OBJ_TO_PTR(args[0]);
mp_obj_list_t *list;
if (n_args == 1) {
list = MP_OBJ_TO_PTR(mp_obj_new_list(8, NULL));
} else {
if (!MP_OBJ_IS_TYPE(args[1], &mp_type_list)) {
mp_raise_TypeError(NULL);
}
list = MP_OBJ_TO_PTR(args[1]);
if (list->len < 8) {
mp_raise_ValueError(NULL);
}
}
CAN_TypeDef *can = self->can.Instance;
uint32_t esr = can->ESR;
list->items[0] = MP_OBJ_NEW_SMALL_INT(esr >> CAN_ESR_TEC_Pos & 0xff);
list->items[1] = MP_OBJ_NEW_SMALL_INT(esr >> CAN_ESR_REC_Pos & 0xff);
list->items[2] = MP_OBJ_NEW_SMALL_INT(self->num_error_warning);
list->items[3] = MP_OBJ_NEW_SMALL_INT(self->num_error_passive);
list->items[4] = MP_OBJ_NEW_SMALL_INT(self->num_bus_off);
int n_tx_pending = 0x01121223 >> ((can->TSR >> CAN_TSR_TME_Pos & 7) << 2) & 0xf;
list->items[5] = MP_OBJ_NEW_SMALL_INT(n_tx_pending);
list->items[6] = MP_OBJ_NEW_SMALL_INT(can->RF0R >> CAN_RF0R_FMP0_Pos & 3);
list->items[7] = MP_OBJ_NEW_SMALL_INT(can->RF1R >> CAN_RF1R_FMP1_Pos & 3);
return MP_OBJ_FROM_PTR(list);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_can_info_obj, 1, 2, pyb_can_info);
/// \method any(fifo)
/// Return `True` if any message waiting on the FIFO, else `False`.
STATIC mp_obj_t pyb_can_any(mp_obj_t self_in, mp_obj_t fifo_in) {
pyb_can_obj_t *self = self_in;
mp_int_t fifo = mp_obj_get_int(fifo_in);
if (fifo == 0) {
if (__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO0) != 0) {
return mp_const_true;
}
} else {
if (__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO1) != 0) {
return mp_const_true;
}
}
return mp_const_false;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_can_any_obj, pyb_can_any);
/// \method send(send, addr, *, timeout=5000)
/// Send a message on the bus:
///
/// - `send` is the data to send (an integer to send, or a buffer object).
/// - `addr` is the address to send to
/// - `timeout` is the timeout in milliseconds to wait for the send.
///
/// Return value: `None`.
STATIC mp_obj_t pyb_can_send(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_data, ARG_id, ARG_timeout, ARG_rtr };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_rtr, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
};
// parse args
pyb_can_obj_t *self = pos_args[0];
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// get the buffer to send from
mp_buffer_info_t bufinfo;
uint8_t data[1];
pyb_buf_get_for_send(args[ARG_data].u_obj, &bufinfo, data);
if (bufinfo.len > 8) {
mp_raise_ValueError("CAN data field too long");
}
// send the data
CanTxMsgTypeDef tx_msg;
if (self->extframe) {
tx_msg.ExtId = args[ARG_id].u_int & 0x1FFFFFFF;
tx_msg.IDE = CAN_ID_EXT;
} else {
tx_msg.StdId = args[ARG_id].u_int & 0x7FF;
tx_msg.IDE = CAN_ID_STD;
}
if (args[ARG_rtr].u_bool == false) {
tx_msg.RTR = CAN_RTR_DATA;
} else {
tx_msg.RTR = CAN_RTR_REMOTE;
}
tx_msg.DLC = bufinfo.len;
for (mp_uint_t i = 0; i < bufinfo.len; i++) {
tx_msg.Data[i] = ((byte*)bufinfo.buf)[i]; // Data is uint32_t but holds only 1 byte
}
self->can.pTxMsg = &tx_msg;
HAL_StatusTypeDef status = CAN_Transmit(&self->can, args[ARG_timeout].u_int);
if (status != HAL_OK) {
mp_hal_raise(status);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_send_obj, 1, pyb_can_send);
/// \method recv(fifo, list=None, *, timeout=5000)
///
/// Receive data on the bus:
///
/// - `fifo` is an integer, which is the FIFO to receive on
/// - `list` if not None is a list with at least 4 elements
/// - `timeout` is the timeout in milliseconds to wait for the receive.
///
/// Return value: buffer of data bytes.
STATIC mp_obj_t pyb_can_recv(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_fifo, ARG_list, ARG_timeout };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_fifo, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_list, MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
};
// parse args
pyb_can_obj_t *self = pos_args[0];
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// receive the data
CanRxMsgTypeDef rx_msg;
int ret = can_receive(self->can.Instance, args[ARG_fifo].u_int, &rx_msg, args[ARG_timeout].u_int);
if (ret < 0) {
mp_raise_OSError(-ret);
}
// Manage the rx state machine
mp_int_t fifo = args[ARG_fifo].u_int;
if ((fifo == CAN_FIFO0 && self->rxcallback0 != mp_const_none) ||
(fifo == CAN_FIFO1 && self->rxcallback1 != mp_const_none)) {
byte *state = (fifo == CAN_FIFO0) ? &self->rx_state0 : &self->rx_state1;
switch (*state) {
case RX_STATE_FIFO_EMPTY:
break;
case RX_STATE_MESSAGE_PENDING:
if (__HAL_CAN_MSG_PENDING(&self->can, fifo) == 0) {
// Fifo is empty
__HAL_CAN_ENABLE_IT(&self->can, (fifo == CAN_FIFO0) ? CAN_IT_FMP0 : CAN_IT_FMP1);
*state = RX_STATE_FIFO_EMPTY;
}
break;
case RX_STATE_FIFO_FULL:
__HAL_CAN_ENABLE_IT(&self->can, (fifo == CAN_FIFO0) ? CAN_IT_FF0 : CAN_IT_FF1);
*state = RX_STATE_MESSAGE_PENDING;
break;
case RX_STATE_FIFO_OVERFLOW:
__HAL_CAN_ENABLE_IT(&self->can, (fifo == CAN_FIFO0) ? CAN_IT_FOV0 : CAN_IT_FOV1);
__HAL_CAN_ENABLE_IT(&self->can, (fifo == CAN_FIFO0) ? CAN_IT_FF0 : CAN_IT_FF1);
*state = RX_STATE_MESSAGE_PENDING;
break;
}
}
// Create the tuple, or get the list, that will hold the return values
// Also populate the fourth element, either a new bytes or reuse existing memoryview
mp_obj_t ret_obj = args[ARG_list].u_obj;
mp_obj_t *items;
if (ret_obj == mp_const_none) {
ret_obj = mp_obj_new_tuple(4, NULL);
items = ((mp_obj_tuple_t*)MP_OBJ_TO_PTR(ret_obj))->items;
items[3] = mp_obj_new_bytes(&rx_msg.Data[0], rx_msg.DLC);
} else {
// User should provide a list of length at least 4 to hold the values
if (!MP_OBJ_IS_TYPE(ret_obj, &mp_type_list)) {
mp_raise_TypeError(NULL);
}
mp_obj_list_t *list = MP_OBJ_TO_PTR(ret_obj);
if (list->len < 4) {
mp_raise_ValueError(NULL);
}
items = list->items;
// Fourth element must be a memoryview which we assume points to a
// byte-like array which is large enough, and then we resize it inplace
if (!MP_OBJ_IS_TYPE(items[3], &mp_type_memoryview)) {
mp_raise_TypeError(NULL);
}
mp_obj_array_t *mv = MP_OBJ_TO_PTR(items[3]);
if (!(mv->typecode == (0x80 | BYTEARRAY_TYPECODE)
|| (mv->typecode | 0x20) == (0x80 | 'b'))) {
mp_raise_ValueError(NULL);
}
mv->len = rx_msg.DLC;
memcpy(mv->items, &rx_msg.Data[0], rx_msg.DLC);
}
// Populate the first 3 values of the tuple/list
if (rx_msg.IDE == CAN_ID_STD) {
items[0] = MP_OBJ_NEW_SMALL_INT(rx_msg.StdId);
} else {
items[0] = MP_OBJ_NEW_SMALL_INT(rx_msg.ExtId);
}
items[1] = rx_msg.RTR == CAN_RTR_REMOTE ? mp_const_true : mp_const_false;
items[2] = MP_OBJ_NEW_SMALL_INT(rx_msg.FMI);
// Return the result
return ret_obj;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_recv_obj, 1, pyb_can_recv);
/// \class method initfilterbanks
///
/// Set up the filterbanks. All filter will be disabled and set to their reset states.
///
/// - `banks` is an integer that sets how many filter banks that are reserved for CAN1.
/// 0 -> no filters assigned for CAN1
/// 28 -> all filters are assigned to CAN1
/// CAN2 will get the rest of the 28 available.
///
/// Return value: none.
STATIC mp_obj_t pyb_can_initfilterbanks(mp_obj_t self, mp_obj_t bank_in) {
can2_start_bank = mp_obj_get_int(bank_in);
for (int f = 0; f < 28; f++) {
can_clearfilter(f);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_can_initfilterbanks_fun_obj, pyb_can_initfilterbanks);
STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(pyb_can_initfilterbanks_obj, (const mp_obj_t)&pyb_can_initfilterbanks_fun_obj);
STATIC mp_obj_t pyb_can_clearfilter(mp_obj_t self_in, mp_obj_t bank_in) {
pyb_can_obj_t *self = self_in;
mp_int_t f = mp_obj_get_int(bank_in);
if (self->can_id == 2) {
f += can2_start_bank;
}
can_clearfilter(f);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_can_clearfilter_obj, pyb_can_clearfilter);
/// Configures a filterbank
/// Return value: `None`.
#define EXTENDED_ID_TO_16BIT_FILTER(id) (((id & 0xC00000) >> 13) | ((id & 0x38000) >> 15)) | 8
STATIC mp_obj_t pyb_can_setfilter(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_bank, ARG_mode, ARG_fifo, ARG_params, ARG_rtr };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_bank, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_fifo, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = CAN_FILTER_FIFO0} },
{ MP_QSTR_params, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_rtr, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
};
// parse args
pyb_can_obj_t *self = pos_args[0];
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
size_t len;
size_t rtr_len;
mp_uint_t rtr_masks[4] = {0, 0, 0, 0};
mp_obj_t *rtr_flags;
mp_obj_t *params;
mp_obj_get_array(args[ARG_params].u_obj, &len, &params);
if (args[ARG_rtr].u_obj != MP_OBJ_NULL){
mp_obj_get_array(args[ARG_rtr].u_obj, &rtr_len, &rtr_flags);
}
CAN_FilterConfTypeDef filter;
if (args[ARG_mode].u_int == MASK16 || args[ARG_mode].u_int == LIST16) {
if (len != 4) {
goto error;
}
filter.FilterScale = CAN_FILTERSCALE_16BIT;
if (self->extframe) {
if (args[ARG_rtr].u_obj != MP_OBJ_NULL) {
if (args[ARG_mode].u_int == MASK16) {
rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x02 : 0;
rtr_masks[1] = 0x02;
rtr_masks[2] = mp_obj_get_int(rtr_flags[1]) ? 0x02 : 0;
rtr_masks[3] = 0x02;
} else { // LIST16
rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x02 : 0;
rtr_masks[1] = mp_obj_get_int(rtr_flags[1]) ? 0x02 : 0;
rtr_masks[2] = mp_obj_get_int(rtr_flags[2]) ? 0x02 : 0;
rtr_masks[3] = mp_obj_get_int(rtr_flags[3]) ? 0x02 : 0;
}
}
filter.FilterIdLow = EXTENDED_ID_TO_16BIT_FILTER(mp_obj_get_int(params[0])) | rtr_masks[0]; // id1
filter.FilterMaskIdLow = EXTENDED_ID_TO_16BIT_FILTER(mp_obj_get_int(params[1])) | rtr_masks[1]; // mask1
filter.FilterIdHigh = EXTENDED_ID_TO_16BIT_FILTER(mp_obj_get_int(params[2])) | rtr_masks[2]; // id2
filter.FilterMaskIdHigh = EXTENDED_ID_TO_16BIT_FILTER(mp_obj_get_int(params[3])) | rtr_masks[3]; // mask2
} else { // Basic frames
if (args[ARG_rtr].u_obj != MP_OBJ_NULL) {
if (args[ARG_mode].u_int == MASK16) {
rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x10 : 0;
rtr_masks[1] = 0x10;
rtr_masks[2] = mp_obj_get_int(rtr_flags[1]) ? 0x10 : 0;
rtr_masks[3] = 0x10;
} else { // LIST16
rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x10 : 0;
rtr_masks[1] = mp_obj_get_int(rtr_flags[1]) ? 0x10 : 0;
rtr_masks[2] = mp_obj_get_int(rtr_flags[2]) ? 0x10 : 0;
rtr_masks[3] = mp_obj_get_int(rtr_flags[3]) ? 0x10 : 0;
}
}
filter.FilterIdLow = (mp_obj_get_int(params[0]) << 5) | rtr_masks[0]; // id1
filter.FilterMaskIdLow = (mp_obj_get_int(params[1]) << 5) | rtr_masks[1]; // mask1
filter.FilterIdHigh = (mp_obj_get_int(params[2]) << 5) | rtr_masks[2]; // id2
filter.FilterMaskIdHigh = (mp_obj_get_int(params[3]) << 5) | rtr_masks[3]; // mask2
}
if (args[ARG_mode].u_int == MASK16) {
filter.FilterMode = CAN_FILTERMODE_IDMASK;
}
if (args[ARG_mode].u_int == LIST16) {
filter.FilterMode = CAN_FILTERMODE_IDLIST;
}
}
else if (args[ARG_mode].u_int == MASK32 || args[ARG_mode].u_int == LIST32) {
if (len != 2) {
goto error;
}
filter.FilterScale = CAN_FILTERSCALE_32BIT;
if (args[ARG_rtr].u_obj != MP_OBJ_NULL) {
if (args[ARG_mode].u_int == MASK32) {
rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x02 : 0;
rtr_masks[1] = 0x02;
} else { // LIST32
rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x02 : 0;
rtr_masks[1] = mp_obj_get_int(rtr_flags[1]) ? 0x02 : 0;
}
}
filter.FilterIdHigh = (mp_obj_get_int(params[0]) & 0x1FFFE000) >> 13;
filter.FilterIdLow = (((mp_obj_get_int(params[0]) & 0x00001FFF) << 3) | 4) | rtr_masks[0];
filter.FilterMaskIdHigh = (mp_obj_get_int(params[1]) & 0x1FFFE000 ) >> 13;
filter.FilterMaskIdLow = (((mp_obj_get_int(params[1]) & 0x00001FFF) << 3) | 4) | rtr_masks[1];
if (args[ARG_mode].u_int == MASK32) {
filter.FilterMode = CAN_FILTERMODE_IDMASK;
}
if (args[ARG_mode].u_int == LIST32) {
filter.FilterMode = CAN_FILTERMODE_IDLIST;
}
} else {
goto error;
}
filter.FilterFIFOAssignment = args[ARG_fifo].u_int;
filter.FilterNumber = args[ARG_bank].u_int;
if (self->can_id == 1) {
if (filter.FilterNumber >= can2_start_bank) {
goto error;
}
} else {
filter.FilterNumber = filter.FilterNumber + can2_start_bank;
if (filter.FilterNumber > 27) {
goto error;
}
}
filter.FilterActivation = ENABLE;
filter.BankNumber = can2_start_bank;
HAL_CAN_ConfigFilter(&self->can, &filter);
return mp_const_none;
error:
mp_raise_ValueError("CAN filter parameter error");
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_setfilter_obj, 1, pyb_can_setfilter);
STATIC mp_obj_t pyb_can_rxcallback(mp_obj_t self_in, mp_obj_t fifo_in, mp_obj_t callback_in) {
pyb_can_obj_t *self = self_in;
mp_int_t fifo = mp_obj_get_int(fifo_in);
mp_obj_t *callback;
callback = (fifo == 0) ? &self->rxcallback0 : &self->rxcallback1;
if (callback_in == mp_const_none) {
__HAL_CAN_DISABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FMP0 : CAN_IT_FMP1);
__HAL_CAN_DISABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FF0 : CAN_IT_FF1);
__HAL_CAN_DISABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FOV0 : CAN_IT_FOV1);
__HAL_CAN_CLEAR_FLAG(&self->can, (fifo == CAN_FIFO0) ? CAN_FLAG_FF0 : CAN_FLAG_FF1);
__HAL_CAN_CLEAR_FLAG(&self->can, (fifo == CAN_FIFO0) ? CAN_FLAG_FOV0 : CAN_FLAG_FOV1);
*callback = mp_const_none;
} else if (*callback != mp_const_none) {
// Rx call backs has already been initialized
// only the callback function should be changed
*callback = callback_in;
} else if (mp_obj_is_callable(callback_in)) {
*callback = callback_in;
uint32_t irq = 0;
if (self->can_id == PYB_CAN_1) {
irq = (fifo == 0) ? CAN1_RX0_IRQn : CAN1_RX1_IRQn;
#if defined(CAN2)
} else {
irq = (fifo == 0) ? CAN2_RX0_IRQn : CAN2_RX1_IRQn;
#endif
}
NVIC_SetPriority(irq, IRQ_PRI_CAN);
HAL_NVIC_EnableIRQ(irq);
__HAL_CAN_ENABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FMP0 : CAN_IT_FMP1);
__HAL_CAN_ENABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FF0 : CAN_IT_FF1);
__HAL_CAN_ENABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FOV0 : CAN_IT_FOV1);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_can_rxcallback_obj, pyb_can_rxcallback);
STATIC const mp_rom_map_elem_t pyb_can_locals_dict_table[] = {
// instance methods
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_can_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_can_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_restart), MP_ROM_PTR(&pyb_can_restart_obj) },
{ MP_ROM_QSTR(MP_QSTR_state), MP_ROM_PTR(&pyb_can_state_obj) },
{ MP_ROM_QSTR(MP_QSTR_info), MP_ROM_PTR(&pyb_can_info_obj) },
{ MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&pyb_can_any_obj) },
{ MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&pyb_can_send_obj) },
{ MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&pyb_can_recv_obj) },
{ MP_ROM_QSTR(MP_QSTR_initfilterbanks), MP_ROM_PTR(&pyb_can_initfilterbanks_obj) },
{ MP_ROM_QSTR(MP_QSTR_setfilter), MP_ROM_PTR(&pyb_can_setfilter_obj) },
{ MP_ROM_QSTR(MP_QSTR_clearfilter), MP_ROM_PTR(&pyb_can_clearfilter_obj) },
{ MP_ROM_QSTR(MP_QSTR_rxcallback), MP_ROM_PTR(&pyb_can_rxcallback_obj) },
// class constants
// Note: we use the ST constants >> 4 so they fit in a small-int. The
// right-shift is undone when the constants are used in the init function.
{ MP_ROM_QSTR(MP_QSTR_NORMAL), MP_ROM_INT(CAN_MODE_NORMAL >> 4) },
{ MP_ROM_QSTR(MP_QSTR_LOOPBACK), MP_ROM_INT(CAN_MODE_LOOPBACK >> 4) },
{ MP_ROM_QSTR(MP_QSTR_SILENT), MP_ROM_INT(CAN_MODE_SILENT >> 4) },
{ MP_ROM_QSTR(MP_QSTR_SILENT_LOOPBACK), MP_ROM_INT(CAN_MODE_SILENT_LOOPBACK >> 4) },
{ MP_ROM_QSTR(MP_QSTR_MASK16), MP_ROM_INT(MASK16) },
{ MP_ROM_QSTR(MP_QSTR_LIST16), MP_ROM_INT(LIST16) },
{ MP_ROM_QSTR(MP_QSTR_MASK32), MP_ROM_INT(MASK32) },
{ MP_ROM_QSTR(MP_QSTR_LIST32), MP_ROM_INT(LIST32) },
// values for CAN.state()
{ MP_ROM_QSTR(MP_QSTR_STOPPED), MP_ROM_INT(CAN_STATE_STOPPED) },
{ MP_ROM_QSTR(MP_QSTR_ERROR_ACTIVE), MP_ROM_INT(CAN_STATE_ERROR_ACTIVE) },
{ MP_ROM_QSTR(MP_QSTR_ERROR_WARNING), MP_ROM_INT(CAN_STATE_ERROR_WARNING) },
{ MP_ROM_QSTR(MP_QSTR_ERROR_PASSIVE), MP_ROM_INT(CAN_STATE_ERROR_PASSIVE) },
{ MP_ROM_QSTR(MP_QSTR_BUS_OFF), MP_ROM_INT(CAN_STATE_BUS_OFF) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_can_locals_dict, pyb_can_locals_dict_table);
mp_uint_t can_ioctl(mp_obj_t self_in, mp_uint_t request, mp_uint_t arg, int *errcode) {
pyb_can_obj_t *self = self_in;
mp_uint_t ret;
if (request == MP_STREAM_POLL) {
mp_uint_t flags = arg;
ret = 0;
if ((flags & MP_STREAM_POLL_RD)
&& ((__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO0) != 0)
|| (__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO1) != 0))) {
ret |= MP_STREAM_POLL_RD;
}
if ((flags & MP_STREAM_POLL_WR) && (self->can.Instance->TSR & CAN_TSR_TME)) {
ret |= MP_STREAM_POLL_WR;
}
} else {
*errcode = MP_EINVAL;
ret = -1;
}
return ret;
}
void can_rx_irq_handler(uint can_id, uint fifo_id) {
mp_obj_t callback;
pyb_can_obj_t *self;
mp_obj_t irq_reason = MP_OBJ_NEW_SMALL_INT(0);
byte *state;
self = MP_STATE_PORT(pyb_can_obj_all)[can_id - 1];
if (fifo_id == CAN_FIFO0) {
callback = self->rxcallback0;
state = &self->rx_state0;
} else {
callback = self->rxcallback1;
state = &self->rx_state1;
}
switch (*state) {
case RX_STATE_FIFO_EMPTY:
__HAL_CAN_DISABLE_IT(&self->can, (fifo_id == CAN_FIFO0) ? CAN_IT_FMP0 : CAN_IT_FMP1);
irq_reason = MP_OBJ_NEW_SMALL_INT(0);
*state = RX_STATE_MESSAGE_PENDING;
break;
case RX_STATE_MESSAGE_PENDING:
__HAL_CAN_DISABLE_IT(&self->can, (fifo_id == CAN_FIFO0) ? CAN_IT_FF0 : CAN_IT_FF1);
__HAL_CAN_CLEAR_FLAG(&self->can, (fifo_id == CAN_FIFO0) ? CAN_FLAG_FF0 : CAN_FLAG_FF1);
irq_reason = MP_OBJ_NEW_SMALL_INT(1);
*state = RX_STATE_FIFO_FULL;
break;
case RX_STATE_FIFO_FULL:
__HAL_CAN_DISABLE_IT(&self->can, (fifo_id == CAN_FIFO0) ? CAN_IT_FOV0 : CAN_IT_FOV1);
__HAL_CAN_CLEAR_FLAG(&self->can, (fifo_id == CAN_FIFO0) ? CAN_FLAG_FOV0 : CAN_FLAG_FOV1);
irq_reason = MP_OBJ_NEW_SMALL_INT(2);
*state = RX_STATE_FIFO_OVERFLOW;
break;
case RX_STATE_FIFO_OVERFLOW:
// This should never happen
break;
}
if (callback != mp_const_none) {
mp_sched_lock();
gc_lock();
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
mp_call_function_2(callback, self, irq_reason);
nlr_pop();
} else {
// Uncaught exception; disable the callback so it doesn't run again.
pyb_can_rxcallback(self, MP_OBJ_NEW_SMALL_INT(fifo_id), mp_const_none);
printf("uncaught exception in CAN(%u) rx interrupt handler\n", self->can_id);
mp_obj_print_exception(&mp_plat_print, (mp_obj_t)nlr.ret_val);
}
gc_unlock();
mp_sched_unlock();
}
}
void can_sce_irq_handler(uint can_id) {
pyb_can_obj_t *self = MP_STATE_PORT(pyb_can_obj_all)[can_id - 1];
if (self) {
self->can.Instance->MSR = CAN_MSR_ERRI;
uint32_t esr = self->can.Instance->ESR;
if (esr & CAN_ESR_BOFF) {
++self->num_bus_off;
} else if (esr & CAN_ESR_EPVF) {
++self->num_error_passive;
} else if (esr & CAN_ESR_EWGF) {
++self->num_error_warning;
}
}
}
STATIC const mp_stream_p_t can_stream_p = {
//.read = can_read, // is read sensible for CAN?
//.write = can_write, // is write sensible for CAN?
.ioctl = can_ioctl,
.is_text = false,
};
const mp_obj_type_t pyb_can_type = {
{ &mp_type_type },
.name = MP_QSTR_CAN,
.print = pyb_can_print,
.make_new = pyb_can_make_new,
.protocol = &can_stream_p,
.locals_dict = (mp_obj_t)&pyb_can_locals_dict,
};
#endif // MICROPY_HW_ENABLE_CAN