circuitpython/py/obj.h
Andrew Leech f7f56d4285 py/objstr: Consolidate methods for str/bytes/bytearray/array.
This commit adds the bytes methods to bytearray, matching CPython.  The
existing implementations of these methods for str/bytes are reused for
bytearray with minor updates to match CPython return types.

For details on the CPython behaviour see
https://docs.python.org/3/library/stdtypes.html#bytes-and-bytearray-operations

The work to merge locals tables for str/bytes/bytearray/array was done by
@jimmo.  Because of this merging of locals the change in code size for this
commit is mostly negative:

       bare-arm:    +0 +0.000%
    minimal x86:   +29 +0.018%
       unix x64:  -792 -0.128% standard[incl -448(data)]
    unix nanbox:  -436 -0.078% nanbox[incl -448(data)]
          stm32:   -40 -0.010% PYBV10
         cc3200:   -32 -0.017%
        esp8266:   -28 -0.004% GENERIC
          esp32:   -72 -0.005% GENERIC[incl -200(data)]
         mimxrt:   -40 -0.011% TEENSY40
     renesas-ra:   -40 -0.006% RA6M2_EK
            nrf:   -16 -0.009% pca10040
            rp2:   -64 -0.013% PICO
           samd:  +148 +0.105% ADAFRUIT_ITSYBITSY_M4_EXPRESS
2022-08-11 23:18:02 +10:00

1103 lines
47 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MICROPY_INCLUDED_PY_OBJ_H
#define MICROPY_INCLUDED_PY_OBJ_H
#include <assert.h>
#include "py/mpconfig.h"
#include "py/misc.h"
#include "py/qstr.h"
#include "py/mpprint.h"
#include "py/runtime0.h"
// This is the definition of the opaque MicroPython object type.
// All concrete objects have an encoding within this type and the
// particular encoding is specified by MICROPY_OBJ_REPR.
#if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
typedef uint64_t mp_obj_t;
typedef uint64_t mp_const_obj_t;
#else
typedef void *mp_obj_t;
typedef const void *mp_const_obj_t;
#endif
// This mp_obj_type_t struct is a concrete MicroPython object which holds info
// about a type. See below for actual definition of the struct.
typedef struct _mp_obj_type_t mp_obj_type_t;
// Anything that wants to be a concrete MicroPython object must have mp_obj_base_t
// as its first member (small ints, qstr objs and inline floats are not concrete).
struct _mp_obj_base_t {
const mp_obj_type_t *type MICROPY_OBJ_BASE_ALIGNMENT;
};
typedef struct _mp_obj_base_t mp_obj_base_t;
// These fake objects are used to indicate certain things in arguments or return
// values, and should only be used when explicitly allowed.
//
// - MP_OBJ_NULL : used to indicate the absence of an object, or unsupported operation.
// - MP_OBJ_STOP_ITERATION : used instead of throwing a StopIteration, for efficiency.
// - MP_OBJ_SENTINEL : used for various internal purposes where one needs
// an object which is unique from all other objects, including MP_OBJ_NULL.
//
// For debugging purposes they are all different. For non-debug mode, we alias
// as many as we can to MP_OBJ_NULL because it's cheaper to load/compare 0.
#if MICROPY_DEBUG_MP_OBJ_SENTINELS
#define MP_OBJ_NULL (MP_OBJ_FROM_PTR((void *)0))
#define MP_OBJ_STOP_ITERATION (MP_OBJ_FROM_PTR((void *)4))
#define MP_OBJ_SENTINEL (MP_OBJ_FROM_PTR((void *)8))
#else
#define MP_OBJ_NULL (MP_OBJ_FROM_PTR((void *)0))
#define MP_OBJ_STOP_ITERATION (MP_OBJ_FROM_PTR((void *)0))
#define MP_OBJ_SENTINEL (MP_OBJ_FROM_PTR((void *)4))
#endif
// These macros/inline functions operate on objects and depend on the
// particular object representation. They are used to query, pack and
// unpack small ints, qstrs and full object pointers.
#if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_A
static inline bool mp_obj_is_small_int(mp_const_obj_t o) {
return (((mp_int_t)(o)) & 1) != 0;
}
#define MP_OBJ_SMALL_INT_VALUE(o) (((mp_int_t)(o)) >> 1)
#define MP_OBJ_NEW_SMALL_INT(small_int) ((mp_obj_t)((((mp_uint_t)(small_int)) << 1) | 1))
static inline bool mp_obj_is_qstr(mp_const_obj_t o) {
return (((mp_int_t)(o)) & 7) == 2;
}
#define MP_OBJ_QSTR_VALUE(o) (((mp_uint_t)(o)) >> 3)
#define MP_OBJ_NEW_QSTR(qst) ((mp_obj_t)((((mp_uint_t)(qst)) << 3) | 2))
static inline bool mp_obj_is_immediate_obj(mp_const_obj_t o) {
return (((mp_int_t)(o)) & 7) == 6;
}
#define MP_OBJ_IMMEDIATE_OBJ_VALUE(o) (((mp_uint_t)(o)) >> 3)
#define MP_OBJ_NEW_IMMEDIATE_OBJ(val) ((mp_obj_t)(((val) << 3) | 6))
#if MICROPY_PY_BUILTINS_FLOAT
#define mp_const_float_e MP_ROM_PTR(&mp_const_float_e_obj)
#define mp_const_float_pi MP_ROM_PTR(&mp_const_float_pi_obj)
#if MICROPY_PY_MATH_CONSTANTS
#define mp_const_float_tau MP_ROM_PTR(&mp_const_float_tau_obj)
#define mp_const_float_inf MP_ROM_PTR(&mp_const_float_inf_obj)
#define mp_const_float_nan MP_ROM_PTR(&mp_const_float_nan_obj)
#endif
extern const struct _mp_obj_float_t mp_const_float_e_obj;
extern const struct _mp_obj_float_t mp_const_float_pi_obj;
#if MICROPY_PY_MATH_CONSTANTS
extern const struct _mp_obj_float_t mp_const_float_tau_obj;
extern const struct _mp_obj_float_t mp_const_float_inf_obj;
extern const struct _mp_obj_float_t mp_const_float_nan_obj;
#endif
#define mp_obj_is_float(o) mp_obj_is_type((o), &mp_type_float)
mp_float_t mp_obj_float_get(mp_obj_t self_in);
mp_obj_t mp_obj_new_float(mp_float_t value);
#endif
static inline bool mp_obj_is_obj(mp_const_obj_t o) {
return (((mp_int_t)(o)) & 3) == 0;
}
#elif MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_B
static inline bool mp_obj_is_small_int(mp_const_obj_t o) {
return (((mp_int_t)(o)) & 3) == 1;
}
#define MP_OBJ_SMALL_INT_VALUE(o) (((mp_int_t)(o)) >> 2)
#define MP_OBJ_NEW_SMALL_INT(small_int) ((mp_obj_t)((((mp_uint_t)(small_int)) << 2) | 1))
static inline bool mp_obj_is_qstr(mp_const_obj_t o) {
return (((mp_int_t)(o)) & 7) == 3;
}
#define MP_OBJ_QSTR_VALUE(o) (((mp_uint_t)(o)) >> 3)
#define MP_OBJ_NEW_QSTR(qst) ((mp_obj_t)((((mp_uint_t)(qst)) << 3) | 3))
static inline bool mp_obj_is_immediate_obj(mp_const_obj_t o) {
return (((mp_int_t)(o)) & 7) == 7;
}
#define MP_OBJ_IMMEDIATE_OBJ_VALUE(o) (((mp_uint_t)(o)) >> 3)
#define MP_OBJ_NEW_IMMEDIATE_OBJ(val) ((mp_obj_t)(((val) << 3) | 7))
#if MICROPY_PY_BUILTINS_FLOAT
#define mp_const_float_e MP_ROM_PTR(&mp_const_float_e_obj)
#define mp_const_float_pi MP_ROM_PTR(&mp_const_float_pi_obj)
#if MICROPY_PY_MATH_CONSTANTS
#define mp_const_float_tau MP_ROM_PTR(&mp_const_float_tau_obj)
#define mp_const_float_inf MP_ROM_PTR(&mp_const_float_inf_obj)
#define mp_const_float_nan MP_ROM_PTR(&mp_const_float_nan_obj)
#endif
extern const struct _mp_obj_float_t mp_const_float_e_obj;
extern const struct _mp_obj_float_t mp_const_float_pi_obj;
#if MICROPY_PY_MATH_CONSTANTS
extern const struct _mp_obj_float_t mp_const_float_tau_obj;
extern const struct _mp_obj_float_t mp_const_float_inf_obj;
extern const struct _mp_obj_float_t mp_const_float_nan_obj;
#endif
#define mp_obj_is_float(o) mp_obj_is_type((o), &mp_type_float)
mp_float_t mp_obj_float_get(mp_obj_t self_in);
mp_obj_t mp_obj_new_float(mp_float_t value);
#endif
static inline bool mp_obj_is_obj(mp_const_obj_t o) {
return (((mp_int_t)(o)) & 1) == 0;
}
#elif MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_C
static inline bool mp_obj_is_small_int(mp_const_obj_t o) {
return (((mp_int_t)(o)) & 1) != 0;
}
#define MP_OBJ_SMALL_INT_VALUE(o) (((mp_int_t)(o)) >> 1)
#define MP_OBJ_NEW_SMALL_INT(small_int) ((mp_obj_t)((((mp_uint_t)(small_int)) << 1) | 1))
#if MICROPY_PY_BUILTINS_FLOAT
#define mp_const_float_e MP_ROM_PTR((mp_obj_t)(((0x402df854 & ~3) | 2) + 0x80800000))
#define mp_const_float_pi MP_ROM_PTR((mp_obj_t)(((0x40490fdb & ~3) | 2) + 0x80800000))
#if MICROPY_PY_MATH_CONSTANTS
#define mp_const_float_tau MP_ROM_PTR((mp_obj_t)(((0x40c90fdb & ~3) | 2) + 0x80800000))
#define mp_const_float_inf MP_ROM_PTR((mp_obj_t)(((0x7f800000 & ~3) | 2) + 0x80800000))
#define mp_const_float_nan MP_ROM_PTR((mp_obj_t)(((0xffc00000 & ~3) | 2) + 0x80800000))
#endif
static inline bool mp_obj_is_float(mp_const_obj_t o) {
return (((mp_uint_t)(o)) & 3) == 2 && (((mp_uint_t)(o)) & 0xff800007) != 0x00000006;
}
static inline mp_float_t mp_obj_float_get(mp_const_obj_t o) {
union {
mp_float_t f;
mp_uint_t u;
} num = {.u = ((mp_uint_t)o - 0x80800000) & ~3};
return num.f;
}
static inline mp_obj_t mp_obj_new_float(mp_float_t f) {
union {
mp_float_t f;
mp_uint_t u;
} num = {.f = f};
return (mp_obj_t)(((num.u & ~0x3) | 2) + 0x80800000);
}
#endif
static inline bool mp_obj_is_qstr(mp_const_obj_t o) {
return (((mp_uint_t)(o)) & 0xff80000f) == 0x00000006;
}
#define MP_OBJ_QSTR_VALUE(o) (((mp_uint_t)(o)) >> 4)
#define MP_OBJ_NEW_QSTR(qst) ((mp_obj_t)((((mp_uint_t)(qst)) << 4) | 0x00000006))
static inline bool mp_obj_is_immediate_obj(mp_const_obj_t o) {
return (((mp_uint_t)(o)) & 0xff80000f) == 0x0000000e;
}
#define MP_OBJ_IMMEDIATE_OBJ_VALUE(o) (((mp_uint_t)(o)) >> 4)
#define MP_OBJ_NEW_IMMEDIATE_OBJ(val) ((mp_obj_t)(((val) << 4) | 0xe))
static inline bool mp_obj_is_obj(mp_const_obj_t o) {
return (((mp_int_t)(o)) & 3) == 0;
}
#elif MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
static inline bool mp_obj_is_small_int(mp_const_obj_t o) {
return (((uint64_t)(o)) & 0xffff000000000000) == 0x0001000000000000;
}
#define MP_OBJ_SMALL_INT_VALUE(o) (((mp_int_t)((o) << 16)) >> 17)
#define MP_OBJ_NEW_SMALL_INT(small_int) (((((uint64_t)(small_int)) & 0x7fffffffffff) << 1) | 0x0001000000000001)
static inline bool mp_obj_is_qstr(mp_const_obj_t o) {
return (((uint64_t)(o)) & 0xffff000000000000) == 0x0002000000000000;
}
#define MP_OBJ_QSTR_VALUE(o) ((((uint32_t)(o)) >> 1) & 0xffffffff)
#define MP_OBJ_NEW_QSTR(qst) ((mp_obj_t)(((uint64_t)(((uint32_t)(qst)) << 1)) | 0x0002000000000001))
static inline bool mp_obj_is_immediate_obj(mp_const_obj_t o) {
return (((uint64_t)(o)) & 0xffff000000000000) == 0x0003000000000000;
}
#define MP_OBJ_IMMEDIATE_OBJ_VALUE(o) ((((uint32_t)(o)) >> 46) & 3)
#define MP_OBJ_NEW_IMMEDIATE_OBJ(val) (((uint64_t)(val) << 46) | 0x0003000000000000)
#if MICROPY_PY_BUILTINS_FLOAT
#if MICROPY_FLOAT_IMPL != MICROPY_FLOAT_IMPL_DOUBLE
#error MICROPY_OBJ_REPR_D requires MICROPY_FLOAT_IMPL_DOUBLE
#endif
#define mp_const_float_e {((mp_obj_t)((uint64_t)0x4005bf0a8b145769 + 0x8004000000000000))}
#define mp_const_float_pi {((mp_obj_t)((uint64_t)0x400921fb54442d18 + 0x8004000000000000))}
#if MICROPY_PY_MATH_CONSTANTS
#define mp_const_float_tau {((mp_obj_t)((uint64_t)0x401921fb54442d18 + 0x8004000000000000))}
#define mp_const_float_inf {((mp_obj_t)((uint64_t)0x7ff0000000000000 + 0x8004000000000000))}
#define mp_const_float_nan {((mp_obj_t)((uint64_t)0xfff8000000000000 + 0x8004000000000000))}
#endif
static inline bool mp_obj_is_float(mp_const_obj_t o) {
return ((uint64_t)(o) & 0xfffc000000000000) != 0;
}
static inline mp_float_t mp_obj_float_get(mp_const_obj_t o) {
union {
mp_float_t f;
uint64_t r;
} num = {.r = o - 0x8004000000000000};
return num.f;
}
static inline mp_obj_t mp_obj_new_float(mp_float_t f) {
union {
mp_float_t f;
uint64_t r;
} num = {.f = f};
return num.r + 0x8004000000000000;
}
#endif
static inline bool mp_obj_is_obj(mp_const_obj_t o) {
return (((uint64_t)(o)) & 0xffff000000000000) == 0x0000000000000000;
}
#define MP_OBJ_TO_PTR(o) ((void *)(uintptr_t)(o))
#define MP_OBJ_FROM_PTR(p) ((mp_obj_t)((uintptr_t)(p)))
// rom object storage needs special handling to widen 32-bit pointer to 64-bits
typedef union _mp_rom_obj_t { uint64_t u64;
struct { const void *lo, *hi;
} u32;
} mp_rom_obj_t;
#define MP_ROM_INT(i) {MP_OBJ_NEW_SMALL_INT(i)}
#define MP_ROM_QSTR(q) {MP_OBJ_NEW_QSTR(q)}
#if MP_ENDIANNESS_LITTLE
#define MP_ROM_PTR(p) {.u32 = {.lo = (p), .hi = NULL}}
#else
#define MP_ROM_PTR(p) {.u32 = {.lo = NULL, .hi = (p)}}
#endif
#endif
// Macros to convert between mp_obj_t and concrete object types.
// These are identity operations in MicroPython, but ability to override
// these operations are provided to experiment with other methods of
// object representation and memory management.
// Cast mp_obj_t to object pointer
#ifndef MP_OBJ_TO_PTR
#define MP_OBJ_TO_PTR(o) ((void *)o)
#endif
// Cast object pointer to mp_obj_t
#ifndef MP_OBJ_FROM_PTR
#define MP_OBJ_FROM_PTR(p) ((mp_obj_t)p)
#endif
// Macros to create objects that are stored in ROM.
#ifndef MP_ROM_NONE
#if MICROPY_OBJ_IMMEDIATE_OBJS
#define MP_ROM_NONE mp_const_none
#else
#define MP_ROM_NONE MP_ROM_PTR(&mp_const_none_obj)
#endif
#endif
#ifndef MP_ROM_FALSE
#if MICROPY_OBJ_IMMEDIATE_OBJS
#define MP_ROM_FALSE mp_const_false
#define MP_ROM_TRUE mp_const_true
#else
#define MP_ROM_FALSE MP_ROM_PTR(&mp_const_false_obj)
#define MP_ROM_TRUE MP_ROM_PTR(&mp_const_true_obj)
#endif
#endif
#ifndef MP_ROM_INT
typedef mp_const_obj_t mp_rom_obj_t;
#define MP_ROM_INT(i) MP_OBJ_NEW_SMALL_INT(i)
#define MP_ROM_QSTR(q) MP_OBJ_NEW_QSTR(q)
#define MP_ROM_PTR(p) (p)
/* for testing
typedef struct _mp_rom_obj_t { mp_const_obj_t o; } mp_rom_obj_t;
#define MP_ROM_INT(i) {MP_OBJ_NEW_SMALL_INT(i)}
#define MP_ROM_QSTR(q) {MP_OBJ_NEW_QSTR(q)}
#define MP_ROM_PTR(p) {.o = p}
*/
#endif
// These macros are used to declare and define constant function objects
// You can put "static" in front of the definitions to make them local
#define MP_DECLARE_CONST_FUN_OBJ_0(obj_name) extern const mp_obj_fun_builtin_fixed_t obj_name
#define MP_DECLARE_CONST_FUN_OBJ_1(obj_name) extern const mp_obj_fun_builtin_fixed_t obj_name
#define MP_DECLARE_CONST_FUN_OBJ_2(obj_name) extern const mp_obj_fun_builtin_fixed_t obj_name
#define MP_DECLARE_CONST_FUN_OBJ_3(obj_name) extern const mp_obj_fun_builtin_fixed_t obj_name
#define MP_DECLARE_CONST_FUN_OBJ_VAR(obj_name) extern const mp_obj_fun_builtin_var_t obj_name
#define MP_DECLARE_CONST_FUN_OBJ_VAR_BETWEEN(obj_name) extern const mp_obj_fun_builtin_var_t obj_name
#define MP_DECLARE_CONST_FUN_OBJ_KW(obj_name) extern const mp_obj_fun_builtin_var_t obj_name
#define MP_OBJ_FUN_ARGS_MAX (0xffff) // to set maximum value in n_args_max below
#define MP_OBJ_FUN_MAKE_SIG(n_args_min, n_args_max, takes_kw) ((uint32_t)((((uint32_t)(n_args_min)) << 17) | (((uint32_t)(n_args_max)) << 1) | ((takes_kw) ? 1 : 0)))
#define MP_DEFINE_CONST_FUN_OBJ_0(obj_name, fun_name) \
const mp_obj_fun_builtin_fixed_t obj_name = \
{{&mp_type_fun_builtin_0}, .fun._0 = fun_name}
#define MP_DEFINE_CONST_FUN_OBJ_1(obj_name, fun_name) \
const mp_obj_fun_builtin_fixed_t obj_name = \
{{&mp_type_fun_builtin_1}, .fun._1 = fun_name}
#define MP_DEFINE_CONST_FUN_OBJ_2(obj_name, fun_name) \
const mp_obj_fun_builtin_fixed_t obj_name = \
{{&mp_type_fun_builtin_2}, .fun._2 = fun_name}
#define MP_DEFINE_CONST_FUN_OBJ_3(obj_name, fun_name) \
const mp_obj_fun_builtin_fixed_t obj_name = \
{{&mp_type_fun_builtin_3}, .fun._3 = fun_name}
#define MP_DEFINE_CONST_FUN_OBJ_VAR(obj_name, n_args_min, fun_name) \
const mp_obj_fun_builtin_var_t obj_name = \
{{&mp_type_fun_builtin_var}, MP_OBJ_FUN_MAKE_SIG(n_args_min, MP_OBJ_FUN_ARGS_MAX, false), .fun.var = fun_name}
#define MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(obj_name, n_args_min, n_args_max, fun_name) \
const mp_obj_fun_builtin_var_t obj_name = \
{{&mp_type_fun_builtin_var}, MP_OBJ_FUN_MAKE_SIG(n_args_min, n_args_max, false), .fun.var = fun_name}
#define MP_DEFINE_CONST_FUN_OBJ_KW(obj_name, n_args_min, fun_name) \
const mp_obj_fun_builtin_var_t obj_name = \
{{&mp_type_fun_builtin_var}, MP_OBJ_FUN_MAKE_SIG(n_args_min, MP_OBJ_FUN_ARGS_MAX, true), .fun.kw = fun_name}
// These macros are used to define constant map/dict objects
// You can put "static" in front of the definition to make it local
#define MP_DEFINE_CONST_MAP(map_name, table_name) \
const mp_map_t map_name = { \
.all_keys_are_qstrs = 1, \
.is_fixed = 1, \
.is_ordered = 1, \
.used = MP_ARRAY_SIZE(table_name), \
.alloc = MP_ARRAY_SIZE(table_name), \
.table = (mp_map_elem_t *)(mp_rom_map_elem_t *)table_name, \
}
#define MP_DEFINE_CONST_DICT_WITH_SIZE(dict_name, table_name, n) \
const mp_obj_dict_t dict_name = { \
.base = {&mp_type_dict}, \
.map = { \
.all_keys_are_qstrs = 1, \
.is_fixed = 1, \
.is_ordered = 1, \
.used = n, \
.alloc = n, \
.table = (mp_map_elem_t *)(mp_rom_map_elem_t *)table_name, \
}, \
}
#define MP_DEFINE_CONST_DICT(dict_name, table_name) MP_DEFINE_CONST_DICT_WITH_SIZE(dict_name, table_name, MP_ARRAY_SIZE(table_name))
// These macros are used to declare and define constant staticmethond and classmethod objects
// You can put "static" in front of the definitions to make them local
#define MP_DECLARE_CONST_STATICMETHOD_OBJ(obj_name) extern const mp_rom_obj_static_class_method_t obj_name
#define MP_DECLARE_CONST_CLASSMETHOD_OBJ(obj_name) extern const mp_rom_obj_static_class_method_t obj_name
#define MP_DEFINE_CONST_STATICMETHOD_OBJ(obj_name, fun_name) const mp_rom_obj_static_class_method_t obj_name = {{&mp_type_staticmethod}, fun_name}
#define MP_DEFINE_CONST_CLASSMETHOD_OBJ(obj_name, fun_name) const mp_rom_obj_static_class_method_t obj_name = {{&mp_type_classmethod}, fun_name}
#ifndef NO_QSTR
// Declare a module as a builtin, processed by makemoduledefs.py
// param module_name: MP_QSTR_<module name>
// param obj_module: mp_obj_module_t instance
#define MP_REGISTER_MODULE(module_name, obj_module)
// Declare a root pointer (to avoid garbage collection of a global static variable).
// param variable_declaration: a valid C variable declaration
#define MP_REGISTER_ROOT_POINTER(variable_declaration)
#endif // NO_QSTR
// Underlying map/hash table implementation (not dict object or map function)
typedef struct _mp_map_elem_t {
mp_obj_t key;
mp_obj_t value;
} mp_map_elem_t;
typedef struct _mp_rom_map_elem_t {
mp_rom_obj_t key;
mp_rom_obj_t value;
} mp_rom_map_elem_t;
typedef struct _mp_map_t {
size_t all_keys_are_qstrs : 1;
size_t is_fixed : 1; // if set, table is fixed/read-only and can't be modified
size_t is_ordered : 1; // if set, table is an ordered array, not a hash map
size_t used : (8 * sizeof(size_t) - 3);
size_t alloc;
mp_map_elem_t *table;
} mp_map_t;
// mp_set_lookup requires these constants to have the values they do
typedef enum _mp_map_lookup_kind_t {
MP_MAP_LOOKUP = 0,
MP_MAP_LOOKUP_ADD_IF_NOT_FOUND = 1,
MP_MAP_LOOKUP_REMOVE_IF_FOUND = 2,
MP_MAP_LOOKUP_ADD_IF_NOT_FOUND_OR_REMOVE_IF_FOUND = 3, // only valid for mp_set_lookup
} mp_map_lookup_kind_t;
static inline bool mp_map_slot_is_filled(const mp_map_t *map, size_t pos) {
assert(pos < map->alloc);
return (map)->table[pos].key != MP_OBJ_NULL && (map)->table[pos].key != MP_OBJ_SENTINEL;
}
void mp_map_init(mp_map_t *map, size_t n);
void mp_map_init_fixed_table(mp_map_t *map, size_t n, const mp_obj_t *table);
mp_map_t *mp_map_new(size_t n);
void mp_map_deinit(mp_map_t *map);
void mp_map_free(mp_map_t *map);
mp_map_elem_t *mp_map_lookup(mp_map_t *map, mp_obj_t index, mp_map_lookup_kind_t lookup_kind);
void mp_map_clear(mp_map_t *map);
void mp_map_dump(mp_map_t *map);
// Underlying set implementation (not set object)
typedef struct _mp_set_t {
size_t alloc;
size_t used;
mp_obj_t *table;
} mp_set_t;
static inline bool mp_set_slot_is_filled(const mp_set_t *set, size_t pos) {
return (set)->table[pos] != MP_OBJ_NULL && (set)->table[pos] != MP_OBJ_SENTINEL;
}
void mp_set_init(mp_set_t *set, size_t n);
mp_obj_t mp_set_lookup(mp_set_t *set, mp_obj_t index, mp_map_lookup_kind_t lookup_kind);
mp_obj_t mp_set_remove_first(mp_set_t *set);
void mp_set_clear(mp_set_t *set);
// Type definitions for methods
typedef mp_obj_t (*mp_fun_0_t)(void);
typedef mp_obj_t (*mp_fun_1_t)(mp_obj_t);
typedef mp_obj_t (*mp_fun_2_t)(mp_obj_t, mp_obj_t);
typedef mp_obj_t (*mp_fun_3_t)(mp_obj_t, mp_obj_t, mp_obj_t);
typedef mp_obj_t (*mp_fun_var_t)(size_t n, const mp_obj_t *);
// mp_fun_kw_t takes mp_map_t* (and not const mp_map_t*) to ease passing
// this arg to mp_map_lookup().
typedef mp_obj_t (*mp_fun_kw_t)(size_t n, const mp_obj_t *, mp_map_t *);
// Flags for type behaviour (mp_obj_type_t.flags)
// If MP_TYPE_FLAG_EQ_NOT_REFLEXIVE is clear then __eq__ is reflexive (A==A returns True).
// If MP_TYPE_FLAG_EQ_CHECKS_OTHER_TYPE is clear then the type can't be equal to an
// instance of any different class that also clears this flag. If this flag is set
// then the type may check for equality against a different type.
// If MP_TYPE_FLAG_EQ_HAS_NEQ_TEST is clear then the type only implements the __eq__
// operator and not the __ne__ operator. If it's set then __ne__ may be implemented.
// If MP_TYPE_FLAG_BINDS_SELF is set then the type as a method binds self as the first arg.
// If MP_TYPE_FLAG_BUILTIN_FUN is set then the type is a built-in function type.
#define MP_TYPE_FLAG_IS_SUBCLASSED (0x0001)
#define MP_TYPE_FLAG_HAS_SPECIAL_ACCESSORS (0x0002)
#define MP_TYPE_FLAG_EQ_NOT_REFLEXIVE (0x0004)
#define MP_TYPE_FLAG_EQ_CHECKS_OTHER_TYPE (0x0008)
#define MP_TYPE_FLAG_EQ_HAS_NEQ_TEST (0x0010)
#define MP_TYPE_FLAG_BINDS_SELF (0x0020)
#define MP_TYPE_FLAG_BUILTIN_FUN (0x0040)
typedef enum {
PRINT_STR = 0,
PRINT_REPR = 1,
PRINT_EXC = 2, // Special format for printing exception in unhandled exception message
PRINT_JSON = 3,
PRINT_RAW = 4, // Special format for printing bytes as an undercorated string
PRINT_EXC_SUBCLASS = 0x80, // Internal flag for printing exception subclasses
} mp_print_kind_t;
typedef struct _mp_obj_iter_buf_t {
mp_obj_base_t base;
mp_obj_t buf[3];
} mp_obj_iter_buf_t;
// The number of slots that an mp_obj_iter_buf_t needs on the Python value stack.
// It's rounded up in case mp_obj_base_t is smaller than mp_obj_t (eg for OBJ_REPR_D).
#define MP_OBJ_ITER_BUF_NSLOTS ((sizeof(mp_obj_iter_buf_t) + sizeof(mp_obj_t) - 1) / sizeof(mp_obj_t))
typedef void (*mp_print_fun_t)(const mp_print_t *print, mp_obj_t o, mp_print_kind_t kind);
typedef mp_obj_t (*mp_make_new_fun_t)(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args);
typedef mp_obj_t (*mp_call_fun_t)(mp_obj_t fun, size_t n_args, size_t n_kw, const mp_obj_t *args);
typedef mp_obj_t (*mp_unary_op_fun_t)(mp_unary_op_t op, mp_obj_t);
typedef mp_obj_t (*mp_binary_op_fun_t)(mp_binary_op_t op, mp_obj_t, mp_obj_t);
typedef void (*mp_attr_fun_t)(mp_obj_t self_in, qstr attr, mp_obj_t *dest);
typedef mp_obj_t (*mp_subscr_fun_t)(mp_obj_t self_in, mp_obj_t index, mp_obj_t value);
typedef mp_obj_t (*mp_getiter_fun_t)(mp_obj_t self_in, mp_obj_iter_buf_t *iter_buf);
// Buffer protocol
typedef struct _mp_buffer_info_t {
void *buf; // can be NULL if len == 0
size_t len; // in bytes
int typecode; // as per binary.h
} mp_buffer_info_t;
#define MP_BUFFER_READ (1)
#define MP_BUFFER_WRITE (2)
#define MP_BUFFER_RW (MP_BUFFER_READ | MP_BUFFER_WRITE)
typedef struct _mp_buffer_p_t {
mp_int_t (*get_buffer)(mp_obj_t obj, mp_buffer_info_t *bufinfo, mp_uint_t flags);
} mp_buffer_p_t;
bool mp_get_buffer(mp_obj_t obj, mp_buffer_info_t *bufinfo, mp_uint_t flags);
void mp_get_buffer_raise(mp_obj_t obj, mp_buffer_info_t *bufinfo, mp_uint_t flags);
struct _mp_obj_type_t {
// A type is an object so must start with this entry, which points to mp_type_type.
mp_obj_base_t base;
// Flags associated with this type.
uint16_t flags;
// The name of this type, a qstr.
uint16_t name;
// Corresponds to __repr__ and __str__ special methods.
mp_print_fun_t print;
// Corresponds to __new__ and __init__ special methods, to make an instance of the type.
mp_make_new_fun_t make_new;
// Corresponds to __call__ special method, ie T(...).
mp_call_fun_t call;
// Implements unary and binary operations.
// Can return MP_OBJ_NULL if the operation is not supported.
mp_unary_op_fun_t unary_op;
mp_binary_op_fun_t binary_op;
// Implements load, store and delete attribute.
//
// dest[0] = MP_OBJ_NULL means load
// return: for fail, do nothing
// for fail but continue lookup in locals_dict, dest[1] = MP_OBJ_SENTINEL
// for attr, dest[0] = value
// for method, dest[0] = method, dest[1] = self
//
// dest[0,1] = {MP_OBJ_SENTINEL, MP_OBJ_NULL} means delete
// dest[0,1] = {MP_OBJ_SENTINEL, object} means store
// return: for fail, do nothing
// for success set dest[0] = MP_OBJ_NULL
mp_attr_fun_t attr;
// Implements load, store and delete subscripting:
// - value = MP_OBJ_SENTINEL means load
// - value = MP_OBJ_NULL means delete
// - all other values mean store the value
// Can return MP_OBJ_NULL if operation not supported.
mp_subscr_fun_t subscr;
// Corresponds to __iter__ special method.
// Can use the given mp_obj_iter_buf_t to store iterator object,
// otherwise can return a pointer to an object on the heap.
mp_getiter_fun_t getiter;
// Corresponds to __next__ special method. May return MP_OBJ_STOP_ITERATION
// as an optimisation instead of raising StopIteration() with no args.
mp_fun_1_t iternext;
// Implements the buffer protocol if supported by this type.
mp_buffer_p_t buffer_p;
// One of disjoint protocols (interfaces), like mp_stream_p_t, etc.
const void *protocol;
// A pointer to the parents of this type:
// - 0 parents: pointer is NULL (object is implicitly the single parent)
// - 1 parent: a pointer to the type of that parent
// - 2 or more parents: pointer to a tuple object containing the parent types
const void *parent;
// A dict mapping qstrs to objects local methods/constants/etc.
struct _mp_obj_dict_t *locals_dict;
};
// Constant types, globally accessible
extern const mp_obj_type_t mp_type_type;
extern const mp_obj_type_t mp_type_object;
extern const mp_obj_type_t mp_type_NoneType;
extern const mp_obj_type_t mp_type_bool;
extern const mp_obj_type_t mp_type_int;
extern const mp_obj_type_t mp_type_str;
extern const mp_obj_type_t mp_type_bytes;
extern const mp_obj_type_t mp_type_bytearray;
extern const mp_obj_type_t mp_type_memoryview;
extern const mp_obj_type_t mp_type_float;
extern const mp_obj_type_t mp_type_complex;
extern const mp_obj_type_t mp_type_tuple;
extern const mp_obj_type_t mp_type_list;
extern const mp_obj_type_t mp_type_map; // map (the python builtin, not the dict implementation detail)
extern const mp_obj_type_t mp_type_enumerate;
extern const mp_obj_type_t mp_type_filter;
extern const mp_obj_type_t mp_type_deque;
extern const mp_obj_type_t mp_type_dict;
extern const mp_obj_type_t mp_type_ordereddict;
extern const mp_obj_type_t mp_type_range;
extern const mp_obj_type_t mp_type_set;
extern const mp_obj_type_t mp_type_frozenset;
extern const mp_obj_type_t mp_type_slice;
extern const mp_obj_type_t mp_type_zip;
extern const mp_obj_type_t mp_type_array;
extern const mp_obj_type_t mp_type_super;
extern const mp_obj_type_t mp_type_gen_wrap;
extern const mp_obj_type_t mp_type_native_gen_wrap;
extern const mp_obj_type_t mp_type_gen_instance;
extern const mp_obj_type_t mp_type_fun_builtin_0;
extern const mp_obj_type_t mp_type_fun_builtin_1;
extern const mp_obj_type_t mp_type_fun_builtin_2;
extern const mp_obj_type_t mp_type_fun_builtin_3;
extern const mp_obj_type_t mp_type_fun_builtin_var;
extern const mp_obj_type_t mp_type_fun_bc;
extern const mp_obj_type_t mp_type_module;
extern const mp_obj_type_t mp_type_staticmethod;
extern const mp_obj_type_t mp_type_classmethod;
extern const mp_obj_type_t mp_type_property;
extern const mp_obj_type_t mp_type_stringio;
extern const mp_obj_type_t mp_type_bytesio;
extern const mp_obj_type_t mp_type_reversed;
extern const mp_obj_type_t mp_type_polymorph_iter;
// Exceptions
extern const mp_obj_type_t mp_type_BaseException;
extern const mp_obj_type_t mp_type_ArithmeticError;
extern const mp_obj_type_t mp_type_AssertionError;
extern const mp_obj_type_t mp_type_AttributeError;
extern const mp_obj_type_t mp_type_EOFError;
extern const mp_obj_type_t mp_type_Exception;
extern const mp_obj_type_t mp_type_GeneratorExit;
extern const mp_obj_type_t mp_type_ImportError;
extern const mp_obj_type_t mp_type_IndentationError;
extern const mp_obj_type_t mp_type_IndexError;
extern const mp_obj_type_t mp_type_KeyboardInterrupt;
extern const mp_obj_type_t mp_type_KeyError;
extern const mp_obj_type_t mp_type_LookupError;
extern const mp_obj_type_t mp_type_MemoryError;
extern const mp_obj_type_t mp_type_NameError;
extern const mp_obj_type_t mp_type_NotImplementedError;
extern const mp_obj_type_t mp_type_OSError;
extern const mp_obj_type_t mp_type_OverflowError;
extern const mp_obj_type_t mp_type_RuntimeError;
extern const mp_obj_type_t mp_type_StopAsyncIteration;
extern const mp_obj_type_t mp_type_StopIteration;
extern const mp_obj_type_t mp_type_SyntaxError;
extern const mp_obj_type_t mp_type_SystemExit;
extern const mp_obj_type_t mp_type_TypeError;
extern const mp_obj_type_t mp_type_UnicodeError;
extern const mp_obj_type_t mp_type_ValueError;
extern const mp_obj_type_t mp_type_ViperTypeError;
extern const mp_obj_type_t mp_type_ZeroDivisionError;
// Constant objects, globally accessible: None, False, True
// These should always be accessed via the below macros.
#if MICROPY_OBJ_IMMEDIATE_OBJS
// None is even while False/True are odd so their types can be distinguished with 1 bit.
#define mp_const_none MP_OBJ_NEW_IMMEDIATE_OBJ(0)
#define mp_const_false MP_OBJ_NEW_IMMEDIATE_OBJ(1)
#define mp_const_true MP_OBJ_NEW_IMMEDIATE_OBJ(3)
#else
#define mp_const_none (MP_OBJ_FROM_PTR(&mp_const_none_obj))
#define mp_const_false (MP_OBJ_FROM_PTR(&mp_const_false_obj))
#define mp_const_true (MP_OBJ_FROM_PTR(&mp_const_true_obj))
extern const struct _mp_obj_none_t mp_const_none_obj;
extern const struct _mp_obj_bool_t mp_const_false_obj;
extern const struct _mp_obj_bool_t mp_const_true_obj;
#endif
// Constant objects, globally accessible: b'', (), {}, Ellipsis, NotImplemented, GeneratorExit()
// The below macros are for convenience only.
#define mp_const_empty_bytes (MP_OBJ_FROM_PTR(&mp_const_empty_bytes_obj))
#define mp_const_empty_tuple (MP_OBJ_FROM_PTR(&mp_const_empty_tuple_obj))
#define mp_const_notimplemented (MP_OBJ_FROM_PTR(&mp_const_notimplemented_obj))
extern const struct _mp_obj_str_t mp_const_empty_bytes_obj;
extern const struct _mp_obj_tuple_t mp_const_empty_tuple_obj;
extern const struct _mp_obj_dict_t mp_const_empty_dict_obj;
extern const struct _mp_obj_singleton_t mp_const_ellipsis_obj;
extern const struct _mp_obj_singleton_t mp_const_notimplemented_obj;
extern const struct _mp_obj_exception_t mp_const_GeneratorExit_obj;
// Fixed empty map. Useful when calling keyword-receiving functions
// without any keywords from C, etc.
#define mp_const_empty_map (mp_const_empty_dict_obj.map)
// General API for objects
// Helper versions of m_new_obj when you need to immediately set base.type.
// Implementing this as a call rather than inline saves 8 bytes per usage.
#define mp_obj_malloc(struct_type, obj_type) ((struct_type *)mp_obj_malloc_helper(sizeof(struct_type), obj_type))
#define mp_obj_malloc_var(struct_type, var_type, var_num, obj_type) ((struct_type *)mp_obj_malloc_helper(sizeof(struct_type) + sizeof(var_type) * (var_num), obj_type))
void *mp_obj_malloc_helper(size_t num_bytes, const mp_obj_type_t *type);
// These macros are derived from more primitive ones and are used to
// check for more specific object types.
// Note: these are kept as macros because inline functions sometimes use much
// more code space than the equivalent macros, depending on the compiler.
// don't use mp_obj_is_exact_type directly; use mp_obj_is_type which provides additional safety checks.
// use the former only if you need to bypass these checks (because you've already checked everything else)
#define mp_obj_is_exact_type(o, t) (mp_obj_is_obj(o) && (((mp_obj_base_t *)MP_OBJ_TO_PTR(o))->type == (t)))
// Type checks are split to a separate, constant result macro. This is so it doesn't hinder the compilers's
// optimizations (other tricks like using ({ expr; exper; }) or (exp, expr, expr) in mp_obj_is_type() result
// in missed optimizations)
#define mp_type_assert_not_bool_int_str_nonetype(t) ( \
MP_STATIC_ASSERT_NOT_MSC((t) != &mp_type_bool), assert((t) != &mp_type_bool), \
MP_STATIC_ASSERT_NOT_MSC((t) != &mp_type_int), assert((t) != &mp_type_int), \
MP_STATIC_ASSERT_NOT_MSC((t) != &mp_type_str), assert((t) != &mp_type_str), \
MP_STATIC_ASSERT_NOT_MSC((t) != &mp_type_NoneType), assert((t) != &mp_type_NoneType), \
1)
#define mp_obj_is_type(o, t) (mp_type_assert_not_bool_int_str_nonetype(t) && mp_obj_is_exact_type(o, t))
#if MICROPY_OBJ_IMMEDIATE_OBJS
// bool's are immediates, not real objects, so test for the 2 possible values.
#define mp_obj_is_bool(o) ((o) == mp_const_false || (o) == mp_const_true)
#else
#define mp_obj_is_bool(o) mp_obj_is_exact_type(o, &mp_type_bool)
#endif
#define mp_obj_is_int(o) (mp_obj_is_small_int(o) || mp_obj_is_exact_type(o, &mp_type_int))
#define mp_obj_is_str(o) (mp_obj_is_qstr(o) || mp_obj_is_exact_type(o, &mp_type_str))
#define mp_obj_is_str_or_bytes(o) (mp_obj_is_qstr(o) || (mp_obj_is_obj(o) && ((mp_obj_base_t *)MP_OBJ_TO_PTR(o))->type->binary_op == mp_obj_str_binary_op))
#define mp_obj_is_dict_or_ordereddict(o) (mp_obj_is_obj(o) && ((mp_obj_base_t *)MP_OBJ_TO_PTR(o))->type->make_new == mp_obj_dict_make_new)
#define mp_obj_is_fun(o) (mp_obj_is_obj(o) && (((mp_obj_base_t *)MP_OBJ_TO_PTR(o))->type->name == MP_QSTR_function))
mp_obj_t mp_obj_new_type(qstr name, mp_obj_t bases_tuple, mp_obj_t locals_dict);
static inline mp_obj_t mp_obj_new_bool(mp_int_t x) {
return x ? mp_const_true : mp_const_false;
}
mp_obj_t mp_obj_new_cell(mp_obj_t obj);
mp_obj_t mp_obj_new_int(mp_int_t value);
mp_obj_t mp_obj_new_int_from_uint(mp_uint_t value);
mp_obj_t mp_obj_new_int_from_str_len(const char **str, size_t len, bool neg, unsigned int base);
mp_obj_t mp_obj_new_int_from_ll(long long val); // this must return a multi-precision integer object (or raise an overflow exception)
mp_obj_t mp_obj_new_int_from_ull(unsigned long long val); // this must return a multi-precision integer object (or raise an overflow exception)
mp_obj_t mp_obj_new_str(const char *data, size_t len);
mp_obj_t mp_obj_new_str_via_qstr(const char *data, size_t len);
mp_obj_t mp_obj_new_str_from_vstr(const mp_obj_type_t *type, vstr_t *vstr);
mp_obj_t mp_obj_new_bytes(const byte *data, size_t len);
mp_obj_t mp_obj_new_bytearray(size_t n, const void *items);
mp_obj_t mp_obj_new_bytearray_by_ref(size_t n, void *items);
#if MICROPY_PY_BUILTINS_FLOAT
mp_obj_t mp_obj_new_int_from_float(mp_float_t val);
mp_obj_t mp_obj_new_complex(mp_float_t real, mp_float_t imag);
#endif
mp_obj_t mp_obj_new_exception(const mp_obj_type_t *exc_type);
mp_obj_t mp_obj_new_exception_args(const mp_obj_type_t *exc_type, size_t n_args, const mp_obj_t *args);
#if MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_NONE
#define mp_obj_new_exception_msg(exc_type, msg) mp_obj_new_exception(exc_type)
#define mp_obj_new_exception_msg_varg(exc_type, ...) mp_obj_new_exception(exc_type)
#else
mp_obj_t mp_obj_new_exception_msg(const mp_obj_type_t *exc_type, mp_rom_error_text_t msg);
mp_obj_t mp_obj_new_exception_msg_varg(const mp_obj_type_t *exc_type, mp_rom_error_text_t fmt, ...); // counts args by number of % symbols in fmt, excluding %%; can only handle void* sizes (ie no float/double!)
#endif
#ifdef va_start
mp_obj_t mp_obj_new_exception_msg_vlist(const mp_obj_type_t *exc_type, mp_rom_error_text_t fmt, va_list arg); // same fmt restrictions as above
#endif
mp_obj_t mp_obj_new_gen_wrap(mp_obj_t fun);
mp_obj_t mp_obj_new_closure(mp_obj_t fun, size_t n_closed, const mp_obj_t *closed);
mp_obj_t mp_obj_new_tuple(size_t n, const mp_obj_t *items);
mp_obj_t mp_obj_new_list(size_t n, mp_obj_t *items);
mp_obj_t mp_obj_new_dict(size_t n_args);
mp_obj_t mp_obj_new_set(size_t n_args, mp_obj_t *items);
mp_obj_t mp_obj_new_slice(mp_obj_t start, mp_obj_t stop, mp_obj_t step);
mp_obj_t mp_obj_new_bound_meth(mp_obj_t meth, mp_obj_t self);
mp_obj_t mp_obj_new_getitem_iter(mp_obj_t *args, mp_obj_iter_buf_t *iter_buf);
mp_obj_t mp_obj_new_module(qstr module_name);
mp_obj_t mp_obj_new_memoryview(byte typecode, size_t nitems, void *items);
const mp_obj_type_t *mp_obj_get_type(mp_const_obj_t o_in);
const char *mp_obj_get_type_str(mp_const_obj_t o_in);
bool mp_obj_is_subclass_fast(mp_const_obj_t object, mp_const_obj_t classinfo); // arguments should be type objects
mp_obj_t mp_obj_cast_to_native_base(mp_obj_t self_in, mp_const_obj_t native_type);
void mp_obj_print_helper(const mp_print_t *print, mp_obj_t o_in, mp_print_kind_t kind);
void mp_obj_print(mp_obj_t o, mp_print_kind_t kind);
void mp_obj_print_exception(const mp_print_t *print, mp_obj_t exc);
bool mp_obj_is_true(mp_obj_t arg);
bool mp_obj_is_callable(mp_obj_t o_in);
mp_obj_t mp_obj_equal_not_equal(mp_binary_op_t op, mp_obj_t o1, mp_obj_t o2);
bool mp_obj_equal(mp_obj_t o1, mp_obj_t o2);
// returns true if o is bool, small int or long int
static inline bool mp_obj_is_integer(mp_const_obj_t o) {
return mp_obj_is_int(o) || mp_obj_is_bool(o);
}
mp_int_t mp_obj_get_int(mp_const_obj_t arg);
mp_int_t mp_obj_get_int_truncated(mp_const_obj_t arg);
bool mp_obj_get_int_maybe(mp_const_obj_t arg, mp_int_t *value);
#if MICROPY_PY_BUILTINS_FLOAT
mp_float_t mp_obj_get_float(mp_obj_t self_in);
bool mp_obj_get_float_maybe(mp_obj_t arg, mp_float_t *value);
void mp_obj_get_complex(mp_obj_t self_in, mp_float_t *real, mp_float_t *imag);
bool mp_obj_get_complex_maybe(mp_obj_t self_in, mp_float_t *real, mp_float_t *imag);
#endif
void mp_obj_get_array(mp_obj_t o, size_t *len, mp_obj_t **items); // *items may point inside a GC block
void mp_obj_get_array_fixed_n(mp_obj_t o, size_t len, mp_obj_t **items); // *items may point inside a GC block
size_t mp_get_index(const mp_obj_type_t *type, size_t len, mp_obj_t index, bool is_slice);
mp_obj_t mp_obj_id(mp_obj_t o_in);
mp_obj_t mp_obj_len(mp_obj_t o_in);
mp_obj_t mp_obj_len_maybe(mp_obj_t o_in); // may return MP_OBJ_NULL
mp_obj_t mp_obj_subscr(mp_obj_t base, mp_obj_t index, mp_obj_t val);
mp_obj_t mp_generic_unary_op(mp_unary_op_t op, mp_obj_t o_in);
// cell
typedef struct _mp_obj_cell_t {
mp_obj_base_t base;
mp_obj_t obj;
} mp_obj_cell_t;
static inline mp_obj_t mp_obj_cell_get(mp_obj_t self_in) {
mp_obj_cell_t *self = (mp_obj_cell_t *)MP_OBJ_TO_PTR(self_in);
return self->obj;
}
static inline void mp_obj_cell_set(mp_obj_t self_in, mp_obj_t obj) {
mp_obj_cell_t *self = (mp_obj_cell_t *)MP_OBJ_TO_PTR(self_in);
self->obj = obj;
}
// int
// For long int, returns value truncated to mp_int_t
mp_int_t mp_obj_int_get_truncated(mp_const_obj_t self_in);
// Will raise exception if value doesn't fit into mp_int_t
mp_int_t mp_obj_int_get_checked(mp_const_obj_t self_in);
// Will raise exception if value is negative or doesn't fit into mp_uint_t
mp_uint_t mp_obj_int_get_uint_checked(mp_const_obj_t self_in);
// exception
#define mp_obj_is_native_exception_instance(o) (mp_obj_get_type(o)->make_new == mp_obj_exception_make_new)
bool mp_obj_is_exception_type(mp_obj_t self_in);
bool mp_obj_is_exception_instance(mp_obj_t self_in);
bool mp_obj_exception_match(mp_obj_t exc, mp_const_obj_t exc_type);
void mp_obj_exception_clear_traceback(mp_obj_t self_in);
void mp_obj_exception_add_traceback(mp_obj_t self_in, qstr file, size_t line, qstr block);
void mp_obj_exception_get_traceback(mp_obj_t self_in, size_t *n, size_t **values);
mp_obj_t mp_obj_exception_get_value(mp_obj_t self_in);
mp_obj_t mp_obj_exception_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args);
mp_obj_t mp_alloc_emergency_exception_buf(mp_obj_t size_in);
void mp_init_emergency_exception_buf(void);
static inline mp_obj_t mp_obj_new_exception_arg1(const mp_obj_type_t *exc_type, mp_obj_t arg) {
assert(exc_type->make_new == mp_obj_exception_make_new);
return mp_obj_exception_make_new(exc_type, 1, 0, &arg);
}
// str
bool mp_obj_str_equal(mp_obj_t s1, mp_obj_t s2);
qstr mp_obj_str_get_qstr(mp_obj_t self_in); // use this if you will anyway convert the string to a qstr
const char *mp_obj_str_get_str(mp_obj_t self_in); // use this only if you need the string to be null terminated
const char *mp_obj_str_get_data(mp_obj_t self_in, size_t *len);
mp_obj_t mp_obj_str_intern(mp_obj_t str);
mp_obj_t mp_obj_str_intern_checked(mp_obj_t obj);
void mp_str_print_quoted(const mp_print_t *print, const byte *str_data, size_t str_len, bool is_bytes);
#if MICROPY_PY_BUILTINS_FLOAT
// float
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
static inline float mp_obj_get_float_to_f(mp_obj_t o) {
return mp_obj_get_float(o);
}
static inline double mp_obj_get_float_to_d(mp_obj_t o) {
return (double)mp_obj_get_float(o);
}
static inline mp_obj_t mp_obj_new_float_from_f(float o) {
return mp_obj_new_float(o);
}
static inline mp_obj_t mp_obj_new_float_from_d(double o) {
return mp_obj_new_float((mp_float_t)o);
}
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
static inline float mp_obj_get_float_to_f(mp_obj_t o) {
return (float)mp_obj_get_float(o);
}
static inline double mp_obj_get_float_to_d(mp_obj_t o) {
return mp_obj_get_float(o);
}
static inline mp_obj_t mp_obj_new_float_from_f(float o) {
return mp_obj_new_float((mp_float_t)o);
}
static inline mp_obj_t mp_obj_new_float_from_d(double o) {
return mp_obj_new_float(o);
}
#endif
#if MICROPY_FLOAT_HIGH_QUALITY_HASH
mp_int_t mp_float_hash(mp_float_t val);
#else
static inline mp_int_t mp_float_hash(mp_float_t val) {
return (mp_int_t)val;
}
#endif
mp_obj_t mp_obj_float_binary_op(mp_binary_op_t op, mp_float_t lhs_val, mp_obj_t rhs); // can return MP_OBJ_NULL if op not supported
// complex
void mp_obj_complex_get(mp_obj_t self_in, mp_float_t *real, mp_float_t *imag);
mp_obj_t mp_obj_complex_binary_op(mp_binary_op_t op, mp_float_t lhs_real, mp_float_t lhs_imag, mp_obj_t rhs_in); // can return MP_OBJ_NULL if op not supported
#else
#define mp_obj_is_float(o) (false)
#endif
// tuple
void mp_obj_tuple_get(mp_obj_t self_in, size_t *len, mp_obj_t **items);
void mp_obj_tuple_del(mp_obj_t self_in);
mp_int_t mp_obj_tuple_hash(mp_obj_t self_in);
// list
mp_obj_t mp_obj_list_append(mp_obj_t self_in, mp_obj_t arg);
mp_obj_t mp_obj_list_remove(mp_obj_t self_in, mp_obj_t value);
void mp_obj_list_get(mp_obj_t self_in, size_t *len, mp_obj_t **items);
void mp_obj_list_set_len(mp_obj_t self_in, size_t len);
void mp_obj_list_store(mp_obj_t self_in, mp_obj_t index, mp_obj_t value);
mp_obj_t mp_obj_list_sort(size_t n_args, const mp_obj_t *args, mp_map_t *kwargs);
// dict
typedef struct _mp_obj_dict_t {
mp_obj_base_t base;
mp_map_t map;
} mp_obj_dict_t;
mp_obj_t mp_obj_dict_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args);
void mp_obj_dict_init(mp_obj_dict_t *dict, size_t n_args);
size_t mp_obj_dict_len(mp_obj_t self_in);
mp_obj_t mp_obj_dict_get(mp_obj_t self_in, mp_obj_t index);
mp_obj_t mp_obj_dict_store(mp_obj_t self_in, mp_obj_t key, mp_obj_t value);
mp_obj_t mp_obj_dict_delete(mp_obj_t self_in, mp_obj_t key);
mp_obj_t mp_obj_dict_copy(mp_obj_t self_in);
static inline mp_map_t *mp_obj_dict_get_map(mp_obj_t dict) {
return &((mp_obj_dict_t *)MP_OBJ_TO_PTR(dict))->map;
}
// set
void mp_obj_set_store(mp_obj_t self_in, mp_obj_t item);
// slice indexes resolved to particular sequence
typedef struct {
mp_int_t start;
mp_int_t stop;
mp_int_t step;
} mp_bound_slice_t;
// slice
typedef struct _mp_obj_slice_t {
mp_obj_base_t base;
mp_obj_t start;
mp_obj_t stop;
mp_obj_t step;
} mp_obj_slice_t;
void mp_obj_slice_indices(mp_obj_t self_in, mp_int_t length, mp_bound_slice_t *result);
// functions
typedef struct _mp_obj_fun_builtin_fixed_t {
mp_obj_base_t base;
union {
mp_fun_0_t _0;
mp_fun_1_t _1;
mp_fun_2_t _2;
mp_fun_3_t _3;
} fun;
} mp_obj_fun_builtin_fixed_t;
typedef struct _mp_obj_fun_builtin_var_t {
mp_obj_base_t base;
uint32_t sig; // see MP_OBJ_FUN_MAKE_SIG
union {
mp_fun_var_t var;
mp_fun_kw_t kw;
} fun;
} mp_obj_fun_builtin_var_t;
qstr mp_obj_fun_get_name(mp_const_obj_t fun);
mp_obj_t mp_identity(mp_obj_t self);
MP_DECLARE_CONST_FUN_OBJ_1(mp_identity_obj);
mp_obj_t mp_identity_getiter(mp_obj_t self, mp_obj_iter_buf_t *iter_buf);
// module
typedef struct _mp_obj_module_t {
mp_obj_base_t base;
mp_obj_dict_t *globals;
} mp_obj_module_t;
static inline mp_obj_dict_t *mp_obj_module_get_globals(mp_obj_t module) {
return ((mp_obj_module_t *)MP_OBJ_TO_PTR(module))->globals;
}
// check if given module object is a package
bool mp_obj_is_package(mp_obj_t module);
// staticmethod and classmethod types; defined here so we can make const versions
// this structure is used for instances of both staticmethod and classmethod
typedef struct _mp_obj_static_class_method_t {
mp_obj_base_t base;
mp_obj_t fun;
} mp_obj_static_class_method_t;
typedef struct _mp_rom_obj_static_class_method_t {
mp_obj_base_t base;
mp_rom_obj_t fun;
} mp_rom_obj_static_class_method_t;
// property
const mp_obj_t *mp_obj_property_get(mp_obj_t self_in);
// sequence helpers
void mp_seq_multiply(const void *items, size_t item_sz, size_t len, size_t times, void *dest);
#if MICROPY_PY_BUILTINS_SLICE
bool mp_seq_get_fast_slice_indexes(mp_uint_t len, mp_obj_t slice, mp_bound_slice_t *indexes);
#endif
#define mp_seq_copy(dest, src, len, item_t) memcpy(dest, src, len * sizeof(item_t))
#define mp_seq_cat(dest, src1, len1, src2, len2, item_t) { memcpy(dest, src1, (len1) * sizeof(item_t)); memcpy(dest + (len1), src2, (len2) * sizeof(item_t)); }
bool mp_seq_cmp_bytes(mp_uint_t op, const byte *data1, size_t len1, const byte *data2, size_t len2);
bool mp_seq_cmp_objs(mp_uint_t op, const mp_obj_t *items1, size_t len1, const mp_obj_t *items2, size_t len2);
mp_obj_t mp_seq_index_obj(const mp_obj_t *items, size_t len, size_t n_args, const mp_obj_t *args);
mp_obj_t mp_seq_count_obj(const mp_obj_t *items, size_t len, mp_obj_t value);
mp_obj_t mp_seq_extract_slice(size_t len, const mp_obj_t *seq, mp_bound_slice_t *indexes);
// Helper to clear stale pointers from allocated, but unused memory, to preclude GC problems
#define mp_seq_clear(start, len, alloc_len, item_sz) memset((byte *)(start) + (len) * (item_sz), 0, ((alloc_len) - (len)) * (item_sz))
// Note: dest and slice regions may overlap
#define mp_seq_replace_slice_no_grow(dest, dest_len, beg, end, slice, slice_len, item_sz) \
memmove(((char *)dest) + (beg) * (item_sz), slice, slice_len * (item_sz)); \
memmove(((char *)dest) + (beg + slice_len) * (item_sz), ((char *)dest) + (end) * (item_sz), (dest_len - end) * (item_sz));
// Note: dest and slice regions may overlap
#define mp_seq_replace_slice_grow_inplace(dest, dest_len, beg, end, slice, slice_len, len_adj, item_sz) \
memmove(((char *)dest) + (beg + slice_len) * (item_sz), ((char *)dest) + (end) * (item_sz), ((dest_len) + (len_adj) - ((beg) + (slice_len))) * (item_sz)); \
memmove(((char *)dest) + (beg) * (item_sz), slice, slice_len * (item_sz));
// Provide translation for legacy API
#define MP_OBJ_IS_SMALL_INT mp_obj_is_small_int
#define MP_OBJ_IS_QSTR mp_obj_is_qstr
#define MP_OBJ_IS_OBJ mp_obj_is_obj
#define MP_OBJ_IS_INT mp_obj_is_int
#define MP_OBJ_IS_TYPE mp_obj_is_type
#define MP_OBJ_IS_STR mp_obj_is_str
#define MP_OBJ_IS_STR_OR_BYTES mp_obj_is_str_or_bytes
#define MP_OBJ_IS_FUN mp_obj_is_fun
#define MP_MAP_SLOT_IS_FILLED mp_map_slot_is_filled
#define MP_SET_SLOT_IS_FILLED mp_set_slot_is_filled
#endif // MICROPY_INCLUDED_PY_OBJ_H