circuitpython/atmel-samd/common-hal/nativeio/SPI.c
Scott Shawcroft 0ae344841f atmel-samd & esp8266: Make sure pins are not already in use.
This prevents corrupting previous functional objects by stealing their pins
out from under them. It prevents this by ensuring that pins are in default
state before claiming them. It also verifies pins are released correctly and
reset on soft reset.

Fixes #4, instantiating a second class will fail.
Fixes #29, pins are now reset too.
2016-12-07 15:21:14 -08:00

228 lines
7.4 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// This file contains all of the port specific HAL functions for the machine
// module.
#include "shared-bindings/nativeio/SPI.h"
#include "py/nlr.h"
#include "samd21_pins.h"
// We use ENABLE registers below we don't want to treat as a macro.
#undef ENABLE
// Number of times to try to send packet if failed.
#define TIMEOUT 1
void common_hal_nativeio_spi_construct(nativeio_spi_obj_t *self,
const mcu_pin_obj_t * clock, const mcu_pin_obj_t * mosi,
const mcu_pin_obj_t * miso) {
struct spi_config config_spi_master;
spi_get_config_defaults(&config_spi_master);
Sercom* sercom = NULL;
uint32_t clock_pinmux = 0;
bool mosi_none = mosi == mp_const_none;
bool miso_none = miso == mp_const_none;
uint32_t mosi_pinmux = 0;
uint32_t miso_pinmux = 0;
uint8_t clock_pad = 0;
uint8_t mosi_pad = 0;
uint8_t miso_pad = 0;
for (int i = 0; i < NUM_SERCOMS_PER_PIN; i++) {
Sercom* potential_sercom = clock->sercom[i].sercom;
if (potential_sercom == NULL ||
potential_sercom->SPI.CTRLA.bit.ENABLE != 0) {
continue;
}
clock_pinmux = PINMUX(clock->pin, (i == 0) ? MUX_C : MUX_D);
clock_pad = clock->sercom[i].pad;
for (int j = 0; j < NUM_SERCOMS_PER_PIN; j++) {
if (!mosi_none) {
if(potential_sercom == mosi->sercom[j].sercom) {
mosi_pinmux = PINMUX(mosi->pin, (j == 0) ? MUX_C : MUX_D);
mosi_pad = mosi->sercom[j].pad;
if (miso_none) {
sercom = potential_sercom;
break;
}
} else {
continue;
}
}
if (!miso_none) {
for (int k = 0; k < NUM_SERCOMS_PER_PIN; k++) {
if (potential_sercom == miso->sercom[k].sercom) {
miso_pinmux = PINMUX(miso->pin, (k == 0) ? MUX_C : MUX_D);
miso_pad = miso->sercom[k].pad;
sercom = potential_sercom;
break;
}
}
}
if (sercom != NULL) {
break;
}
}
if (sercom != NULL) {
break;
}
}
if (sercom == NULL) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError,
"No hardware support available with those pins."));
}
// Depends on where MOSI and CLK are.
uint8_t dopo = 8;
if (clock_pad == 1) {
if (mosi_pad == 0) {
dopo = 0;
} else if (mosi_pad == 3) {
dopo = 2;
}
} else if (clock_pad == 3) {
if (mosi_pad == 0) {
dopo = 3;
} else if (mosi_pad == 2) {
dopo = 1;
}
}
if (dopo == 8) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "SPI MOSI and clock pins incompatible."));
}
config_spi_master.mux_setting = (dopo << SERCOM_SPI_CTRLA_DOPO_Pos) |
(miso_pad << SERCOM_SPI_CTRLA_DIPO_Pos);
// Map pad to pinmux through a short array.
uint32_t *pinmuxes[4] = {&config_spi_master.pinmux_pad0,
&config_spi_master.pinmux_pad1,
&config_spi_master.pinmux_pad2,
&config_spi_master.pinmux_pad3};
*pinmuxes[clock_pad] = clock_pinmux;
self->clock_pin = clock->pin;
self->MOSI_pin = 0;
if (!mosi_none) {
*pinmuxes[mosi_pad] = mosi_pinmux;
self->MOSI_pin = mosi->pin;
}
self->MISO_pin = 0;
if (!miso_none) {
*pinmuxes[miso_pad] = miso_pinmux;
self->MISO_pin = miso->pin;
}
spi_init(&self->spi_master_instance, sercom, &config_spi_master);
spi_enable(&self->spi_master_instance);
}
void common_hal_nativeio_spi_deinit(nativeio_spi_obj_t *self) {
spi_disable(&self->spi_master_instance);
reset_pin(self->clock_pin);
reset_pin(self->MOSI_pin);
reset_pin(self->MISO_pin);
}
bool common_hal_nativeio_spi_configure(nativeio_spi_obj_t *self,
uint32_t baudrate, uint8_t polarity, uint8_t phase, uint8_t bits) {
// TODO(tannewt): Check baudrate first before changing it.
enum status_code status = spi_set_baudrate(&self->spi_master_instance, baudrate);
if (status != STATUS_OK) {
return false;
}
SercomSpi *const spi_module = &(self->spi_master_instance.hw->SPI);
// If the settings are already what we want then don't reset them.
if (spi_module->CTRLA.bit.CPHA == phase &&
spi_module->CTRLA.bit.CPOL == polarity &&
spi_module->CTRLB.bit.CHSIZE == (bits - 8)) {
return true;
}
spi_disable(&self->spi_master_instance);
while (spi_is_syncing(&self->spi_master_instance)) {
/* Wait until the synchronization is complete */
}
spi_module->CTRLA.bit.CPHA = phase;
spi_module->CTRLA.bit.CPOL = polarity;
spi_module->CTRLB.bit.CHSIZE = bits - 8;
while (spi_is_syncing(&self->spi_master_instance)) {
/* Wait until the synchronization is complete */
}
/* Enable the module */
spi_enable(&self->spi_master_instance);
while (spi_is_syncing(&self->spi_master_instance)) {
/* Wait until the synchronization is complete */
}
return true;
}
bool common_hal_nativeio_spi_try_lock(nativeio_spi_obj_t *self) {
self->has_lock = spi_lock(&self->spi_master_instance) == STATUS_OK;
return self->has_lock;
}
bool common_hal_nativeio_spi_has_lock(nativeio_spi_obj_t *self) {
return self->has_lock;
}
void common_hal_nativeio_spi_unlock(nativeio_spi_obj_t *self) {
self->has_lock = false;
spi_unlock(&self->spi_master_instance);
}
bool common_hal_nativeio_spi_write(nativeio_spi_obj_t *self,
const uint8_t *data, size_t len) {
if (len == 0) {
return true;
}
enum status_code status = spi_write_buffer_wait(
&self->spi_master_instance,
data,
len);
return status == STATUS_OK;
}
bool common_hal_nativeio_spi_read(nativeio_spi_obj_t *self,
uint8_t *data, size_t len) {
if (len == 0) {
return true;
}
enum status_code status = spi_read_buffer_wait(
&self->spi_master_instance,
data,
len,
0);
return status == STATUS_OK;
}