2023-02-01 13:38:41 +05:30

69 lines
1.9 KiB
Python

# Source: https://github.com/python/pyperformance
# License: MIT
# Simple, brute-force N-Queens solver.
# author: collinwinter@google.com (Collin Winter)
# n_queens function: Copyright 2009 Raymond Hettinger
# Pure-Python implementation of itertools.permutations().
def permutations(iterable, r=None):
"""permutations(range(3), 2) --> (0,1) (0,2) (1,0) (1,2) (2,0) (2,1)"""
pool = tuple(iterable)
n = len(pool)
if r is None:
r = n
indices = list(range(n))
cycles = list(range(n - r + 1, n + 1))[::-1]
yield tuple(pool[i] for i in indices[:r])
while n:
for i in reversed(range(r)):
cycles[i] -= 1
if cycles[i] == 0:
indices[i:] = indices[i + 1 :] + indices[i : i + 1]
cycles[i] = n - i
else:
j = cycles[i]
indices[i], indices[-j] = indices[-j], indices[i]
yield tuple(pool[i] for i in indices[:r])
break
else:
return
# From http://code.activestate.com/recipes/576647/
def n_queens(queen_count):
"""N-Queens solver.
Args: queen_count: the number of queens to solve for, same as board size.
Yields: Solutions to the problem, each yielded value is a N-tuple.
"""
cols = range(queen_count)
for vec in permutations(cols):
if queen_count == len(set(vec[i] + i for i in cols)) == len(set(vec[i] - i for i in cols)):
yield vec
###########################################################################
# Benchmark interface
bm_params = {
(50, 25): (1, 5),
(100, 25): (1, 6),
(1000, 100): (1, 7),
(5000, 100): (1, 8),
}
def bm_setup(params):
res = None
def run():
nonlocal res
for _ in range(params[0]):
res = len(list(n_queens(params[1])))
def result():
return params[0] * 10 ** (params[1] - 3), res
return run, result