3048433809
With these you can now do things like: stm.mem32[0x20000000] = 0x80000000 and read 32-bit values. You can also read all the way to the end of memory using either stm.mem32[0xfffffffc] or stm.mem32[-4]. IRQs shouldn't use mem32 at all since they'd fail if the top 2 bits weren't equal, so IRQs should be using 16-bit I/O.
139 lines
5.0 KiB
C
139 lines
5.0 KiB
C
/*
|
|
* This file is part of the Micro Python project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013, 2014 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
|
|
#include STM32_HAL_H
|
|
|
|
#include "py/nlr.h"
|
|
#include "py/obj.h"
|
|
#include "portmodules.h"
|
|
|
|
// To use compile-time constants we are restricted to 31-bit numbers (a small int,
|
|
// so it fits in a Micro Python object pointer). Thus, when extracting a constant
|
|
// from an object, we must clear the MSB.
|
|
|
|
STATIC uint32_t get_read_addr(mp_obj_t addr_o, uint align) {
|
|
uint32_t addr = mp_obj_get_int_truncated(addr_o);
|
|
if (MP_OBJ_IS_SMALL_INT(addr_o)) {
|
|
addr &= 0x7fffffff;
|
|
}
|
|
/*
|
|
if (addr < 0x10000000) {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "cannot read from address %08x", addr));
|
|
}
|
|
*/
|
|
if ((addr & (align - 1)) != 0) {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "address %08x is not aligned to %d bytes", addr, align));
|
|
}
|
|
return addr;
|
|
}
|
|
|
|
STATIC uint32_t get_write_addr(mp_obj_t addr_o, uint align) {
|
|
uint32_t addr = mp_obj_get_int_truncated(addr_o);
|
|
if (MP_OBJ_IS_SMALL_INT(addr_o)) {
|
|
addr &= 0x7fffffff;
|
|
}
|
|
if (addr < 0x10000000) {
|
|
// Everything below 0x10000000 is either ROM or aliased to something higher, so we don't
|
|
// lose anything by restricting writes to this area, and we gain some safety.
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "cannot write to address %08x", addr));
|
|
}
|
|
if ((addr & (align - 1)) != 0) {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "address %08x is not aligned to %d bytes", addr, align));
|
|
}
|
|
return addr;
|
|
}
|
|
|
|
typedef struct _stm_mem_obj_t {
|
|
mp_obj_base_t base;
|
|
uint32_t elem_size; // in bytes
|
|
} stm_mem_obj_t;
|
|
|
|
STATIC void stm_mem_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
|
|
stm_mem_obj_t *self = self_in;
|
|
mp_printf(print, "<%u-bit memory>", 8 * self->elem_size);
|
|
}
|
|
|
|
STATIC mp_obj_t stm_mem_subscr(mp_obj_t self_in, mp_obj_t index, mp_obj_t value) {
|
|
// TODO support slice index to read/write multiple values at once
|
|
stm_mem_obj_t *self = self_in;
|
|
if (value == MP_OBJ_NULL) {
|
|
// delete
|
|
return MP_OBJ_NULL; // op not supported
|
|
} else if (value == MP_OBJ_SENTINEL) {
|
|
// load
|
|
uint32_t addr = get_read_addr(index, self->elem_size);
|
|
uint32_t val;
|
|
switch (self->elem_size) {
|
|
case 1: val = (*(uint8_t*)addr); break;
|
|
case 2: val = (*(uint16_t*)addr); break;
|
|
default: val = (*(uint32_t*)addr); break;
|
|
}
|
|
return mp_obj_new_int_from_uint(val);
|
|
} else {
|
|
// store
|
|
uint32_t addr = get_write_addr(index, self->elem_size);
|
|
uint32_t val = mp_obj_get_int_truncated(value);
|
|
switch (self->elem_size) {
|
|
case 1: (*(uint8_t*)addr) = val; break;
|
|
case 2: (*(uint16_t*)addr) = val; break;
|
|
default: (*(uint32_t*)addr) = val; break;
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
}
|
|
|
|
STATIC const mp_obj_type_t stm_mem_type = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_mem,
|
|
.print = stm_mem_print,
|
|
.subscr = stm_mem_subscr,
|
|
};
|
|
|
|
STATIC const stm_mem_obj_t stm_mem8_obj = {{&stm_mem_type}, 1};
|
|
STATIC const stm_mem_obj_t stm_mem16_obj = {{&stm_mem_type}, 2};
|
|
STATIC const stm_mem_obj_t stm_mem32_obj = {{&stm_mem_type}, 4};
|
|
|
|
STATIC const mp_map_elem_t stm_module_globals_table[] = {
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_stm) },
|
|
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_mem8), (mp_obj_t)&stm_mem8_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_mem16), (mp_obj_t)&stm_mem16_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_mem32), (mp_obj_t)&stm_mem32_obj },
|
|
|
|
#include "genhdr/modstm_const.h"
|
|
};
|
|
|
|
STATIC MP_DEFINE_CONST_DICT(stm_module_globals, stm_module_globals_table);
|
|
|
|
const mp_obj_module_t stm_module = {
|
|
.base = { &mp_type_module },
|
|
.name = MP_QSTR_stm,
|
|
.globals = (mp_obj_dict_t*)&stm_module_globals,
|
|
};
|