circuitpython/ports/atmel-samd/supervisor/port.c

683 lines
20 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include <stdlib.h>
#include "supervisor/board.h"
#include "supervisor/port.h"
// ASF 4
#include "atmel_start_pins.h"
#include "peripheral_clk_config.h"
#include "hal/include/hal_delay.h"
#include "hal/include/hal_flash.h"
#include "hal/include/hal_gpio.h"
#include "hal/include/hal_init.h"
#include "hpl/gclk/hpl_gclk_base.h"
#include "hpl/pm/hpl_pm_base.h"
#if defined(SAMD21)
#include "hri/hri_pm_d21.h"
#elif defined(SAME54)
#include "hri/hri_rstc_e54.h"
#elif defined(SAME51)
#include "sam.h"
#include "hri/hri_rstc_e51.h"
#elif defined(SAMD51)
#include "hri/hri_rstc_d51.h"
#else
#error Unknown chip family
#endif
#if CIRCUITPY_ANALOGIO
#include "common-hal/analogio/AnalogIn.h"
#include "common-hal/analogio/AnalogOut.h"
#endif
#if CIRCUITPY_AUDIOBUSIO
#include "common-hal/audiobusio/PDMIn.h"
#include "common-hal/audiobusio/I2SOut.h"
#endif
#if CIRCUITPY_AUDIOIO
#include "common-hal/audioio/AudioOut.h"
#endif
#if CIRCUITPY_BUSIO
#include "common-hal/busio/__init__.h"
#endif
#include "common-hal/microcontroller/Pin.h"
#if CIRCUITPY_PULSEIO
#include "common-hal/pulseio/PulseIn.h"
#include "common-hal/pulseio/PulseOut.h"
#endif
#if CIRCUITPY_PWMIO
#include "common-hal/pwmio/PWMOut.h"
#endif
#if CIRCUITPY_PS2IO
#include "common-hal/ps2io/Ps2.h"
#endif
#if CIRCUITPY_RTC
#include "common-hal/rtc/RTC.h"
#endif
#if CIRCUITPY_TOUCHIO_USE_NATIVE
#include "common-hal/touchio/TouchIn.h"
#endif
#include "samd/cache.h"
#include "samd/clocks.h"
#include "samd/events.h"
#include "samd/external_interrupts.h"
#include "samd/dma.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "shared-bindings/rtc/__init__.h"
#include "shared_timers.h"
#include "reset.h"
#include "supervisor/background_callback.h"
#include "supervisor/shared/safe_mode.h"
#include "supervisor/shared/stack.h"
#include "supervisor/shared/tick.h"
#include "tusb.h"
#if CIRCUITPY_GAMEPADSHIFT
#include "shared-module/gamepadshift/__init__.h"
#endif
#if CIRCUITPY_PEW
#include "common-hal/_pew/PewPew.h"
#endif
static volatile bool sleep_ok = true;
#ifdef SAMD21
static uint8_t _tick_event_channel = 0;
// Sleeping requires a register write that can stall interrupt handling. Turning
// off sleeps allows for more accurate interrupt timing. (Python still thinks
// it is sleeping though.)
void rtc_start_pulse(void) {
sleep_ok = false;
}
void rtc_end_pulse(void) {
sleep_ok = true;
}
#endif
extern volatile bool mp_msc_enabled;
#if defined(SAMD21) && defined(ENABLE_MICRO_TRACE_BUFFER)
// Stores 2 ^ TRACE_BUFFER_MAGNITUDE_PACKETS packets.
// 7 -> 128 packets
#define TRACE_BUFFER_MAGNITUDE_PACKETS 7
// Size in uint32_t. Two per packet.
#define TRACE_BUFFER_SIZE (1 << (TRACE_BUFFER_MAGNITUDE_PACKETS + 1))
// Size in bytes. 4 bytes per uint32_t.
#define TRACE_BUFFER_SIZE_BYTES (TRACE_BUFFER_SIZE << 2)
__attribute__((__aligned__(TRACE_BUFFER_SIZE_BYTES))) uint32_t mtb[TRACE_BUFFER_SIZE] = {0};
#endif
#if CALIBRATE_CRYSTALLESS
static void save_usb_clock_calibration(void) {
// If we are on USB lets double check our fine calibration for the clock and
// save the new value if its different enough.
SYSCTRL->DFLLSYNC.bit.READREQ = 1;
uint16_t saved_calibration = 0x1ff;
if (strcmp((char *)CIRCUITPY_INTERNAL_CONFIG_START_ADDR, "CIRCUITPYTHON1") == 0) {
saved_calibration = ((uint16_t *)CIRCUITPY_INTERNAL_CONFIG_START_ADDR)[8];
}
while (SYSCTRL->PCLKSR.bit.DFLLRDY == 0) {
// TODO(tannewt): Run the mass storage stuff if this takes a while.
}
int16_t current_calibration = SYSCTRL->DFLLVAL.bit.FINE;
if (abs(current_calibration - saved_calibration) > 10) {
// Copy the full internal config page to memory.
uint8_t page_buffer[NVMCTRL_ROW_SIZE];
memcpy(page_buffer, (uint8_t *)CIRCUITPY_INTERNAL_CONFIG_START_ADDR, NVMCTRL_ROW_SIZE);
// Modify it.
memcpy(page_buffer, "CIRCUITPYTHON1", 15);
// First 16 bytes (0-15) are ID. Little endian!
page_buffer[16] = current_calibration & 0xff;
page_buffer[17] = current_calibration >> 8;
// Write it back.
// We don't use features that use any advanced NVMCTRL features so we can fake the descriptor
// whenever we need it instead of storing it long term.
struct flash_descriptor desc;
desc.dev.hw = NVMCTRL;
flash_write(&desc, (uint32_t)CIRCUITPY_INTERNAL_CONFIG_START_ADDR, page_buffer, NVMCTRL_ROW_SIZE);
}
}
#endif
static void rtc_continuous_mode(void) {
#ifdef SAMD21
while (RTC->MODE0.STATUS.bit.SYNCBUSY) {
}
RTC->MODE0.READREQ.reg = RTC_READREQ_RCONT | 0x0010;
while (RTC->MODE0.STATUS.bit.SYNCBUSY) {
}
// Do the first request and wait for it.
RTC->MODE0.READREQ.reg = RTC_READREQ_RREQ | RTC_READREQ_RCONT | 0x0010;
while (RTC->MODE0.STATUS.bit.SYNCBUSY) {
}
#endif
}
static void rtc_init(void) {
#ifdef SAMD21
_gclk_enable_channel(RTC_GCLK_ID, GCLK_CLKCTRL_GEN_GCLK2_Val);
RTC->MODE0.CTRL.bit.SWRST = true;
while (RTC->MODE0.CTRL.bit.SWRST != 0) {
}
// Turn on periodic events to use as tick. We control whether it interrupts
// us with the EVSYS INTEN register.
RTC->MODE0.EVCTRL.reg = RTC_MODE0_EVCTRL_PEREO2;
RTC->MODE0.CTRL.reg = RTC_MODE0_CTRL_ENABLE |
RTC_MODE0_CTRL_MODE_COUNT32 |
RTC_MODE0_CTRL_PRESCALER_DIV2;
// Turn on continuous sync of the count register. This will speed up all
// tick reads.
rtc_continuous_mode();
#endif
#ifdef SAM_D5X_E5X
hri_mclk_set_APBAMASK_RTC_bit(MCLK);
RTC->MODE0.CTRLA.bit.SWRST = true;
while (RTC->MODE0.SYNCBUSY.bit.SWRST != 0) {
}
RTC->MODE0.CTRLA.reg = RTC_MODE0_CTRLA_ENABLE |
RTC_MODE0_CTRLA_MODE_COUNT32 |
RTC_MODE0_CTRLA_PRESCALER_DIV2 |
RTC_MODE0_CTRLA_COUNTSYNC;
#endif
RTC->MODE0.INTENSET.reg = RTC_MODE0_INTENSET_OVF;
// Set all peripheral interrupt priorities to the lowest priority by default.
for (uint16_t i = 0; i < PERIPH_COUNT_IRQn; i++) {
NVIC_SetPriority(i, (1UL << __NVIC_PRIO_BITS) - 1UL);
}
// Bump up the rtc interrupt so nothing else interferes with timekeeping.
NVIC_SetPriority(RTC_IRQn, 0);
#ifdef SAMD21
NVIC_SetPriority(USB_IRQn, 1);
#endif
#ifdef SAM_D5X_E5X
NVIC_SetPriority(USB_0_IRQn, 1);
NVIC_SetPriority(USB_1_IRQn, 1);
NVIC_SetPriority(USB_2_IRQn, 1);
NVIC_SetPriority(USB_3_IRQn, 1);
#endif
NVIC_ClearPendingIRQ(RTC_IRQn);
NVIC_EnableIRQ(RTC_IRQn);
#if CIRCUITPY_RTC
rtc_reset();
#endif
}
safe_mode_t port_init(void) {
#if defined(SAMD21)
// Set brownout detection.
// Disable while changing level.
SYSCTRL->BOD33.bit.ENABLE = 0;
SYSCTRL->BOD33.bit.LEVEL = SAMD21_BOD33_LEVEL;
SYSCTRL->BOD33.bit.ENABLE = 1;
#ifdef ENABLE_MICRO_TRACE_BUFFER
REG_MTB_POSITION = ((uint32_t)(mtb - REG_MTB_BASE)) & 0xFFFFFFF8;
REG_MTB_FLOW = (((uint32_t)mtb - REG_MTB_BASE) + TRACE_BUFFER_SIZE_BYTES) & 0xFFFFFFF8;
REG_MTB_MASTER = 0x80000000 + (TRACE_BUFFER_MAGNITUDE_PACKETS - 1);
#else
// Triple check that the MTB is off. Switching between debug and non-debug
// builds can leave it set over reset and wreak havok as a result.
REG_MTB_MASTER = 0x00000000 + 6;
#endif
#endif
#if defined(SAM_D5X_E5X)
// Set brownout detection.
// Disable while changing level.
SUPC->BOD33.bit.ENABLE = 0;
SUPC->BOD33.bit.LEVEL = SAMD5x_E5x_BOD33_LEVEL;
SUPC->BOD33.bit.ENABLE = 1;
// MPU (Memory Protection Unit) setup.
// We hoped we could make the QSPI region be non-cachable with the MPU,
// but the CMCC doesn't seem to pay attention to the MPU settings.
// Leaving this code here disabled,
// because it was hard enough to figure out, and maybe there's
// a mistake that could make it work in the future.
#if 0
// Designate QSPI memory mapped region as not cachable.
// Turn off MPU in case it is on.
MPU->CTRL = 0;
// Configure region 0.
MPU->RNR = 0;
// Region base: start of QSPI mapping area.
// QSPI region runs from 0x04000000 up to and not including 0x05000000: 16 megabytes
MPU->RBAR = QSPI_AHB;
MPU->RASR =
0b011 << MPU_RASR_AP_Pos | // full read/write access for privileged and user mode
0b000 << MPU_RASR_TEX_Pos | // caching not allowed, strongly ordered
1 << MPU_RASR_S_Pos | // sharable
0 << MPU_RASR_C_Pos | // not cachable
0 << MPU_RASR_B_Pos | // not bufferable
0b10111 << MPU_RASR_SIZE_Pos | // 16MB region size
1 << MPU_RASR_ENABLE_Pos // enable this region
;
// Turn off regions 1-7.
for (uint32_t i = 1; i < 8; i++) {
MPU->RNR = i;
MPU->RBAR = 0;
MPU->RASR = 0;
}
// Turn on MPU. Turn on PRIVDEFENA, which defines a default memory
// map for all privileged access, so we don't have to set up other regions
// besides QSPI.
MPU->CTRL = MPU_CTRL_PRIVDEFENA_Msk | MPU_CTRL_ENABLE_Msk;
#endif
samd_peripherals_enable_cache();
#endif
#ifdef SAMD21
hri_nvmctrl_set_CTRLB_RWS_bf(NVMCTRL, 2);
_pm_init();
#endif
#if CALIBRATE_CRYSTALLESS
uint32_t fine = DEFAULT_DFLL48M_FINE_CALIBRATION;
// The fine calibration data is stored in an NVM page after the text and data storage but before
// the optional file system. The first 16 bytes are the identifier for the section.
if (strcmp((char *)CIRCUITPY_INTERNAL_CONFIG_START_ADDR, "CIRCUITPYTHON1") == 0) {
fine = ((uint16_t *)CIRCUITPY_INTERNAL_CONFIG_START_ADDR)[8];
}
clock_init(BOARD_HAS_CRYSTAL, fine);
#else
// Use a default fine value
clock_init(BOARD_HAS_CRYSTAL, DEFAULT_DFLL48M_FINE_CALIBRATION);
#endif
rtc_init();
init_shared_dma();
// Reset everything into a known state before board_init.
reset_port();
#ifdef SAMD21
if (PM->RCAUSE.bit.BOD33 == 1 || PM->RCAUSE.bit.BOD12 == 1) {
return BROWNOUT;
}
#endif
#ifdef SAM_D5X_E5X
if (RSTC->RCAUSE.bit.BODVDD == 1 || RSTC->RCAUSE.bit.BODCORE == 1) {
return BROWNOUT;
}
#endif
if (board_requests_safe_mode()) {
return USER_SAFE_MODE;
}
return NO_SAFE_MODE;
}
void reset_port(void) {
#if CIRCUITPY_BUSIO
reset_sercoms();
#endif
#if CIRCUITPY_AUDIOIO
audio_dma_reset();
audioout_reset();
#endif
#if CIRCUITPY_AUDIOBUSIO
// pdmin_reset();
#endif
#if CIRCUITPY_AUDIOBUSIO_I2SOUT
i2sout_reset();
#endif
#if CIRCUITPY_TOUCHIO && CIRCUITPY_TOUCHIO_USE_NATIVE
touchin_reset();
#endif
eic_reset();
#if CIRCUITPY_PULSEIO
pulsein_reset();
pulseout_reset();
#endif
#if CIRCUITPY_PWMIO
pwmout_reset();
#endif
#if CIRCUITPY_PWMIO || CIRCUITPY_AUDIOIO
reset_timers();
#endif
#if CIRCUITPY_ANALOGIO
analogin_reset();
analogout_reset();
#endif
reset_gclks();
#if CIRCUITPY_GAMEPADSHIFT
gamepadshift_reset();
#endif
#if CIRCUITPY_PEW
pew_reset();
#endif
reset_event_system();
#ifdef SAMD21
_tick_event_channel = EVSYS_SYNCH_NUM;
#endif
reset_all_pins();
// Output clocks for debugging.
// not supported by SAMD51G; uncomment for SAMD51J or update for 51G
// #ifdef SAM_D5X_E5X
// gpio_set_pin_function(PIN_PA10, GPIO_PIN_FUNCTION_M); // GCLK4, D3
// gpio_set_pin_function(PIN_PA11, GPIO_PIN_FUNCTION_M); // GCLK5, A4
// gpio_set_pin_function(PIN_PB14, GPIO_PIN_FUNCTION_M); // GCLK0, D5
// gpio_set_pin_function(PIN_PB15, GPIO_PIN_FUNCTION_M); // GCLK1, D6
// #endif
#if CALIBRATE_CRYSTALLESS
if (tud_cdc_connected()) {
save_usb_clock_calibration();
}
#endif
}
void reset_to_bootloader(void) {
_bootloader_dbl_tap = DBL_TAP_MAGIC;
reset();
}
void reset_cpu(void) {
reset();
}
bool port_has_fixed_stack(void) {
return false;
}
uint32_t *port_stack_get_limit(void) {
return &_ebss;
}
uint32_t *port_stack_get_top(void) {
return &_estack;
}
uint32_t *port_heap_get_bottom(void) {
return port_stack_get_limit();
}
uint32_t *port_heap_get_top(void) {
return port_stack_get_top();
}
// Place the word to save 8k from the end of RAM so we and the bootloader don't clobber it.
#ifdef SAMD21
uint32_t *safe_word = (uint32_t *)(HMCRAMC0_ADDR + HMCRAMC0_SIZE - 0x2000);
#endif
#ifdef SAM_D5X_E5X
uint32_t *safe_word = (uint32_t *)(HSRAM_ADDR + HSRAM_SIZE - 0x2000);
#endif
void port_set_saved_word(uint32_t value) {
*safe_word = value;
}
uint32_t port_get_saved_word(void) {
return *safe_word;
}
// TODO: Move this to an RTC backup register so we can preserve it when only the BACKUP power domain
// is enabled.
static volatile uint64_t overflowed_ticks = 0;
static uint32_t _get_count(uint64_t *overflow_count) {
#ifdef SAM_D5X_E5X
while ((RTC->MODE0.SYNCBUSY.reg & (RTC_MODE0_SYNCBUSY_COUNTSYNC | RTC_MODE0_SYNCBUSY_COUNT)) != 0) {
}
#endif
// SAMD21 does continuous sync so we don't need to wait here.
// Disable interrupts so we can grab the count and the overflow.
common_hal_mcu_disable_interrupts();
uint32_t count = RTC->MODE0.COUNT.reg;
if (overflow_count != NULL) {
*overflow_count = overflowed_ticks;
}
common_hal_mcu_enable_interrupts();
return count;
}
volatile bool _woken_up;
void RTC_Handler(void) {
uint32_t intflag = RTC->MODE0.INTFLAG.reg;
if (intflag & RTC_MODE0_INTFLAG_OVF) {
RTC->MODE0.INTFLAG.reg = RTC_MODE0_INTFLAG_OVF;
// Our RTC is 32 bits and we're clocking it at 16.384khz which is 16 (2 ** 4) subticks per
// tick.
overflowed_ticks += (1L << (32 - 4));
}
#ifdef SAM_D5X_E5X
if (intflag & RTC_MODE0_INTFLAG_PER2) {
RTC->MODE0.INTFLAG.reg = RTC_MODE0_INTFLAG_PER2;
// Do things common to all ports when the tick occurs
supervisor_tick();
}
#endif
if (intflag & RTC_MODE0_INTFLAG_CMP0) {
// Clear the interrupt because we may have hit a sleep
RTC->MODE0.INTFLAG.reg = RTC_MODE0_INTFLAG_CMP0;
_woken_up = true;
// SAMD21 ticks are handled by EVSYS
#ifdef SAM_D5X_E5X
RTC->MODE0.INTENCLR.reg = RTC_MODE0_INTENCLR_CMP0;
#endif
}
}
uint64_t port_get_raw_ticks(uint8_t *subticks) {
uint64_t overflow_count;
uint32_t current_ticks = _get_count(&overflow_count);
if (subticks != NULL) {
*subticks = (current_ticks % 16) * 2;
}
return overflow_count + current_ticks / 16;
}
void evsyshandler_common(void) {
#ifdef SAMD21
if (_tick_event_channel < EVSYS_SYNCH_NUM && event_interrupt_active(_tick_event_channel)) {
supervisor_tick();
}
#endif
#if CIRCUITPY_AUDIOIO || CIRCUITPY_AUDIOBUSIO
audio_dma_evsys_handler();
#endif
#if CIRCUITPY_AUDIOBUSIO
pdmin_evsys_handler();
#endif
}
#ifdef SAM_D5X_E5X
void EVSYS_0_Handler(void) {
evsyshandler_common();
}
void EVSYS_1_Handler(void) {
evsyshandler_common();
}
void EVSYS_2_Handler(void) {
evsyshandler_common();
}
void EVSYS_3_Handler(void) {
evsyshandler_common();
}
void EVSYS_4_Handler(void) {
evsyshandler_common();
}
#else
void EVSYS_Handler(void) {
evsyshandler_common();
}
#endif
// Enable 1/1024 second tick.
void port_enable_tick(void) {
#ifdef SAM_D5X_E5X
// PER2 will generate an interrupt every 32 ticks of the source 32.768 clock.
RTC->MODE0.INTENSET.reg = RTC_MODE0_INTENSET_PER2;
#endif
#ifdef SAMD21
// SAMD21 ticks won't survive port_reset(). This *should* be ok since it'll
// be triggered by ticks and no Python will be running.
if (_tick_event_channel >= EVSYS_SYNCH_NUM) {
turn_on_event_system();
_tick_event_channel = find_sync_event_channel();
}
// This turns on both the event detected interrupt (EVD) and overflow (OVR).
init_event_channel_interrupt(_tick_event_channel, CORE_GCLK, EVSYS_ID_GEN_RTC_PER_2);
// Disable overflow interrupt because we ignore it.
if (_tick_event_channel >= 8) {
uint8_t value = 1 << (_tick_event_channel - 8);
EVSYS->INTENCLR.reg = EVSYS_INTENSET_OVRp8(value);
} else {
uint8_t value = 1 << _tick_event_channel;
EVSYS->INTENCLR.reg = EVSYS_INTENSET_OVR(value);
}
NVIC_EnableIRQ(EVSYS_IRQn);
#endif
}
// Disable 1/1024 second tick.
void port_disable_tick(void) {
#ifdef SAM_D5X_E5X
RTC->MODE0.INTENCLR.reg = RTC_MODE0_INTENCLR_PER2;
#endif
#ifdef SAMD21
if (_tick_event_channel >= 8) {
uint8_t value = 1 << (_tick_event_channel - 8);
EVSYS->INTENCLR.reg = EVSYS_INTENSET_EVDp8(value);
} else {
uint8_t value = 1 << _tick_event_channel;
EVSYS->INTENCLR.reg = EVSYS_INTENSET_EVD(value);
}
#endif
}
void port_interrupt_after_ticks(uint32_t ticks) {
uint32_t current_ticks = _get_count(NULL);
if (ticks > 1 << 28) {
// We'll interrupt sooner with an overflow.
return;
}
#ifdef SAMD21
if (!sleep_ok) {
return;
}
#endif
uint32_t target = current_ticks + (ticks << 4);
#ifdef SAMD21
// Try and avoid a bus stall when writing COMP by checking for an obvious
// existing sync.
while (RTC->MODE0.STATUS.bit.SYNCBUSY == 1) {
}
#endif
// Writing the COMP register can take up to 180us to synchronize. During
// this time, the bus will stall and no interrupts will be serviced.
RTC->MODE0.COMP[0].reg = target;
#ifdef SAM_D5X_E5X
while ((RTC->MODE0.SYNCBUSY.reg & (RTC_MODE0_SYNCBUSY_COMP0)) != 0) {
}
#endif
RTC->MODE0.INTFLAG.reg = RTC_MODE0_INTFLAG_CMP0;
RTC->MODE0.INTENSET.reg = RTC_MODE0_INTENSET_CMP0;
// Set continuous mode again because setting COMP may disable it.
rtc_continuous_mode();
current_ticks = _get_count(NULL);
_woken_up = current_ticks >= target;
}
void port_idle_until_interrupt(void) {
#ifdef SAM_D5X_E5X
// Clear the FPU interrupt because it can prevent us from sleeping.
if (__get_FPSCR() & ~(0x9f)) {
__set_FPSCR(__get_FPSCR() & ~(0x9f));
(void)__get_FPSCR();
}
#endif
common_hal_mcu_disable_interrupts();
if (!background_callback_pending() && sleep_ok && !_woken_up) {
__DSB();
__WFI();
}
common_hal_mcu_enable_interrupts();
}
/**
* \brief Default interrupt handler for unused IRQs.
*/
__attribute__((used)) void HardFault_Handler(void) {
#ifdef ENABLE_MICRO_TRACE_BUFFER
// Turn off the micro trace buffer so we don't fill it up in the infinite
// loop below.
REG_MTB_MASTER = 0x00000000 + 6;
#endif
reset_into_safe_mode(HARD_CRASH);
while (true) {
asm ("nop;");
}
}