2014-07-14 22:48:22 -07:00

981 lines
25 KiB
C

/* Teensyduino Core Library
* http://www.pjrc.com/teensy/
* Copyright (c) 2013 PJRC.COM, LLC.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* 1. The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* 2. If the Software is incorporated into a build system that allows
* selection among a list of target devices, then similar target
* devices manufactured by PJRC.COM must be included in the list of
* target devices and selectable in the same manner.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#if F_CPU >= 20000000
#include "mk20dx128.h"
//#include "HardwareSerial.h"
#include "usb_dev.h"
#include "usb_mem.h"
// buffer descriptor table
typedef struct {
uint32_t desc;
void * addr;
} bdt_t;
__attribute__ ((section(".usbdescriptortable"), used))
static bdt_t table[(NUM_ENDPOINTS+1)*4];
static usb_packet_t *rx_first[NUM_ENDPOINTS];
static usb_packet_t *rx_last[NUM_ENDPOINTS];
static usb_packet_t *tx_first[NUM_ENDPOINTS];
static usb_packet_t *tx_last[NUM_ENDPOINTS];
uint16_t usb_rx_byte_count_data[NUM_ENDPOINTS];
static uint8_t tx_state[NUM_ENDPOINTS];
#define TX_STATE_BOTH_FREE_EVEN_FIRST 0
#define TX_STATE_BOTH_FREE_ODD_FIRST 1
#define TX_STATE_EVEN_FREE 2
#define TX_STATE_ODD_FREE 3
#define TX_STATE_NONE_FREE_EVEN_FIRST 4
#define TX_STATE_NONE_FREE_ODD_FIRST 5
#define BDT_OWN 0x80
#define BDT_DATA1 0x40
#define BDT_DATA0 0x00
#define BDT_DTS 0x08
#define BDT_STALL 0x04
#define BDT_PID(n) (((n) >> 2) & 15)
#define BDT_DESC(count, data) (BDT_OWN | BDT_DTS \
| ((data) ? BDT_DATA1 : BDT_DATA0) \
| ((count) << 16))
#define TX 1
#define RX 0
#define ODD 1
#define EVEN 0
#define DATA0 0
#define DATA1 1
#define index(endpoint, tx, odd) (((endpoint) << 2) | ((tx) << 1) | (odd))
#define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
static union {
struct {
union {
struct {
uint8_t bmRequestType;
uint8_t bRequest;
};
uint16_t wRequestAndType;
};
uint16_t wValue;
uint16_t wIndex;
uint16_t wLength;
};
struct {
uint32_t word1;
uint32_t word2;
};
} setup;
#define GET_STATUS 0
#define CLEAR_FEATURE 1
#define SET_FEATURE 3
#define SET_ADDRESS 5
#define GET_DESCRIPTOR 6
#define SET_DESCRIPTOR 7
#define GET_CONFIGURATION 8
#define SET_CONFIGURATION 9
#define GET_INTERFACE 10
#define SET_INTERFACE 11
#define SYNCH_FRAME 12
// SETUP always uses a DATA0 PID for the data field of the SETUP transaction.
// transactions in the data phase start with DATA1 and toggle (figure 8-12, USB1.1)
// Status stage uses a DATA1 PID.
static uint8_t ep0_rx0_buf[EP0_SIZE] __attribute__ ((aligned (4)));
static uint8_t ep0_rx1_buf[EP0_SIZE] __attribute__ ((aligned (4)));
static const uint8_t *ep0_tx_ptr = NULL;
static uint16_t ep0_tx_len;
static uint8_t ep0_tx_bdt_bank = 0;
static uint8_t ep0_tx_data_toggle = 0;
uint8_t usb_rx_memory_needed = 0;
volatile uint8_t usb_configuration = 0;
volatile uint8_t usb_reboot_timer = 0;
static void endpoint0_stall(void)
{
USB0_ENDPT0 = USB_ENDPT_EPSTALL | USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
}
static void endpoint0_transmit(const void *data, uint32_t len)
{
#if 0
serial_print("tx0:");
serial_phex32((uint32_t)data);
serial_print(",");
serial_phex16(len);
serial_print(ep0_tx_bdt_bank ? ", odd" : ", even");
serial_print(ep0_tx_data_toggle ? ", d1\n" : ", d0\n");
#endif
table[index(0, TX, ep0_tx_bdt_bank)].addr = (void *)data;
table[index(0, TX, ep0_tx_bdt_bank)].desc = BDT_DESC(len, ep0_tx_data_toggle);
ep0_tx_data_toggle ^= 1;
ep0_tx_bdt_bank ^= 1;
}
static uint8_t reply_buffer[8];
static void usb_setup(void)
{
const uint8_t *data = NULL;
uint32_t datalen = 0;
const usb_descriptor_list_t *list;
uint32_t size;
volatile uint8_t *reg;
uint8_t epconf;
const uint8_t *cfg;
int i;
switch (setup.wRequestAndType) {
case 0x0500: // SET_ADDRESS
break;
case 0x0900: // SET_CONFIGURATION
//serial_print("configure\n");
usb_configuration = setup.wValue;
reg = &USB0_ENDPT1;
cfg = usb_endpoint_config_table;
// clear all BDT entries, free any allocated memory...
for (i=4; i < (NUM_ENDPOINTS+1)*4; i++) {
if (table[i].desc & BDT_OWN) {
usb_free((usb_packet_t *)((uint8_t *)(table[i].addr) - 8));
}
}
// free all queued packets
for (i=0; i < NUM_ENDPOINTS; i++) {
usb_packet_t *p, *n;
p = rx_first[i];
while (p) {
n = p->next;
usb_free(p);
p = n;
}
rx_first[i] = NULL;
rx_last[i] = NULL;
p = tx_first[i];
while (p) {
n = p->next;
usb_free(p);
p = n;
}
tx_first[i] = NULL;
tx_last[i] = NULL;
usb_rx_byte_count_data[i] = 0;
switch (tx_state[i]) {
case TX_STATE_EVEN_FREE:
case TX_STATE_NONE_FREE_EVEN_FIRST:
tx_state[i] = TX_STATE_BOTH_FREE_EVEN_FIRST;
break;
case TX_STATE_ODD_FREE:
case TX_STATE_NONE_FREE_ODD_FIRST:
tx_state[i] = TX_STATE_BOTH_FREE_ODD_FIRST;
break;
default:
break;
}
}
usb_rx_memory_needed = 0;
for (i=1; i <= NUM_ENDPOINTS; i++) {
epconf = *cfg++;
*reg = epconf;
reg += 4;
if (epconf & USB_ENDPT_EPRXEN) {
usb_packet_t *p;
p = usb_malloc();
if (p) {
table[index(i, RX, EVEN)].addr = p->buf;
table[index(i, RX, EVEN)].desc = BDT_DESC(64, 0);
} else {
table[index(i, RX, EVEN)].desc = 0;
usb_rx_memory_needed++;
}
p = usb_malloc();
if (p) {
table[index(i, RX, ODD)].addr = p->buf;
table[index(i, RX, ODD)].desc = BDT_DESC(64, 1);
} else {
table[index(i, RX, ODD)].desc = 0;
usb_rx_memory_needed++;
}
}
table[index(i, TX, EVEN)].desc = 0;
table[index(i, TX, ODD)].desc = 0;
}
break;
case 0x0880: // GET_CONFIGURATION
reply_buffer[0] = usb_configuration;
datalen = 1;
data = reply_buffer;
break;
case 0x0080: // GET_STATUS (device)
reply_buffer[0] = 0;
reply_buffer[1] = 0;
datalen = 2;
data = reply_buffer;
break;
case 0x0082: // GET_STATUS (endpoint)
if (setup.wIndex > NUM_ENDPOINTS) {
// TODO: do we need to handle IN vs OUT here?
endpoint0_stall();
return;
}
reply_buffer[0] = 0;
reply_buffer[1] = 0;
if (*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4) & 0x02) reply_buffer[0] = 1;
data = reply_buffer;
datalen = 2;
break;
case 0x0102: // CLEAR_FEATURE (endpoint)
i = setup.wIndex & 0x7F;
if (i > NUM_ENDPOINTS || setup.wValue != 0) {
// TODO: do we need to handle IN vs OUT here?
endpoint0_stall();
return;
}
(*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4)) &= ~0x02;
// TODO: do we need to clear the data toggle here?
break;
case 0x0302: // SET_FEATURE (endpoint)
i = setup.wIndex & 0x7F;
if (i > NUM_ENDPOINTS || setup.wValue != 0) {
// TODO: do we need to handle IN vs OUT here?
endpoint0_stall();
return;
}
(*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4)) |= 0x02;
// TODO: do we need to clear the data toggle here?
break;
case 0x0680: // GET_DESCRIPTOR
case 0x0681:
//serial_print("desc:");
//serial_phex16(setup.wValue);
//serial_print("\n");
for (list = usb_descriptor_list; 1; list++) {
if (list->addr == NULL) break;
//if (setup.wValue == list->wValue &&
//(setup.wIndex == list->wIndex) || ((setup.wValue >> 8) == 3)) {
if (setup.wValue == list->wValue && setup.wIndex == list->wIndex) {
data = list->addr;
if ((setup.wValue >> 8) == 3) {
// for string descriptors, use the descriptor's
// length field, allowing runtime configured
// length.
datalen = *(list->addr);
} else {
datalen = list->length;
}
#if 0
serial_print("Desc found, ");
serial_phex32((uint32_t)data);
serial_print(",");
serial_phex16(datalen);
serial_print(",");
serial_phex(data[0]);
serial_phex(data[1]);
serial_phex(data[2]);
serial_phex(data[3]);
serial_phex(data[4]);
serial_phex(data[5]);
serial_print("\n");
#endif
goto send;
}
}
//serial_print("desc: not found\n");
endpoint0_stall();
return;
#if defined(CDC_STATUS_INTERFACE)
case 0x2221: // CDC_SET_CONTROL_LINE_STATE
usb_cdc_line_rtsdtr = setup.wValue;
//serial_print("set control line state\n");
break;
case 0x2321: // CDC_SEND_BREAK
break;
case 0x2021: // CDC_SET_LINE_CODING
//serial_print("set coding, waiting...\n");
return;
#endif
// TODO: this does not work... why?
#if defined(SEREMU_INTERFACE) || defined(KEYBOARD_INTERFACE)
case 0x0921: // HID SET_REPORT
//serial_print(":)\n");
return;
case 0x0A21: // HID SET_IDLE
break;
// case 0xC940:
#endif
default:
endpoint0_stall();
return;
}
send:
//serial_print("setup send ");
//serial_phex32(data);
//serial_print(",");
//serial_phex16(datalen);
//serial_print("\n");
if (datalen > setup.wLength) datalen = setup.wLength;
size = datalen;
if (size > EP0_SIZE) size = EP0_SIZE;
endpoint0_transmit(data, size);
data += size;
datalen -= size;
if (datalen == 0 && size < EP0_SIZE) return;
size = datalen;
if (size > EP0_SIZE) size = EP0_SIZE;
endpoint0_transmit(data, size);
data += size;
datalen -= size;
if (datalen == 0 && size < EP0_SIZE) return;
ep0_tx_ptr = data;
ep0_tx_len = datalen;
}
//A bulk endpoint's toggle sequence is initialized to DATA0 when the endpoint
//experiences any configuration event (configuration events are explained in
//Sections 9.1.1.5 and 9.4.5).
//Configuring a device or changing an alternate setting causes all of the status
//and configuration values associated with endpoints in the affected interfaces
//to be set to their default values. This includes setting the data toggle of
//any endpoint using data toggles to the value DATA0.
//For endpoints using data toggle, regardless of whether an endpoint has the
//Halt feature set, a ClearFeature(ENDPOINT_HALT) request always results in the
//data toggle being reinitialized to DATA0.
// #define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
static void usb_control(uint32_t stat)
{
bdt_t *b;
uint32_t pid, size;
uint8_t *buf;
const uint8_t *data;
b = stat2bufferdescriptor(stat);
pid = BDT_PID(b->desc);
//count = b->desc >> 16;
buf = b->addr;
//serial_print("pid:");
//serial_phex(pid);
//serial_print(", count:");
//serial_phex(count);
//serial_print("\n");
switch (pid) {
case 0x0D: // Setup received from host
//serial_print("PID=Setup\n");
//if (count != 8) ; // panic?
// grab the 8 byte setup info
setup.word1 = *(uint32_t *)(buf);
setup.word2 = *(uint32_t *)(buf + 4);
// give the buffer back
b->desc = BDT_DESC(EP0_SIZE, DATA1);
//table[index(0, RX, EVEN)].desc = BDT_DESC(EP0_SIZE, 1);
//table[index(0, RX, ODD)].desc = BDT_DESC(EP0_SIZE, 1);
// clear any leftover pending IN transactions
ep0_tx_ptr = NULL;
if (ep0_tx_data_toggle) {
}
//if (table[index(0, TX, EVEN)].desc & 0x80) {
//serial_print("leftover tx even\n");
//}
//if (table[index(0, TX, ODD)].desc & 0x80) {
//serial_print("leftover tx odd\n");
//}
table[index(0, TX, EVEN)].desc = 0;
table[index(0, TX, ODD)].desc = 0;
// first IN after Setup is always DATA1
ep0_tx_data_toggle = 1;
#if 0
serial_print("bmRequestType:");
serial_phex(setup.bmRequestType);
serial_print(", bRequest:");
serial_phex(setup.bRequest);
serial_print(", wValue:");
serial_phex16(setup.wValue);
serial_print(", wIndex:");
serial_phex16(setup.wIndex);
serial_print(", len:");
serial_phex16(setup.wLength);
serial_print("\n");
#endif
// actually "do" the setup request
usb_setup();
// unfreeze the USB, now that we're ready
USB0_CTL = USB_CTL_USBENSOFEN; // clear TXSUSPENDTOKENBUSY bit
break;
case 0x01: // OUT transaction received from host
case 0x02:
//serial_print("PID=OUT\n");
#ifdef CDC_STATUS_INTERFACE
if (setup.wRequestAndType == 0x2021 /*CDC_SET_LINE_CODING*/) {
int i;
uint8_t *dst = (uint8_t *)usb_cdc_line_coding;
//serial_print("set line coding ");
for (i=0; i<7; i++) {
//serial_phex(*buf);
*dst++ = *buf++;
}
//serial_phex32(usb_cdc_line_coding[0]);
//serial_print("\n");
if (usb_cdc_line_coding[0] == 134) usb_reboot_timer = 15;
endpoint0_transmit(NULL, 0);
}
#endif
#ifdef KEYBOARD_INTERFACE
if (setup.word1 == 0x02000921 && setup.word2 == ((1<<16)|KEYBOARD_INTERFACE)) {
keyboard_leds = buf[0];
endpoint0_transmit(NULL, 0);
}
#endif
#ifdef SEREMU_INTERFACE
if (setup.word1 == 0x03000921 && setup.word2 == ((4<<16)|SEREMU_INTERFACE)
&& buf[0] == 0xA9 && buf[1] == 0x45 && buf[2] == 0xC2 && buf[3] == 0x6B) {
usb_reboot_timer = 5;
endpoint0_transmit(NULL, 0);
}
#endif
// give the buffer back
b->desc = BDT_DESC(EP0_SIZE, DATA1);
break;
case 0x09: // IN transaction completed to host
//serial_print("PID=IN:");
//serial_phex(stat);
//serial_print("\n");
// send remaining data, if any...
data = ep0_tx_ptr;
if (data) {
size = ep0_tx_len;
if (size > EP0_SIZE) size = EP0_SIZE;
endpoint0_transmit(data, size);
data += size;
ep0_tx_len -= size;
ep0_tx_ptr = (ep0_tx_len > 0 || size == EP0_SIZE) ? data : NULL;
}
if (setup.bRequest == 5 && setup.bmRequestType == 0) {
setup.bRequest = 0;
//serial_print("set address: ");
//serial_phex16(setup.wValue);
//serial_print("\n");
USB0_ADDR = setup.wValue;
}
break;
//default:
//serial_print("PID=unknown:");
//serial_phex(pid);
//serial_print("\n");
}
USB0_CTL = USB_CTL_USBENSOFEN; // clear TXSUSPENDTOKENBUSY bit
}
usb_packet_t *usb_rx(uint32_t endpoint)
{
usb_packet_t *ret;
endpoint--;
if (endpoint >= NUM_ENDPOINTS) return NULL;
__disable_irq();
ret = rx_first[endpoint];
if (ret) {
rx_first[endpoint] = ret->next;
usb_rx_byte_count_data[endpoint] -= ret->len;
}
__enable_irq();
//serial_print("rx, epidx=");
//serial_phex(endpoint);
//serial_print(", packet=");
//serial_phex32(ret);
//serial_print("\n");
return ret;
}
static uint32_t usb_queue_byte_count(const usb_packet_t *p)
{
uint32_t count=0;
__disable_irq();
for ( ; p; p = p->next) {
count += p->len;
}
__enable_irq();
return count;
}
// TODO: make this an inline function...
/*
uint32_t usb_rx_byte_count(uint32_t endpoint)
{
endpoint--;
if (endpoint >= NUM_ENDPOINTS) return 0;
return usb_rx_byte_count_data[endpoint];
//return usb_queue_byte_count(rx_first[endpoint]);
}
*/
uint32_t usb_tx_byte_count(uint32_t endpoint)
{
endpoint--;
if (endpoint >= NUM_ENDPOINTS) return 0;
return usb_queue_byte_count(tx_first[endpoint]);
}
uint32_t usb_tx_packet_count(uint32_t endpoint)
{
const usb_packet_t *p;
uint32_t count=0;
endpoint--;
if (endpoint >= NUM_ENDPOINTS) return 0;
__disable_irq();
for (p = tx_first[endpoint]; p; p = p->next) count++;
__enable_irq();
return count;
}
// Called from usb_free, but only when usb_rx_memory_needed > 0, indicating
// receive endpoints are starving for memory. The intention is to give
// endpoints needing receive memory priority over the user's code, which is
// likely calling usb_malloc to obtain memory for transmitting. When the
// user is creating data very quickly, their consumption could starve reception
// without this prioritization. The packet buffer (input) is assigned to the
// first endpoint needing memory.
//
void usb_rx_memory(usb_packet_t *packet)
{
unsigned int i;
const uint8_t *cfg;
cfg = usb_endpoint_config_table;
//serial_print("rx_mem:");
__disable_irq();
for (i=1; i <= NUM_ENDPOINTS; i++) {
if (*cfg++ & USB_ENDPT_EPRXEN) {
if (table[index(i, RX, EVEN)].desc == 0) {
table[index(i, RX, EVEN)].addr = packet->buf;
table[index(i, RX, EVEN)].desc = BDT_DESC(64, 0);
usb_rx_memory_needed--;
__enable_irq();
//serial_phex(i);
//serial_print(",even\n");
return;
}
if (table[index(i, RX, ODD)].desc == 0) {
table[index(i, RX, ODD)].addr = packet->buf;
table[index(i, RX, ODD)].desc = BDT_DESC(64, 1);
usb_rx_memory_needed--;
__enable_irq();
//serial_phex(i);
//serial_print(",odd\n");
return;
}
}
}
__enable_irq();
// we should never reach this point. If we get here, it means
// usb_rx_memory_needed was set greater than zero, but no memory
// was actually needed.
usb_rx_memory_needed = 0;
usb_free(packet);
return;
}
//#define index(endpoint, tx, odd) (((endpoint) << 2) | ((tx) << 1) | (odd))
//#define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
void usb_tx(uint32_t endpoint, usb_packet_t *packet)
{
bdt_t *b = &table[index(endpoint, TX, EVEN)];
uint8_t next;
endpoint--;
if (endpoint >= NUM_ENDPOINTS) return;
__disable_irq();
//serial_print("txstate=");
//serial_phex(tx_state[endpoint]);
//serial_print("\n");
switch (tx_state[endpoint]) {
case TX_STATE_BOTH_FREE_EVEN_FIRST:
next = TX_STATE_ODD_FREE;
break;
case TX_STATE_BOTH_FREE_ODD_FIRST:
b++;
next = TX_STATE_EVEN_FREE;
break;
case TX_STATE_EVEN_FREE:
next = TX_STATE_NONE_FREE_ODD_FIRST;
break;
case TX_STATE_ODD_FREE:
b++;
next = TX_STATE_NONE_FREE_EVEN_FIRST;
break;
default:
if (tx_first[endpoint] == NULL) {
tx_first[endpoint] = packet;
} else {
tx_last[endpoint]->next = packet;
}
tx_last[endpoint] = packet;
__enable_irq();
return;
}
tx_state[endpoint] = next;
b->addr = packet->buf;
b->desc = BDT_DESC(packet->len, ((uint32_t)b & 8) ? DATA1 : DATA0);
__enable_irq();
}
void _reboot_Teensyduino_(void)
{
// TODO: initialize R0 with a code....
__asm__ volatile("bkpt");
}
void usb_isr(void)
{
uint8_t status, stat, t;
//serial_print("isr");
//status = USB0_ISTAT;
//serial_phex(status);
//serial_print("\n");
restart:
status = USB0_ISTAT;
if ((status & USB_INTEN_SOFTOKEN /* 04 */ )) {
if (usb_configuration) {
t = usb_reboot_timer;
if (t) {
usb_reboot_timer = --t;
if (!t) _reboot_Teensyduino_();
}
#ifdef CDC_DATA_INTERFACE
t = usb_cdc_transmit_flush_timer;
if (t) {
usb_cdc_transmit_flush_timer = --t;
if (t == 0) usb_serial_flush_callback();
}
#endif
#ifdef SEREMU_INTERFACE
t = usb_seremu_transmit_flush_timer;
if (t) {
usb_seremu_transmit_flush_timer = --t;
if (t == 0) usb_seremu_flush_callback();
}
#endif
#ifdef MIDI_INTERFACE
usb_midi_flush_output();
#endif
#ifdef FLIGHTSIM_INTERFACE
usb_flightsim_flush_callback();
#endif
}
USB0_ISTAT = USB_INTEN_SOFTOKEN;
}
if ((status & USB_ISTAT_TOKDNE /* 08 */ )) {
uint8_t endpoint;
stat = USB0_STAT;
//serial_print("token: ep=");
//serial_phex(stat >> 4);
//serial_print(stat & 0x08 ? ",tx" : ",rx");
//serial_print(stat & 0x04 ? ",odd\n" : ",even\n");
endpoint = stat >> 4;
if (endpoint == 0) {
usb_control(stat);
} else {
bdt_t *b = stat2bufferdescriptor(stat);
usb_packet_t *packet = (usb_packet_t *)((uint8_t *)(b->addr) - 8);
#if 0
serial_print("ep:");
serial_phex(endpoint);
serial_print(", pid:");
serial_phex(BDT_PID(b->desc));
serial_print(((uint32_t)b & 8) ? ", odd" : ", even");
serial_print(", count:");
serial_phex(b->desc >> 16);
serial_print("\n");
#endif
endpoint--; // endpoint is index to zero-based arrays
if (stat & 0x08) { // transmit
usb_free(packet);
packet = tx_first[endpoint];
if (packet) {
//serial_print("tx packet\n");
tx_first[endpoint] = packet->next;
b->addr = packet->buf;
switch (tx_state[endpoint]) {
case TX_STATE_BOTH_FREE_EVEN_FIRST:
tx_state[endpoint] = TX_STATE_ODD_FREE;
break;
case TX_STATE_BOTH_FREE_ODD_FIRST:
tx_state[endpoint] = TX_STATE_EVEN_FREE;
break;
case TX_STATE_EVEN_FREE:
tx_state[endpoint] = TX_STATE_NONE_FREE_ODD_FIRST;
break;
case TX_STATE_ODD_FREE:
tx_state[endpoint] = TX_STATE_NONE_FREE_EVEN_FIRST;
break;
default:
break;
}
b->desc = BDT_DESC(packet->len, ((uint32_t)b & 8) ? DATA1 : DATA0);
} else {
//serial_print("tx no packet\n");
switch (tx_state[endpoint]) {
case TX_STATE_BOTH_FREE_EVEN_FIRST:
case TX_STATE_BOTH_FREE_ODD_FIRST:
break;
case TX_STATE_EVEN_FREE:
tx_state[endpoint] = TX_STATE_BOTH_FREE_EVEN_FIRST;
break;
case TX_STATE_ODD_FREE:
tx_state[endpoint] = TX_STATE_BOTH_FREE_ODD_FIRST;
break;
default:
tx_state[endpoint] = ((uint32_t)b & 8) ?
TX_STATE_ODD_FREE : TX_STATE_EVEN_FREE;
break;
}
}
} else { // receive
packet->len = b->desc >> 16;
if (packet->len > 0) {
packet->index = 0;
packet->next = NULL;
if (rx_first[endpoint] == NULL) {
//serial_print("rx 1st, epidx=");
//serial_phex(endpoint);
//serial_print(", packet=");
//serial_phex32((uint32_t)packet);
//serial_print("\n");
rx_first[endpoint] = packet;
} else {
//serial_print("rx Nth, epidx=");
//serial_phex(endpoint);
//serial_print(", packet=");
//serial_phex32((uint32_t)packet);
//serial_print("\n");
rx_last[endpoint]->next = packet;
}
rx_last[endpoint] = packet;
usb_rx_byte_count_data[endpoint] += packet->len;
// TODO: implement a per-endpoint maximum # of allocated packets
// so a flood of incoming data on 1 endpoint doesn't starve
// the others if the user isn't reading it regularly
packet = usb_malloc();
if (packet) {
b->addr = packet->buf;
b->desc = BDT_DESC(64, ((uint32_t)b & 8) ? DATA1 : DATA0);
} else {
//serial_print("starving ");
//serial_phex(endpoint + 1);
//serial_print(((uint32_t)b & 8) ? ",odd\n" : ",even\n");
b->desc = 0;
usb_rx_memory_needed++;
}
} else {
b->desc = BDT_DESC(64, ((uint32_t)b & 8) ? DATA1 : DATA0);
}
}
}
USB0_ISTAT = USB_ISTAT_TOKDNE;
goto restart;
}
if (status & USB_ISTAT_USBRST /* 01 */ ) {
//serial_print("reset\n");
// initialize BDT toggle bits
USB0_CTL = USB_CTL_ODDRST;
ep0_tx_bdt_bank = 0;
// set up buffers to receive Setup and OUT packets
table[index(0, RX, EVEN)].desc = BDT_DESC(EP0_SIZE, 0);
table[index(0, RX, EVEN)].addr = ep0_rx0_buf;
table[index(0, RX, ODD)].desc = BDT_DESC(EP0_SIZE, 0);
table[index(0, RX, ODD)].addr = ep0_rx1_buf;
table[index(0, TX, EVEN)].desc = 0;
table[index(0, TX, ODD)].desc = 0;
// activate endpoint 0
USB0_ENDPT0 = USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
// clear all ending interrupts
USB0_ERRSTAT = 0xFF;
USB0_ISTAT = 0xFF;
// set the address to zero during enumeration
USB0_ADDR = 0;
// enable other interrupts
USB0_ERREN = 0xFF;
USB0_INTEN = USB_INTEN_TOKDNEEN |
USB_INTEN_SOFTOKEN |
USB_INTEN_STALLEN |
USB_INTEN_ERROREN |
USB_INTEN_USBRSTEN |
USB_INTEN_SLEEPEN;
// is this necessary?
USB0_CTL = USB_CTL_USBENSOFEN;
return;
}
if ((status & USB_ISTAT_STALL /* 80 */ )) {
//serial_print("stall:\n");
USB0_ENDPT0 = USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
USB0_ISTAT = USB_ISTAT_STALL;
}
if ((status & USB_ISTAT_ERROR /* 02 */ )) {
uint8_t err = USB0_ERRSTAT;
USB0_ERRSTAT = err;
//serial_print("err:");
//serial_phex(err);
//serial_print("\n");
USB0_ISTAT = USB_ISTAT_ERROR;
}
if ((status & USB_ISTAT_SLEEP /* 10 */ )) {
//serial_print("sleep\n");
USB0_ISTAT = USB_ISTAT_SLEEP;
}
}
void usb_init(void)
{
int i;
//serial_begin(BAUD2DIV(115200));
//serial_print("usb_init\n");
usb_init_serialnumber();
for (i=0; i <= NUM_ENDPOINTS*4; i++) {
table[i].desc = 0;
table[i].addr = 0;
}
// this basically follows the flowchart in the Kinetis
// Quick Reference User Guide, Rev. 1, 03/2012, page 141
// assume 48 MHz clock already running
// SIM - enable clock
SIM_SCGC4 |= SIM_SCGC4_USBOTG;
// reset USB module
USB0_USBTRC0 = USB_USBTRC_USBRESET;
while ((USB0_USBTRC0 & USB_USBTRC_USBRESET) != 0) ; // wait for reset to end
// set desc table base addr
USB0_BDTPAGE1 = ((uint32_t)table) >> 8;
USB0_BDTPAGE2 = ((uint32_t)table) >> 16;
USB0_BDTPAGE3 = ((uint32_t)table) >> 24;
// clear all ISR flags
USB0_ISTAT = 0xFF;
USB0_ERRSTAT = 0xFF;
USB0_OTGISTAT = 0xFF;
USB0_USBTRC0 |= 0x40; // undocumented bit
// enable USB
USB0_CTL = USB_CTL_USBENSOFEN;
USB0_USBCTRL = 0;
// enable reset interrupt
USB0_INTEN = USB_INTEN_USBRSTEN;
// enable interrupt in NVIC...
NVIC_SET_PRIORITY(IRQ_USBOTG, 112);
NVIC_ENABLE_IRQ(IRQ_USBOTG);
// enable d+ pullup
USB0_CONTROL = USB_CONTROL_DPPULLUPNONOTG;
}
#else // F_CPU < 20 MHz
void usb_init(void)
{
}
#endif // F_CPU >= 20 MHz