1266 lines
36 KiB
C

/**
* \file
*
* \brief SAM Serial Peripheral Interface Driver
*
* Copyright (C) 2012-2016 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#include "spi.h"
/**
* \brief Resets the SPI module
*
* This function will reset the SPI module to its power on default values and
* disable it.
*
* \param[in,out] module Pointer to the software instance struct
*/
void spi_reset(
struct spi_module *const module)
{
/* Sanity check arguments */
Assert(module);
Assert(module->hw);
SercomSpi *const spi_module = &(module->hw->SPI);
/* Disable the module */
spi_disable(module);
while (spi_is_syncing(module)) {
/* Wait until the synchronization is complete */
}
/* Software reset the module */
spi_module->CTRLA.reg |= SERCOM_SPI_CTRLA_SWRST;
}
/**
* \brief Set the baudrate of the SPI module
*
* This function will set the baudrate of the SPI module.
*
* \param[in] module Pointer to the software instance struct
* \param[in] baudrate The baudrate wanted
*
* \return The status of the configuration.
* \retval STATUS_ERR_INVALID_ARG If invalid argument(s) were provided
* \retval STATUS_OK If the configuration was written
*/
enum status_code spi_set_baudrate(
struct spi_module *const module,
uint32_t baudrate)
{
/* Sanity check arguments */
Assert(module);
Assert(baudrate);
Assert(module->hw);
/* Value to write to BAUD register */
uint16_t baud = 0;
SercomSpi *const spi_module = &(module->hw->SPI);
/* Disable the module */
spi_disable(module);
while (spi_is_syncing(module)) {
/* Wait until the synchronization is complete */
}
/* Find frequency of the internal SERCOMi_GCLK_ID_CORE */
uint32_t sercom_index = _sercom_get_sercom_inst_index(module->hw);
uint32_t gclk_index = sercom_index + SERCOM0_GCLK_ID_CORE;
uint32_t internal_clock = system_gclk_chan_get_hz(gclk_index);
/* Get baud value, based on baudrate and the internal clock frequency */
enum status_code error_code = _sercom_get_sync_baud_val(
baudrate, internal_clock, &baud);
if (error_code != STATUS_OK) {
/* Baud rate calculation error, return status code */
return STATUS_ERR_INVALID_ARG;
}
spi_module->BAUD.reg = (uint8_t)baud;
while (spi_is_syncing(module)) {
/* Wait until the synchronization is complete */
}
/* Enable the module */
spi_enable(module);
while (spi_is_syncing(module)) {
/* Wait until the synchronization is complete */
}
return STATUS_OK;
}
# if CONF_SPI_SLAVE_ENABLE == true
/**
* \internal Clears the Transmit Complete interrupt flag.
*
* \param[in] module Pointer to the software instance struct
*/
static void _spi_clear_tx_complete_flag(
struct spi_module *const module)
{
/* Sanity check arguments */
Assert(module);
Assert(module->hw);
SercomSpi *const spi_module = &(module->hw->SPI);
/* Clear interrupt flag */
spi_module->INTFLAG.reg = SPI_INTERRUPT_FLAG_TX_COMPLETE;
}
# endif
/**
* \internal Writes an SPI SERCOM configuration to the hardware module.
*
* This function will write out a given configuration to the hardware module.
* Can only be done when the module is disabled.
*
* \param[in] module Pointer to the software instance struct
* \param[in] config Pointer to the configuration struct
*
* \return The status of the configuration.
* \retval STATUS_ERR_INVALID_ARG If invalid argument(s) were provided
* \retval STATUS_OK If the configuration was written
*/
static enum status_code _spi_set_config(
struct spi_module *const module,
const struct spi_config *const config)
{
/* Sanity check arguments */
Assert(module);
Assert(config);
Assert(module->hw);
SercomSpi *const spi_module = &(module->hw->SPI);
Sercom *const hw = module->hw;
struct system_pinmux_config pin_conf;
system_pinmux_get_config_defaults(&pin_conf);
pin_conf.direction = SYSTEM_PINMUX_PIN_DIR_INPUT;
if(config->mode == SPI_MODE_SLAVE) {
pin_conf.input_pull = SYSTEM_PINMUX_PIN_PULL_NONE;
}
uint32_t pad_pinmuxes[] = {
config->pinmux_pad0, config->pinmux_pad1,
config->pinmux_pad2, config->pinmux_pad3
};
/* Configure the SERCOM pins according to the user configuration */
for (uint8_t pad = 0; pad < 4; pad++) {
uint32_t current_pinmux = pad_pinmuxes[pad];
if (current_pinmux == PINMUX_DEFAULT) {
current_pinmux = _sercom_get_default_pad(hw, pad);
}
if (current_pinmux != PINMUX_UNUSED) {
pin_conf.mux_position = current_pinmux & 0xFFFF;
system_pinmux_pin_set_config(current_pinmux >> 16, &pin_conf);
}
}
module->mode = config->mode;
module->character_size = config->character_size;
module->receiver_enabled = config->receiver_enable;
# ifdef FEATURE_SPI_HARDWARE_SLAVE_SELECT
module->master_slave_select_enable = config->master_slave_select_enable;
# endif
# if CONF_SPI_MASTER_ENABLE == true
/* Value to write to BAUD register */
uint16_t baud = 0;
# endif
/* Value to write to CTRLA register */
uint32_t ctrla = 0;
/* Value to write to CTRLB register */
uint32_t ctrlb = 0;
# if CONF_SPI_MASTER_ENABLE == true
/* Find baud value and write it */
if (config->mode == SPI_MODE_MASTER) {
/* Find frequency of the internal SERCOMi_GCLK_ID_CORE */
uint32_t sercom_index = _sercom_get_sercom_inst_index(module->hw);
uint32_t gclk_index = sercom_index + SERCOM0_GCLK_ID_CORE;
uint32_t internal_clock = system_gclk_chan_get_hz(gclk_index);
/* Get baud value, based on baudrate and the internal clock frequency */
enum status_code error_code = _sercom_get_sync_baud_val(
config->mode_specific.master.baudrate,
internal_clock, &baud);
if (error_code != STATUS_OK) {
/* Baud rate calculation error, return status code */
return STATUS_ERR_INVALID_ARG;
}
spi_module->BAUD.reg = (uint8_t)baud;
}
# endif
# if CONF_SPI_SLAVE_ENABLE == true
if (config->mode == SPI_MODE_SLAVE) {
/* Set frame format */
ctrla = config->mode_specific.slave.frame_format;
/* Set address mode */
ctrlb = config->mode_specific.slave.address_mode;
/* Set address and address mask*/
spi_module->ADDR.reg |=
(config->mode_specific.slave.address << SERCOM_SPI_ADDR_ADDR_Pos) |
(config->mode_specific.slave.address_mask << SERCOM_SPI_ADDR_ADDRMASK_Pos);
if (config->mode_specific.slave.preload_enable) {
/* Enable pre-loading of shift register */
ctrlb |= SERCOM_SPI_CTRLB_PLOADEN;
}
}
# endif
/* Set data order */
ctrla |= config->data_order;
/* Set clock polarity and clock phase */
ctrla |= config->transfer_mode;
/* Set MUX setting */
ctrla |= config->mux_setting;
/* Set SPI character size */
ctrlb |= config->character_size;
/* Set whether module should run in standby. */
if (config->run_in_standby || system_is_debugger_present()) {
ctrla |= SERCOM_SPI_CTRLA_RUNSTDBY;
}
if (config->receiver_enable) {
/* Enable receiver */
ctrlb |= SERCOM_SPI_CTRLB_RXEN;
}
# ifdef FEATURE_SPI_SLAVE_SELECT_LOW_DETECT
if (config->select_slave_low_detect_enable) {
/* Enable Slave Select Low Detect */
ctrlb |= SERCOM_SPI_CTRLB_SSDE;
}
# endif
# ifdef FEATURE_SPI_HARDWARE_SLAVE_SELECT
if (config->master_slave_select_enable) {
/* Enable Master Slave Select */
ctrlb |= SERCOM_SPI_CTRLB_MSSEN;
}
# endif
/* Write CTRLA register */
spi_module->CTRLA.reg |= ctrla;
/* Write CTRLB register */
spi_module->CTRLB.reg |= ctrlb;
return STATUS_OK;
}
#if SPI_CALLBACK_MODE == false
/**
* \internal Checks an SPI config against current set config
*
* This function will check that the config does not alter the
* configuration of the module. If the new config changes any
* setting, the initialization will be discarded.
*
* \param[in] module Pointer to the software instance struct
* \param[in] config Pointer to the configuration struct
*
* \return The status of the configuration.
* \retval STATUS_ERR_INVALID_ARG If invalid argument(s) were provided
* \retval STATUS_ERR_DENIED If configuration was different from previous
* \retval STATUS_OK If the configuration was written
*/
static enum status_code _spi_check_config(
struct spi_module *const module,
const struct spi_config *const config)
{
/* Sanity check arguments */
Assert(module);
Assert(config);
Assert(module->hw);
SercomSpi *const spi_module = &(module->hw->SPI);
Sercom *const hw = module->hw;
uint32_t pad_pinmuxes[] = {
config->pinmux_pad0, config->pinmux_pad1,
config->pinmux_pad2, config->pinmux_pad3
};
/* Compare the current SERCOM pins against the user configuration */
for (uint8_t pad = 0; pad < 4; pad++) {
uint32_t current_pinmux = pad_pinmuxes[pad];
if (current_pinmux == PINMUX_DEFAULT) {
current_pinmux = _sercom_get_default_pad(hw, pad);
}
if (current_pinmux == PINMUX_UNUSED) {
continue;
}
if ((current_pinmux & 0xFFFF) !=
system_pinmux_pin_get_mux_position(current_pinmux >> 16)) {
module->hw = NULL;
return STATUS_ERR_DENIED;
}
}
# if CONF_SPI_MASTER_ENABLE == true
/* Value to read BAUD register */
uint16_t baud;
uint32_t external_clock = system_gclk_chan_get_hz(SERCOM_GCLK_ID);
# endif
/* Value to read CTRLA, CTRLB and ADDR register */
uint32_t ctrla = 0;
uint32_t ctrlb = 0;
# if CONF_SPI_SLAVE_ENABLE == true
uint32_t addr = 0;
# endif
# if CONF_SPI_MASTER_ENABLE == true
/* Find baud value and compare it */
if (config->mode == SPI_MODE_MASTER) {
enum status_code error_code = _sercom_get_sync_baud_val(
config->mode_specific.master.baudrate,
external_clock, &baud);
if (error_code != STATUS_OK) {
/* Baud rate calculation error, return status code */
return STATUS_ERR_INVALID_ARG;
}
if (spi_module->BAUD.reg != (uint8_t)baud) {
return STATUS_ERR_DENIED;
}
ctrla |= SERCOM_SPI_CTRLA_MODE(0x3);
}
# endif
# if CONF_SPI_SLAVE_ENABLE == true
if (config->mode == SPI_MODE_SLAVE) {
/* Set frame format */
ctrla |= config->mode_specific.slave.frame_format;
/* Set address mode */
ctrlb |= config->mode_specific.slave.address_mode;
/* Set address and address mask*/
addr |= (config->mode_specific.slave.address << SERCOM_SPI_ADDR_ADDR_Pos) |
(config->mode_specific.slave.address_mask << SERCOM_SPI_ADDR_ADDRMASK_Pos);
if (spi_module->CTRLA.reg != addr) {
return STATUS_ERR_DENIED;
}
if (config->mode_specific.slave.preload_enable) {
/* Enable pre-loading of shift register */
ctrlb |= SERCOM_SPI_CTRLB_PLOADEN;
}
ctrla |= SERCOM_SPI_CTRLA_MODE(0x2);
}
# endif
/* Set data order */
ctrla |= config->data_order;
/* Set clock polarity and clock phase */
ctrla |= config->transfer_mode;
/* Set MUX setting */
ctrla |= config->mux_setting;
/* Set SPI character size */
ctrlb |= config->character_size;
if (config->run_in_standby) {
/* Enable in sleep mode */
ctrla |= SERCOM_SPI_CTRLA_RUNSTDBY;
}
if (config->receiver_enable) {
/* Enable receiver */
ctrlb |= SERCOM_SPI_CTRLB_RXEN;
}
# ifdef FEATURE_SPI_SLAVE_SELECT_LOW_DETECT
if (config->select_slave_low_detect_enable) {
/* Enable Slave Select Low Detect */
ctrlb |= SERCOM_SPI_CTRLB_SSDE;
}
# endif
# ifdef FEATURE_SPI_HARDWARE_SLAVE_SELECT
if (config->master_slave_select_enable) {
/* Enable Master Slave Select */
ctrlb |= SERCOM_SPI_CTRLB_MSSEN;
}
# endif
ctrla |= SERCOM_SPI_CTRLA_ENABLE;
/* Check that same config is set */
if (spi_module->CTRLA.reg == ctrla &&
spi_module->CTRLB.reg == ctrlb) {
module->mode = config->mode;
module->character_size = config->character_size;
return STATUS_OK;
}
/* Not same config, wipe module pointer and return */
module->hw = NULL;
return STATUS_ERR_DENIED;
}
#endif
/**
* \brief Initializes the SERCOM SPI module
*
* This function will initialize the SERCOM SPI module, based on the values
* of the config struct.
*
* \param[out] module Pointer to the software instance struct
* \param[in] hw Pointer to hardware instance
* \param[in] config Pointer to the config struct
*
* \return Status of the initialization.
* \retval STATUS_OK Module initiated correctly
* \retval STATUS_ERR_DENIED If module is enabled
* \retval STATUS_BUSY If module is busy resetting
* \retval STATUS_ERR_INVALID_ARG If invalid argument(s) were provided
*/
enum status_code spi_init(
struct spi_module *const module,
Sercom *const hw,
const struct spi_config *const config)
{
/* Sanity check arguments */
Assert(module);
Assert(hw);
Assert(config);
/* Initialize device instance */
module->hw = hw;
SercomSpi *const spi_module = &(module->hw->SPI);
/* Check if module is enabled. */
if (spi_module->CTRLA.reg & SERCOM_SPI_CTRLA_ENABLE) {
# if SPI_CALLBACK_MODE == false
/* Check if config is valid */
return _spi_check_config(module, config);
# else
return STATUS_ERR_DENIED;
# endif
}
/* Check if reset is in progress. */
if (spi_module->CTRLA.reg & SERCOM_SPI_CTRLA_SWRST){
return STATUS_BUSY;
}
uint32_t sercom_index = _sercom_get_sercom_inst_index(module->hw);
uint32_t pm_index, gclk_index;
#if (SAML21) || (SAMR30)
if (sercom_index == 5) {
# ifdef ID_SERCOM5
pm_index = MCLK_APBDMASK_SERCOM5_Pos;
gclk_index = SERCOM5_GCLK_ID_CORE;
# else
return STATUS_ERR_INVALID_ARG;
# endif
} else {
pm_index = sercom_index + MCLK_APBCMASK_SERCOM0_Pos;
gclk_index = sercom_index + SERCOM0_GCLK_ID_CORE;
}
#elif (SAMC21)
if (sercom_index == 5) {
# ifdef ID_SERCOM5
pm_index = sercom_index + MCLK_APBCMASK_SERCOM0_Pos;
gclk_index = SERCOM5_GCLK_ID_CORE;
# else
return STATUS_ERR_INVALID_ARG;
# endif
} else {
pm_index = sercom_index + MCLK_APBCMASK_SERCOM0_Pos;
gclk_index = sercom_index + SERCOM0_GCLK_ID_CORE;
}
#elif (SAMC20) || (SAML22)
pm_index = sercom_index + MCLK_APBCMASK_SERCOM0_Pos;
gclk_index = sercom_index + SERCOM0_GCLK_ID_CORE;
#else
pm_index = sercom_index + PM_APBCMASK_SERCOM0_Pos;
gclk_index = sercom_index + SERCOM0_GCLK_ID_CORE;
#endif
/* Turn on module in PM */
#if (SAML21) || (SAMR30)
if (sercom_index == 5) {
# ifdef ID_SERCOM5
system_apb_clock_set_mask(SYSTEM_CLOCK_APB_APBD, 1 << pm_index);
# else
return STATUS_ERR_INVALID_ARG;
# endif
} else {
system_apb_clock_set_mask(SYSTEM_CLOCK_APB_APBC, 1 << pm_index);
}
#else
system_apb_clock_set_mask(SYSTEM_CLOCK_APB_APBC, 1 << pm_index);
#endif
/* Set up the GCLK for the module */
struct system_gclk_chan_config gclk_chan_conf;
system_gclk_chan_get_config_defaults(&gclk_chan_conf);
gclk_chan_conf.source_generator = config->generator_source;
system_gclk_chan_set_config(gclk_index, &gclk_chan_conf);
system_gclk_chan_enable(gclk_index);
sercom_set_gclk_generator(config->generator_source, false);
# if CONF_SPI_MASTER_ENABLE == true
if (config->mode == SPI_MODE_MASTER) {
/* Set the SERCOM in SPI master mode */
spi_module->CTRLA.reg |= SERCOM_SPI_CTRLA_MODE(0x3);
}
# endif
# if CONF_SPI_SLAVE_ENABLE == true
if (config->mode == SPI_MODE_SLAVE) {
/* Set the SERCOM in SPI slave mode */
spi_module->CTRLA.reg |= SERCOM_SPI_CTRLA_MODE(0x2);
}
# endif
#if SPI_CALLBACK_MODE == true
/* Temporary variables */
uint8_t i;
uint8_t instance_index;
/* Initialize parameters */
for (i = 0; i < SPI_CALLBACK_N; i++) {
module->callback[i] = NULL;
}
module->tx_buffer_ptr = NULL;
module->rx_buffer_ptr = NULL;
module->remaining_tx_buffer_length = 0x0000;
module->remaining_rx_buffer_length = 0x0000;
module->registered_callback = 0x00;
module->enabled_callback = 0x00;
module->status = STATUS_OK;
module->dir = SPI_DIRECTION_IDLE;
module->locked = false;
/*
* Set interrupt handler and register SPI software module struct in
* look-up table
*/
instance_index = _sercom_get_sercom_inst_index(module->hw);
_sercom_set_handler(instance_index, _spi_interrupt_handler);
_sercom_instances[instance_index] = module;
#endif
/* Write configuration to module and return status code */
return _spi_set_config(module, config);
}
/**
* \brief Reads buffer of \c length SPI characters
*
* This function will read a buffer of data from an SPI peripheral by sending
* dummy SPI character if in master mode, or by waiting for data in slave mode.
*
* \note If address matching is enabled for the slave, the first character
* received and placed in the buffer will be the address.
*
* \param[in] module Pointer to the software instance struct
* \param[out] rx_data Data buffer for received data
* \param[in] length Length of data to receive
* \param[in] dummy 8- or 9-bit dummy byte to shift out in master mode
*
* \return Status of the read operation.
* \retval STATUS_OK If the read was completed
* \retval STATUS_ABORTED If transaction was ended by master before
* the entire buffer was transferred
* \retval STATUS_ERR_INVALID_ARG If invalid argument(s) were provided
* \retval STATUS_ERR_TIMEOUT If the operation was not completed within the
* timeout in slave mode
* \retval STATUS_ERR_DENIED If the receiver is not enabled
* \retval STATUS_ERR_OVERFLOW If the data is overflown
*/
enum status_code spi_read_buffer_wait(
struct spi_module *const module,
uint8_t *rx_data,
uint16_t length,
uint16_t dummy)
{
/* Sanity check arguments */
Assert(module);
Assert(module->hw);
# if SPI_CALLBACK_MODE == true
if (module->status == STATUS_BUSY) {
/* Check if the SPI module is busy with a job */
return STATUS_BUSY;
}
# endif
/* Sanity check arguments */
if (length == 0) {
return STATUS_ERR_INVALID_ARG;
}
if (!(module->receiver_enabled)) {
return STATUS_ERR_DENIED;
}
# if CONF_SPI_SLAVE_ENABLE == true
if ((module->mode == SPI_MODE_SLAVE) && (spi_is_write_complete(module))) {
/* Clear TX complete flag */
_spi_clear_tx_complete_flag(module);
}
# endif
uint16_t rx_pos = 0;
while (length--) {
# if CONF_SPI_MASTER_ENABLE == true
if (module->mode == SPI_MODE_MASTER) {
/* Wait until the module is ready to write a character */
while (!spi_is_ready_to_write(module)) {
}
/* Send dummy SPI character to read in master mode */
spi_write(module, dummy);
}
# endif
# if CONF_SPI_SLAVE_ENABLE == true
/* Start timeout period for slave */
if (module->mode == SPI_MODE_SLAVE) {
for (uint32_t i = 0; i <= SPI_TIMEOUT; i++) {
if (spi_is_ready_to_read(module)) {
break;
}
}
/* Check if master has ended the transaction */
if (spi_is_write_complete(module)) {
_spi_clear_tx_complete_flag(module);
return STATUS_ABORTED;
}
if (!spi_is_ready_to_read(module)) {
/* Not ready to read data within timeout period */
return STATUS_ERR_TIMEOUT;
}
}
# endif
/* Wait until the module is ready to read a character */
while (!spi_is_ready_to_read(module)) {
}
uint16_t received_data = 0;
enum status_code retval = spi_read(module, &received_data);
if (retval != STATUS_OK) {
/* Overflow, abort */
return retval;
}
/* Read value will be at least 8-bits long */
rx_data[rx_pos++] = received_data;
/* If 9-bit data, write next received byte to the buffer */
if (module->character_size == SPI_CHARACTER_SIZE_9BIT) {
rx_data[rx_pos++] = (received_data >> 8);
}
}
return STATUS_OK;
}
/**
* \brief Sends and reads a single SPI character
*
* This function will transfer a single SPI character via SPI and return the
* SPI character that is shifted into the shift register.
*
* In master mode the SPI character will be sent immediately and the received
* SPI character will be read as soon as the shifting of the data is
* complete.
*
* In slave mode this function will place the data to be sent into the transmit
* buffer. It will then block until an SPI master has shifted a complete
* SPI character, and the received data is available.
*
* \note The data to be sent might not be sent before the next transfer, as
* loading of the shift register is dependent on SCK.
* \note If address matching is enabled for the slave, the first character
* received and placed in the buffer will be the address.
*
* \param[in] module Pointer to the software instance struct
* \param[in] tx_data SPI character to transmit
* \param[out] rx_data Pointer to store the received SPI character
*
* \return Status of the operation.
* \retval STATUS_OK If the operation was completed
* \retval STATUS_ERR_TIMEOUT If the operation was not completed within the
* timeout in slave mode
* \retval STATUS_ERR_DENIED If the receiver is not enabled
* \retval STATUS_ERR_OVERFLOW If the incoming data is overflown
*/
enum status_code spi_transceive_wait(
struct spi_module *const module,
uint16_t tx_data,
uint16_t *rx_data)
{
/* Sanity check arguments */
Assert(module);
if (!(module->receiver_enabled)) {
return STATUS_ERR_DENIED;
}
# if SPI_CALLBACK_MODE == true
if (module->status == STATUS_BUSY) {
/* Check if the SPI module is busy with a job */
return STATUS_BUSY;
}
# endif
# if CONF_SPI_SLAVE_ENABLE == true
uint16_t j;
# endif
enum status_code retval = STATUS_OK;
# if CONF_SPI_SLAVE_ENABLE == true
/* Start timeout period for slave */
if (module->mode == SPI_MODE_SLAVE) {
for (j = 0; j <= SPI_TIMEOUT; j++) {
if (spi_is_ready_to_write(module)) {
break;
} else if (j == SPI_TIMEOUT) {
/* Not ready to write data within timeout period */
return STATUS_ERR_TIMEOUT;
}
}
}
# endif
/* Wait until the module is ready to write the character */
while (!spi_is_ready_to_write(module)) {
}
/* Write data */
spi_write(module, tx_data);
# if CONF_SPI_SLAVE_ENABLE == true
/* Start timeout period for slave */
if (module->mode == SPI_MODE_SLAVE) {
for (j = 0; j <= SPI_TIMEOUT; j++) {
if (spi_is_ready_to_read(module)) {
break;
} else if (j == SPI_TIMEOUT) {
/* Not ready to read data within timeout period */
return STATUS_ERR_TIMEOUT;
}
}
}
# endif
/* Wait until the module is ready to read the character */
while (!spi_is_ready_to_read(module)) {
}
/* Read data */
retval = spi_read(module, rx_data);
return retval;
}
/**
* \brief Selects slave device
*
* This function will drive the slave select pin of the selected device low or
* high depending on the select Boolean.
* If slave address recognition is enabled, the address will be sent to the
* slave when selecting it.
*
* \param[in] module Pointer to the software module struct
* \param[in] slave Pointer to the attached slave
* \param[in] select Boolean stating if the slave should be selected or
* deselected
*
* \return Status of the operation.
* \retval STATUS_OK If the slave device was selected
* \retval STATUS_ERR_UNSUPPORTED_DEV If the SPI module is operating in slave
* mode
* \retval STATUS_BUSY If the SPI module is not ready to write
* the slave address
*/
enum status_code spi_select_slave(
struct spi_module *const module,
struct spi_slave_inst *const slave,
const bool select)
{
/* Sanity check arguments */
Assert(module);
Assert(module->hw);
Assert(slave);
/* Check that the SPI module is operating in master mode */
if (module->mode != SPI_MODE_MASTER) {
return STATUS_ERR_UNSUPPORTED_DEV;
}
# ifdef FEATURE_SPI_HARDWARE_SLAVE_SELECT
if(!(module->master_slave_select_enable))
# endif
{
if (select) {
/* Check if address recognition is enabled */
if (slave->address_enabled) {
/* Check if the module is ready to write the address */
if (!spi_is_ready_to_write(module)) {
/* Not ready, do not select slave and return */
port_pin_set_output_level(slave->ss_pin, true);
return STATUS_BUSY;
}
/* Drive Slave Select low */
port_pin_set_output_level(slave->ss_pin, false);
/* Write address to slave */
spi_write(module, slave->address);
if (!(module->receiver_enabled)) {
/* Flush contents of shift register shifted back from slave */
while (!spi_is_ready_to_read(module)) {
}
uint16_t flush = 0;
spi_read(module, &flush);
}
} else {
/* Drive Slave Select low */
port_pin_set_output_level(slave->ss_pin, false);
}
} else {
/* Drive Slave Select high */
port_pin_set_output_level(slave->ss_pin, true);
}
}
return STATUS_OK;
}
/**
* \brief Sends a buffer of \c length SPI characters
*
* This function will send a buffer of SPI characters via the SPI
* and discard any data that is received. To both send and receive a buffer of
* data, use the \ref spi_transceive_buffer_wait function.
*
* Note that this function does not handle the _SS (slave select) pin(s) in
* master mode; this must be handled by the user application.
*
* \param[in] module Pointer to the software instance struct
* \param[in] tx_data Pointer to the buffer to transmit
* \param[in] length Number of SPI characters to transfer
*
* \return Status of the write operation.
* \retval STATUS_OK If the write was completed
* \retval STATUS_ABORTED If transaction was ended by master before
* entire buffer was transferred
* \retval STATUS_ERR_INVALID_ARG If invalid argument(s) were provided
* \retval STATUS_ERR_TIMEOUT If the operation was not completed within the
* timeout in slave mode
*/
enum status_code spi_write_buffer_wait(
struct spi_module *const module,
const uint8_t *tx_data,
uint16_t length)
{
/* Sanity check arguments */
Assert(module);
# if SPI_CALLBACK_MODE == true
if (module->status == STATUS_BUSY) {
/* Check if the SPI module is busy with a job */
return STATUS_BUSY;
}
# endif
if (length == 0) {
return STATUS_ERR_INVALID_ARG;
}
# if CONF_SPI_SLAVE_ENABLE == true
if ((module->mode == SPI_MODE_SLAVE) && (spi_is_write_complete(module))) {
/* Clear TX complete flag */
_spi_clear_tx_complete_flag(module);
}
# endif
uint16_t tx_pos = 0;
uint16_t flush_length = length;
/* Write block */
while (length--) {
# if CONF_SPI_SLAVE_ENABLE == true
/* Start timeout period for slave */
if (module->mode == SPI_MODE_SLAVE) {
for (uint32_t i = 0; i <= SPI_TIMEOUT; i++) {
if (spi_is_ready_to_write(module)) {
break;
}
}
/* Check if master has ended the transaction */
if (spi_is_write_complete(module)) {
_spi_clear_tx_complete_flag(module);
return STATUS_ABORTED;
}
if (!spi_is_ready_to_write(module)) {
/* Not ready to write data within timeout period */
return STATUS_ERR_TIMEOUT;
}
}
# endif
/* Wait until the module is ready to write a character */
while (!spi_is_ready_to_write(module)) {
}
/* Write value will be at least 8-bits long */
uint16_t data_to_send = tx_data[tx_pos++];
/* If 9-bit data, get next byte to send from the buffer */
if (module->character_size == SPI_CHARACTER_SIZE_9BIT) {
data_to_send |= (tx_data[tx_pos++] << 8);
}
/* Write the data to send */
spi_write(module, data_to_send);
if (module->receiver_enabled) {
# if CONF_SPI_SLAVE_ENABLE == true
/* Start timeout period for slave */
if (module->mode == SPI_MODE_SLAVE) {
for (uint32_t i = 0; i <= SPI_TIMEOUT; i++) {
if (length && spi_is_ready_to_write(module)) {
data_to_send = tx_data[tx_pos++];
/* If 9-bit data, get next byte to send from the buffer */
if (module->character_size == SPI_CHARACTER_SIZE_9BIT) {
data_to_send |= (tx_data[tx_pos++] << 8);
}
/* Write the data to send */
spi_write(module, data_to_send);
length--;
}
if (spi_is_ready_to_read(module)) {
break;
}
}
/* Check if master has ended the transaction */
if (spi_is_write_complete(module)) {
_spi_clear_tx_complete_flag(module);
return STATUS_ABORTED;
}
if (!spi_is_ready_to_read(module)) {
/* Not ready to read data within timeout period */
return STATUS_ERR_TIMEOUT;
}
}
# endif
while (!spi_is_ready_to_read(module)) {
}
/* Flush read buffer */
uint16_t flush;
spi_read(module, &flush);
flush_length--;
}
}
# if CONF_SPI_MASTER_ENABLE == true
if (module->mode == SPI_MODE_MASTER) {
/* Wait for last byte to be transferred */
while (!spi_is_write_complete(module)) {
}
}
# endif
# if CONF_SPI_SLAVE_ENABLE == true
if (module->mode == SPI_MODE_SLAVE) {
if (module->receiver_enabled) {
while (flush_length) {
/* Start timeout period for slave */
for (uint32_t i = 0; i <= SPI_TIMEOUT; i++) {
if (spi_is_ready_to_read(module)) {
break;
}
}
if (!spi_is_ready_to_read(module)) {
/* Not ready to read data within timeout period */
return STATUS_ERR_TIMEOUT;
}
/* Flush read buffer */
uint16_t flush;
spi_read(module, &flush);
flush_length--;
}
}
}
# endif
return STATUS_OK;
}
/**
* \brief Sends and receives a buffer of \c length SPI characters
*
* This function will send and receive a buffer of data via the SPI.
*
* In master mode the SPI characters will be sent immediately and the
* received SPI character will be read as soon as the shifting of the SPI
* character is complete.
*
* In slave mode this function will place the data to be sent into the transmit
* buffer. It will then block until an SPI master has shifted the complete
* buffer and the received data is available.
*
* \param[in] module Pointer to the software instance struct
* \param[in] tx_data Pointer to the buffer to transmit
* \param[out] rx_data Pointer to the buffer where received data will be stored
* \param[in] length Number of SPI characters to transfer
*
* \return Status of the operation.
* \retval STATUS_OK If the operation was completed
* \retval STATUS_ERR_INVALID_ARG If invalid argument(s) were provided
* \retval STATUS_ERR_TIMEOUT If the operation was not completed within the
* timeout in slave mode
* \retval STATUS_ERR_DENIED If the receiver is not enabled
* \retval STATUS_ERR_OVERFLOW If the data is overflown
*/
enum status_code spi_transceive_buffer_wait(
struct spi_module *const module,
uint8_t *tx_data,
uint8_t *rx_data,
uint16_t length)
{
/* Sanity check arguments */
Assert(module);
# if SPI_CALLBACK_MODE == true
if (module->status == STATUS_BUSY) {
/* Check if the SPI module is busy with a job */
return STATUS_BUSY;
}
# endif
/* Sanity check arguments */
if (length == 0) {
return STATUS_ERR_INVALID_ARG;
}
if (!(module->receiver_enabled)) {
return STATUS_ERR_DENIED;
}
# if CONF_SPI_SLAVE_ENABLE == true
if ((module->mode == SPI_MODE_SLAVE) && (spi_is_write_complete(module))) {
/* Clear TX complete flag */
_spi_clear_tx_complete_flag(module);
}
# endif
uint16_t tx_pos = 0;
uint16_t rx_pos = 0;
uint16_t rx_length = length;
/* Send and receive buffer */
while (length--) {
# if CONF_SPI_SLAVE_ENABLE == true
/* Start timeout period for slave */
if (module->mode == SPI_MODE_SLAVE) {
for (uint32_t i = 0; i <= SPI_TIMEOUT; i++) {
if (spi_is_ready_to_write(module)) {
break;
}
}
/* Check if master has ended the transaction */
if (spi_is_write_complete(module)) {
_spi_clear_tx_complete_flag(module);
return STATUS_ABORTED;
}
if (!spi_is_ready_to_write(module)) {
/* Not ready to write data within timeout period */
return STATUS_ERR_TIMEOUT;
}
}
# endif
/* Wait until the module is ready to write a character */
while (!spi_is_ready_to_write(module)) {
}
/* Write value will be at least 8-bits long */
uint16_t data_to_send = tx_data[tx_pos++];
/* If 9-bit data, get next byte to send from the buffer */
if (module->character_size == SPI_CHARACTER_SIZE_9BIT) {
data_to_send |= (tx_data[tx_pos++] << 8);
}
/* Write the data to send */
spi_write(module, data_to_send);
# if CONF_SPI_SLAVE_ENABLE == true
/* Start timeout period for slave */
if (module->mode == SPI_MODE_SLAVE) {
for (uint32_t i = 0; i <= SPI_TIMEOUT; i++) {
if (spi_is_ready_to_write(module)) {
data_to_send = tx_data[tx_pos++];
/* If 9-bit data, get next byte to send from the buffer */
if (module->character_size == SPI_CHARACTER_SIZE_9BIT) {
data_to_send |= (tx_data[tx_pos++] << 8);
}
/* Write the data to send */
spi_write(module, data_to_send);
length--;
}
if (spi_is_ready_to_read(module)) {
break;
}
}
/* Check if master has ended the transaction */
if (spi_is_write_complete(module)) {
_spi_clear_tx_complete_flag(module);
return STATUS_ABORTED;
}
if (!spi_is_ready_to_read(module)) {
/* Not ready to read data within timeout period */
return STATUS_ERR_TIMEOUT;
}
}
# endif
/* Wait until the module is ready to read a character */
while (!spi_is_ready_to_read(module)) {
}
enum status_code retval;
uint16_t received_data = 0;
rx_length--;
retval = spi_read(module, &received_data);
if (retval != STATUS_OK) {
/* Overflow, abort */
return retval;
}
/* Read value will be at least 8-bits long */
rx_data[rx_pos++] = received_data;
/* If 9-bit data, write next received byte to the buffer */
if (module->character_size == SPI_CHARACTER_SIZE_9BIT) {
rx_data[rx_pos++] = (received_data >> 8);
}
}
# if CONF_SPI_MASTER_ENABLE == true
if (module->mode == SPI_MODE_MASTER) {
/* Wait for last byte to be transferred */
while (!spi_is_write_complete(module)) {
}
}
# endif
# if CONF_SPI_SLAVE_ENABLE == true
if (module->mode == SPI_MODE_SLAVE) {
while (rx_length) {
/* Start timeout period for slave */
for (uint32_t i = 0; i <= SPI_TIMEOUT; i++) {
if (spi_is_ready_to_read(module)) {
break;
}
}
if (!spi_is_ready_to_read(module)) {
/* Not ready to read data within timeout period */
return STATUS_ERR_TIMEOUT;
}
enum status_code retval;
uint16_t received_data = 0;
rx_length--;
retval = spi_read(module, &received_data);
if (retval != STATUS_OK) {
/* Overflow, abort */
return retval;
}
/* Read value will be at least 8-bits long */
rx_data[rx_pos++] = received_data;
/* If 9-bit data, write next received byte to the buffer */
if (module->character_size == SPI_CHARACTER_SIZE_9BIT) {
rx_data[rx_pos++] = (received_data >> 8);
}
}
}
# endif
return STATUS_OK;
}