circuitpython/ports/mimxrt10xx/common-hal/busio/I2C.c
2022-05-19 15:38:37 -04:00

261 lines
8.2 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft
* Copyright (c) 2019 Artur Pacholec
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include "shared-bindings/microcontroller/Pin.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "shared-bindings/busio/I2C.h"
#include "py/mperrno.h"
#include "py/runtime.h"
#include "periph.h"
#include "fsl_lpi2c.h"
#include "fsl_gpio.h"
#define I2C_CLOCK_FREQ (CLOCK_GetFreq(kCLOCK_Usb1PllClk) / 8 / (1 + CLOCK_GetDiv(kCLOCK_Lpi2cDiv)))
#define IOMUXC_SW_MUX_CTL_PAD_MUX_MODE_ALT5 5U
// arrays use 0 based numbering: I2C1 is stored at index 0
#define MAX_I2C 4
STATIC bool reserved_i2c[MAX_I2C];
STATIC bool never_reset_i2c[MAX_I2C];
void i2c_reset(void) {
for (uint i = 0; i < MP_ARRAY_SIZE(mcu_i2c_banks); i++) {
if (!never_reset_i2c[i]) {
reserved_i2c[i] = false;
LPI2C_MasterDeinit(mcu_i2c_banks[i]);
}
}
}
static void config_periph_pin(const mcu_periph_obj_t *periph) {
IOMUXC_SetPinMux(
periph->pin->mux_reg, periph->mux_mode,
periph->input_reg, periph->input_idx,
0,
1);
IOMUXC_SetPinConfig(0, 0, 0, 0,
periph->pin->cfg_reg,
IOMUXC_SW_PAD_CTL_PAD_HYS(0)
| IOMUXC_SW_PAD_CTL_PAD_PUS(3)
| IOMUXC_SW_PAD_CTL_PAD_PUE(0)
| IOMUXC_SW_PAD_CTL_PAD_PKE(1)
| IOMUXC_SW_PAD_CTL_PAD_ODE(1)
| IOMUXC_SW_PAD_CTL_PAD_SPEED(2)
| IOMUXC_SW_PAD_CTL_PAD_DSE(4)
| IOMUXC_SW_PAD_CTL_PAD_SRE(0));
}
static void i2c_check_pin_config(const mcu_pin_obj_t *pin, uint32_t pull) {
IOMUXC_SetPinConfig(0, 0, 0, 0, pin->cfg_reg,
IOMUXC_SW_PAD_CTL_PAD_HYS(1)
| IOMUXC_SW_PAD_CTL_PAD_PUS(0) // Pulldown
| IOMUXC_SW_PAD_CTL_PAD_PUE(pull) // 0=nopull (keeper), 1=pull
| IOMUXC_SW_PAD_CTL_PAD_PKE(1)
| IOMUXC_SW_PAD_CTL_PAD_ODE(0)
| IOMUXC_SW_PAD_CTL_PAD_SPEED(2)
| IOMUXC_SW_PAD_CTL_PAD_DSE(1)
| IOMUXC_SW_PAD_CTL_PAD_SRE(0));
}
void common_hal_busio_i2c_construct(busio_i2c_obj_t *self,
const mcu_pin_obj_t *scl, const mcu_pin_obj_t *sda, uint32_t frequency, uint32_t timeout) {
#if CIRCUITPY_REQUIRE_I2C_PULLUPS
// Test that the pins are in a high state. (Hopefully indicating they are pulled up.)
IOMUXC_SetPinMux(sda->mux_reg, IOMUXC_SW_MUX_CTL_PAD_MUX_MODE_ALT5, 0, 0, 0, 0);
IOMUXC_SetPinMux(scl->mux_reg, IOMUXC_SW_MUX_CTL_PAD_MUX_MODE_ALT5, 0, 0, 0, 0);
i2c_check_pin_config(sda, 1);
i2c_check_pin_config(scl, 1);
const gpio_pin_config_t check_config = { kGPIO_DigitalInput, 0, kGPIO_NoIntmode };
GPIO_PinInit(sda->gpio, sda->number, &check_config);
GPIO_PinInit(scl->gpio, scl->number, &check_config);
common_hal_mcu_delay_us(10);
i2c_check_pin_config(sda, 0);
i2c_check_pin_config(scl, 0);
// We must pull up within 3us to achieve 400khz.
common_hal_mcu_delay_us(3);
if (!GPIO_PinRead(sda->gpio, sda->number) || !GPIO_PinRead(scl->gpio, scl->number)) {
common_hal_reset_pin(sda);
common_hal_reset_pin(scl);
mp_raise_RuntimeError(translate("No pull up found on SDA or SCL; check your wiring"));
}
#endif
const uint32_t sda_count = MP_ARRAY_SIZE(mcu_i2c_sda_list);
const uint32_t scl_count = MP_ARRAY_SIZE(mcu_i2c_scl_list);
for (uint32_t i = 0; i < sda_count; ++i) {
if (mcu_i2c_sda_list[i].pin != sda) {
continue;
}
for (uint32_t j = 0; j < scl_count; ++j) {
if (mcu_i2c_scl_list[j].pin != scl) {
continue;
}
if (mcu_i2c_scl_list[j].bank_idx != mcu_i2c_sda_list[i].bank_idx) {
continue;
}
self->sda = &mcu_i2c_sda_list[i];
self->scl = &mcu_i2c_scl_list[j];
break;
}
}
if (self->sda == NULL || self->scl == NULL) {
raise_ValueError_invalid_pins();
} else {
self->i2c = mcu_i2c_banks[self->sda->bank_idx - 1];
}
config_periph_pin(self->sda);
config_periph_pin(self->scl);
lpi2c_master_config_t config = { 0 };
LPI2C_MasterGetDefaultConfig(&config);
config.baudRate_Hz = frequency;
LPI2C_MasterInit(self->i2c, &config, I2C_CLOCK_FREQ);
claim_pin(self->sda->pin);
claim_pin(self->scl->pin);
}
void common_hal_busio_i2c_never_reset(busio_i2c_obj_t *self) {
never_reset_i2c[self->sda->bank_idx - 1] = true;
common_hal_never_reset_pin(self->sda->pin);
common_hal_never_reset_pin(self->scl->pin);
}
bool common_hal_busio_i2c_deinited(busio_i2c_obj_t *self) {
return self->sda == NULL;
}
void common_hal_busio_i2c_deinit(busio_i2c_obj_t *self) {
if (common_hal_busio_i2c_deinited(self)) {
return;
}
reserved_i2c[self->sda->bank_idx - 1] = false;
never_reset_i2c[self->sda->bank_idx - 1] = false;
LPI2C_MasterDeinit(self->i2c);
common_hal_reset_pin(self->sda->pin);
common_hal_reset_pin(self->scl->pin);
self->sda = NULL;
self->scl = NULL;
}
bool common_hal_busio_i2c_probe(busio_i2c_obj_t *self, uint8_t addr) {
lpi2c_master_transfer_t xfer = { 0 };
xfer.slaveAddress = addr;
return LPI2C_MasterTransferBlocking(self->i2c, &xfer) == kStatus_Success;
}
bool common_hal_busio_i2c_try_lock(busio_i2c_obj_t *self) {
bool grabbed_lock = false;
// CRITICAL_SECTION_ENTER()
if (!self->has_lock) {
grabbed_lock = true;
self->has_lock = true;
}
// CRITICAL_SECTION_LEAVE();
return grabbed_lock;
}
bool common_hal_busio_i2c_has_lock(busio_i2c_obj_t *self) {
return self->has_lock;
}
void common_hal_busio_i2c_unlock(busio_i2c_obj_t *self) {
self->has_lock = false;
}
STATIC uint8_t _common_hal_busio_i2c_write(busio_i2c_obj_t *self, uint16_t addr,
const uint8_t *data, size_t len, bool transmit_stop_bit) {
lpi2c_master_transfer_t xfer = { 0 };
xfer.flags = transmit_stop_bit ? kLPI2C_TransferDefaultFlag : kLPI2C_TransferNoStopFlag;
xfer.slaveAddress = addr;
xfer.data = (uint8_t *)data;
xfer.dataSize = len;
const status_t status = LPI2C_MasterTransferBlocking(self->i2c, &xfer);
if (status == kStatus_Success) {
return 0;
}
return MP_EIO;
}
uint8_t common_hal_busio_i2c_write(busio_i2c_obj_t *self, uint16_t addr,
const uint8_t *data, size_t len) {
return _common_hal_busio_i2c_write(self, addr, data, len, true);
}
uint8_t common_hal_busio_i2c_read(busio_i2c_obj_t *self, uint16_t addr,
uint8_t *data, size_t len) {
lpi2c_master_transfer_t xfer = { 0 };
xfer.direction = kLPI2C_Read;
xfer.slaveAddress = addr;
xfer.data = data;
xfer.dataSize = len;
const status_t status = LPI2C_MasterTransferBlocking(self->i2c, &xfer);
if (status == kStatus_Success) {
return 0;
}
return MP_EIO;
}
uint8_t common_hal_busio_i2c_write_read(busio_i2c_obj_t *self, uint16_t addr,
uint8_t *out_data, size_t out_len, uint8_t *in_data, size_t in_len) {
uint8_t result = _common_hal_busio_i2c_write(self, addr, out_data, out_len, false);
if (result != 0) {
return result;
}
return common_hal_busio_i2c_read(self, addr, in_data, in_len);
}