circuitpython/ports/stm/common-hal/busio/UART.c
2022-09-21 10:03:05 -04:00

684 lines
22 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2019 Lucian Copeland for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/microcontroller/__init__.h"
#include "shared-bindings/microcontroller/Pin.h"
#include "shared-bindings/busio/UART.h"
#include "mpconfigport.h"
#include "shared/readline/readline.h"
#include "shared/runtime/interrupt_char.h"
#include "py/gc.h"
#include "py/mperrno.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "supervisor/shared/translate/translate.h"
#define ALL_UARTS 0xFFFF
// arrays use 0 based numbering: UART1 is stored at index 0
STATIC bool reserved_uart[MAX_UART];
STATIC bool never_reset_uart[MAX_UART];
int errflag; // Used to restart read halts
STATIC void uart_clock_enable(uint16_t mask);
STATIC void uart_clock_disable(uint16_t mask);
STATIC void uart_assign_irq(busio_uart_obj_t *self, USART_TypeDef *USARTx);
STATIC USART_TypeDef *assign_uart_or_throw(busio_uart_obj_t *self, bool pin_eval,
int periph_index, bool uart_taken) {
if (pin_eval) {
// assign a root pointer pointer for IRQ
MP_STATE_PORT(cpy_uart_obj_all)[periph_index] = self;
return mcu_uart_banks[periph_index];
} else {
if (uart_taken) {
mp_raise_ValueError(translate("Hardware in use, try alternative pins"));
} else {
raise_ValueError_invalid_pin();
}
}
}
void uart_reset(void) {
uint16_t never_reset_mask = 0x00;
for (uint8_t i = 0; i < MAX_UART; i++) {
if (!never_reset_uart[i]) {
reserved_uart[i] = false;
MP_STATE_PORT(cpy_uart_obj_all)[i] = NULL;
} else {
never_reset_mask |= 1 << i;
}
}
uart_clock_disable(ALL_UARTS & ~(never_reset_mask));
}
void common_hal_busio_uart_construct(busio_uart_obj_t *self,
const mcu_pin_obj_t *tx, const mcu_pin_obj_t *rx,
const mcu_pin_obj_t *rts, const mcu_pin_obj_t *cts,
const mcu_pin_obj_t *rs485_dir, bool rs485_invert,
uint32_t baudrate, uint8_t bits, busio_uart_parity_t parity, uint8_t stop,
mp_float_t timeout, uint16_t receiver_buffer_size, byte *receiver_buffer,
bool sigint_enabled) {
// match pins to UART objects
USART_TypeDef *USARTx;
uint8_t tx_len = MP_ARRAY_SIZE(mcu_uart_tx_list);
uint8_t rx_len = MP_ARRAY_SIZE(mcu_uart_rx_list);
bool uart_taken = false;
uint8_t periph_index = 0; // origin 0 corrected
if ((rts != NULL) || (cts != NULL) || (rs485_dir != NULL) || (rs485_invert == true)) {
mp_raise_NotImplementedError(translate("RS485"));
}
// Can have both pins, or either
if ((tx != NULL) && (rx != NULL)) {
// normal find loop if both pins exist
for (uint i = 0; i < tx_len; i++) {
if (mcu_uart_tx_list[i].pin == tx) {
// rx
for (uint j = 0; j < rx_len; j++) {
if (mcu_uart_rx_list[j].pin == rx
&& mcu_uart_rx_list[j].periph_index == mcu_uart_tx_list[i].periph_index) {
// keep looking if the UART is taken, edge case
if (reserved_uart[mcu_uart_tx_list[i].periph_index - 1]) {
uart_taken = true;
continue;
}
// store pins if not
self->tx = &mcu_uart_tx_list[i];
self->rx = &mcu_uart_rx_list[j];
break;
}
}
if (self->tx != NULL) {
break;
}
}
}
periph_index = self->tx->periph_index - 1;
USARTx = assign_uart_or_throw(self, (self->tx != NULL && self->rx != NULL),
periph_index, uart_taken);
} else if (tx == NULL) {
// If there is no tx, run only rx
for (uint i = 0; i < rx_len; i++) {
if (mcu_uart_rx_list[i].pin == rx) {
// keep looking if the UART is taken, edge case
if (reserved_uart[mcu_uart_rx_list[i].periph_index - 1]) {
uart_taken = true;
continue;
}
// store pins if not
self->rx = &mcu_uart_rx_list[i];
break;
}
}
periph_index = self->rx->periph_index - 1;
USARTx = assign_uart_or_throw(self, (self->rx != NULL),
periph_index, uart_taken);
} else if (rx == NULL) {
// If there is no rx, run only tx
for (uint i = 0; i < tx_len; i++) {
if (mcu_uart_tx_list[i].pin == tx) {
// keep looking if the UART is taken, edge case
if (reserved_uart[mcu_uart_tx_list[i].periph_index - 1]) {
uart_taken = true;
continue;
}
// store pins if not
self->tx = &mcu_uart_tx_list[i];
break;
}
}
periph_index = self->tx->periph_index - 1;
USARTx = assign_uart_or_throw(self, (self->tx != NULL),
periph_index, uart_taken);
} else {
// both pins cannot be empty
mp_raise_ValueError(translate("Supply at least one UART pin"));
}
// Other errors
mp_arg_validate_length_min(receiver_buffer_size, 1, MP_QSTR_receiver_buffer_size);
mp_arg_validate_int_range(bits, 8, 9, MP_QSTR_bits);
if (USARTx == NULL) { // this can only be hit if the periph file is wrong
mp_raise_RuntimeError(translate("Internal define error"));
}
// GPIO Init
GPIO_InitTypeDef GPIO_InitStruct = {0};
if (self->tx != NULL) {
GPIO_InitStruct.Pin = pin_mask(tx->number);
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = self->tx->altfn_index;
HAL_GPIO_Init(pin_port(tx->port), &GPIO_InitStruct);
}
if (self->rx != NULL) {
GPIO_InitStruct.Pin = pin_mask(rx->number);
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = self->rx->altfn_index;
HAL_GPIO_Init(pin_port(rx->port), &GPIO_InitStruct);
}
// reserve uart and enable the peripheral
reserved_uart[periph_index] = true;
uart_clock_enable(1 << (periph_index));
uart_assign_irq(self, USARTx);
self->handle.Instance = USARTx;
self->handle.Init.BaudRate = baudrate;
self->handle.Init.WordLength = (bits == 9) ? UART_WORDLENGTH_9B : UART_WORDLENGTH_8B;
self->handle.Init.StopBits = (stop > 1) ? UART_STOPBITS_2 : UART_STOPBITS_1;
self->handle.Init.Parity = (parity == BUSIO_UART_PARITY_ODD) ? UART_PARITY_ODD :
(parity == BUSIO_UART_PARITY_EVEN) ? UART_PARITY_EVEN :
UART_PARITY_NONE;
self->handle.Init.Mode = (self->tx != NULL && self->rx != NULL) ? UART_MODE_TX_RX :
(self->tx != NULL) ? UART_MODE_TX :
UART_MODE_RX;
self->handle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
self->handle.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&self->handle) != HAL_OK) {
mp_raise_RuntimeError(translate("UART init"));
}
// Init buffer for rx and claim pins
if (self->rx != NULL) {
// Use the provided buffer when given.
if (receiver_buffer != NULL) {
ringbuf_init(&self->ringbuf, receiver_buffer, receiver_buffer_size);
} else {
// Initially allocate the UART's buffer in the long-lived part of the
// heap. UARTs are generally long-lived objects, but the "make long-
// lived" machinery is incapable of moving internal pointers like
// self->buffer, so do it manually. (However, as long as internal
// pointers like this are NOT moved, allocating the buffer
// in the long-lived pool is not strictly necessary)
if (!ringbuf_alloc(&self->ringbuf, receiver_buffer_size, true)) {
m_malloc_fail(receiver_buffer_size);
}
}
common_hal_mcu_pin_claim(rx);
}
if (self->tx != NULL) {
common_hal_mcu_pin_claim(tx);
}
self->baudrate = baudrate;
self->timeout_ms = timeout * 1000;
self->sigint_enabled = sigint_enabled;
// start the interrupt series
if ((HAL_UART_GetState(&self->handle) & HAL_UART_STATE_BUSY_RX) == HAL_UART_STATE_BUSY_RX) {
mp_raise_RuntimeError(translate("Could not start interrupt, RX busy"));
}
// start the receive interrupt chain
HAL_NVIC_DisableIRQ(self->irq); // prevent handle lock contention
HAL_UART_Receive_IT(&self->handle, &self->rx_char, 1);
HAL_NVIC_SetPriority(self->irq, UART_IRQPRI, UART_IRQSUB_PRI);
HAL_NVIC_EnableIRQ(self->irq);
errflag = HAL_OK;
}
void common_hal_busio_uart_never_reset(busio_uart_obj_t *self) {
for (size_t i = 0; i < MP_ARRAY_SIZE(mcu_uart_banks); i++) {
if (mcu_uart_banks[i] == self->handle.Instance) {
never_reset_uart[i] = true;
never_reset_pin_number(self->tx->pin->port, self->tx->pin->number);
never_reset_pin_number(self->rx->pin->port, self->rx->pin->number);
break;
}
}
}
bool common_hal_busio_uart_deinited(busio_uart_obj_t *self) {
return self->tx == NULL && self->rx == NULL;
}
void common_hal_busio_uart_deinit(busio_uart_obj_t *self) {
if (common_hal_busio_uart_deinited(self)) {
return;
}
for (size_t i = 0; i < MP_ARRAY_SIZE(mcu_uart_banks); i++) {
if (mcu_uart_banks[i] == self->handle.Instance) {
reserved_uart[i] = false;
never_reset_uart[i] = false;
break;
}
}
if (self->tx) {
reset_pin_number(self->tx->pin->port,self->tx->pin->number);
self->tx = NULL;
}
if (self->rx) {
reset_pin_number(self->rx->pin->port,self->rx->pin->number);
self->rx = NULL;
}
ringbuf_deinit(&self->ringbuf);
}
size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t len, int *errcode) {
if (self->rx == NULL) {
mp_raise_ValueError(translate("No RX pin"));
}
uint64_t start_ticks = supervisor_ticks_ms64();
// Wait for all bytes received or timeout, same as nrf
while ((ringbuf_num_filled(&self->ringbuf) < len) && (supervisor_ticks_ms64() - start_ticks < self->timeout_ms)) {
RUN_BACKGROUND_TASKS;
// restart if it failed in the callback
if (errflag != HAL_OK) {
errflag = HAL_UART_Receive_IT(&self->handle, &self->rx_char, 1);
}
// Allow user to break out of a timeout with a KeyboardInterrupt.
if (mp_hal_is_interrupted()) {
return 0;
}
}
// Halt reception
HAL_NVIC_DisableIRQ(self->irq);
// Copy as much received data as available, up to len bytes.
size_t rx_bytes = ringbuf_get_n(&self->ringbuf, data, len);
HAL_NVIC_EnableIRQ(self->irq);
if (rx_bytes == 0) {
*errcode = EAGAIN;
return MP_STREAM_ERROR;
}
return rx_bytes;
}
// Write characters.
size_t common_hal_busio_uart_write(busio_uart_obj_t *self, const uint8_t *data, size_t len, int *errcode) {
if (self->tx == NULL) {
mp_raise_ValueError(translate("No TX pin"));
}
// Disable UART IRQ to avoid resource hazards in Rx IRQ handler
HAL_NVIC_DisableIRQ(self->irq);
HAL_StatusTypeDef ret = HAL_UART_Transmit_IT(&self->handle, (uint8_t *)data, len);
HAL_NVIC_EnableIRQ(self->irq);
if (HAL_OK == ret) {
HAL_UART_StateTypeDef Status = HAL_UART_GetState(&self->handle);
while ((Status & HAL_UART_STATE_BUSY_TX) == HAL_UART_STATE_BUSY_TX) {
RUN_BACKGROUND_TASKS;
Status = HAL_UART_GetState(&self->handle);
}
} else {
mp_raise_RuntimeError(translate("UART write"));
}
return len;
}
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *handle) {
for (int i = 0; i < 7; i++) {
// get context pointer and cast it as struct pointer
busio_uart_obj_t *context = (busio_uart_obj_t *)MP_STATE_PORT(cpy_uart_obj_all)[i];
if (handle == &context->handle) {
// check if transaction is ongoing
if ((HAL_UART_GetState(handle) & HAL_UART_STATE_BUSY_RX) == HAL_UART_STATE_BUSY_RX) {
return;
}
ringbuf_put_n(&context->ringbuf, &context->rx_char, 1);
errflag = HAL_UART_Receive_IT(handle, &context->rx_char, 1);
if (context->sigint_enabled) {
if (context->rx_char == CHAR_CTRL_C) {
common_hal_busio_uart_clear_rx_buffer(context);
mp_sched_keyboard_interrupt();
}
}
#if (1)
// TODO: Implement error handling here
#else
while (HAL_BUSY == errflag) {
errflag = HAL_UART_Receive_IT(handle, &context->rx_char, 1);
}
#endif
return;
}
}
}
void HAL_UART_ErrorCallback(UART_HandleTypeDef *UartHandle) {
if (__HAL_UART_GET_FLAG(UartHandle, UART_FLAG_PE) != RESET) {
__HAL_UART_CLEAR_PEFLAG(UartHandle);
} else if (__HAL_UART_GET_FLAG(UartHandle, UART_FLAG_FE) != RESET) {
__HAL_UART_CLEAR_FEFLAG(UartHandle);
} else if (__HAL_UART_GET_FLAG(UartHandle, UART_FLAG_NE) != RESET) {
__HAL_UART_CLEAR_NEFLAG(UartHandle);
} else if (__HAL_UART_GET_FLAG(UartHandle, UART_FLAG_ORE) != RESET) {
__HAL_UART_CLEAR_OREFLAG(UartHandle);
}
// restart serial read after an error
for (int i = 0; i < 7; i++) {
busio_uart_obj_t *context = (busio_uart_obj_t *)MP_STATE_PORT(cpy_uart_obj_all)[i];
if (UartHandle == &context->handle) {
HAL_UART_Receive_IT(UartHandle, &context->rx_char, 1);
return;
}
}
}
uint32_t common_hal_busio_uart_get_baudrate(busio_uart_obj_t *self) {
return self->baudrate;
}
void common_hal_busio_uart_set_baudrate(busio_uart_obj_t *self, uint32_t baudrate) {
// Don't reset if it's the same value
if (baudrate == self->baudrate) {
return;
}
// Otherwise de-init and set new rate
if (HAL_UART_DeInit(&self->handle) != HAL_OK) {
mp_raise_RuntimeError(translate("UART de-init"));
}
self->handle.Init.BaudRate = baudrate;
if (HAL_UART_Init(&self->handle) != HAL_OK) {
mp_raise_RuntimeError(translate("UART re-init"));
}
self->baudrate = baudrate;
}
mp_float_t common_hal_busio_uart_get_timeout(busio_uart_obj_t *self) {
return (mp_float_t)(self->timeout_ms / 1000.0f);
}
void common_hal_busio_uart_set_timeout(busio_uart_obj_t *self, mp_float_t timeout) {
self->timeout_ms = timeout * 1000;
}
uint32_t common_hal_busio_uart_rx_characters_available(busio_uart_obj_t *self) {
return ringbuf_num_filled(&self->ringbuf);
}
void common_hal_busio_uart_clear_rx_buffer(busio_uart_obj_t *self) {
// Halt reception
HAL_NVIC_DisableIRQ(self->irq);
ringbuf_clear(&self->ringbuf);
HAL_NVIC_EnableIRQ(self->irq);
}
bool common_hal_busio_uart_ready_to_tx(busio_uart_obj_t *self) {
return __HAL_UART_GET_FLAG(&self->handle, UART_FLAG_TXE);
}
STATIC void call_hal_irq(int uart_num) {
// Create casted context pointer
busio_uart_obj_t *context = (busio_uart_obj_t *)MP_STATE_PORT(cpy_uart_obj_all)[uart_num - 1];
if (context != NULL) {
HAL_NVIC_ClearPendingIRQ(context->irq);
HAL_UART_IRQHandler(&context->handle);
if (HAL_UART_ERROR_NONE != context->handle.ErrorCode) {
// TODO: Implement error handling here
}
}
}
// UART/USART IRQ handlers
void USART1_IRQHandler(void) {
call_hal_irq(1);
}
void USART2_IRQHandler(void) {
call_hal_irq(2);
}
void USART3_IRQHandler(void) {
call_hal_irq(3);
}
void UART4_IRQHandler(void) {
call_hal_irq(4);
}
void UART5_IRQHandler(void) {
call_hal_irq(5);
}
void USART6_IRQHandler(void) {
call_hal_irq(6);
}
STATIC void uart_clock_enable(uint16_t mask) {
#ifdef USART1
if (mask & (1 << 0)) {
__HAL_RCC_USART1_FORCE_RESET();
__HAL_RCC_USART1_RELEASE_RESET();
__HAL_RCC_USART1_CLK_ENABLE();
}
#endif
#ifdef USART2
if (mask & (1 << 1)) {
__HAL_RCC_USART2_FORCE_RESET();
__HAL_RCC_USART2_RELEASE_RESET();
__HAL_RCC_USART2_CLK_ENABLE();
}
#endif
#ifdef USART3
if (mask & (1 << 2)) {
__HAL_RCC_USART3_FORCE_RESET();
__HAL_RCC_USART3_RELEASE_RESET();
__HAL_RCC_USART3_CLK_ENABLE();
}
#endif
#ifdef UART4
if (mask & (1 << 3)) {
__HAL_RCC_UART4_FORCE_RESET();
__HAL_RCC_UART4_RELEASE_RESET();
__HAL_RCC_UART4_CLK_ENABLE();
}
#endif
#ifdef UART5
if (mask & (1 << 4)) {
__HAL_RCC_UART5_FORCE_RESET();
__HAL_RCC_UART5_RELEASE_RESET();
__HAL_RCC_UART5_CLK_ENABLE();
}
#endif
#ifdef USART6
if (mask & (1 << 5)) {
__HAL_RCC_USART6_FORCE_RESET();
__HAL_RCC_USART6_RELEASE_RESET();
__HAL_RCC_USART6_CLK_ENABLE();
}
#endif
#ifdef UART7
if (mask & (1 << 6)) {
__HAL_RCC_UART7_FORCE_RESET();
__HAL_RCC_UART7_RELEASE_RESET();
__HAL_RCC_UART7_CLK_ENABLE();
}
#endif
#ifdef UART8
if (mask & (1 << 7)) {
__HAL_RCC_UART8_FORCE_RESET();
__HAL_RCC_UART8_RELEASE_RESET();
__HAL_RCC_UART8_CLK_ENABLE();
}
#endif
#ifdef UART9
if (mask & (1 << 8)) {
__HAL_RCC_UART9_FORCE_RESET();
__HAL_RCC_UART9_RELEASE_RESET();
__HAL_RCC_UART9_CLK_ENABLE();
}
#endif
#ifdef UART10
if (mask & (1 << 9)) {
__HAL_RCC_UART10_FORCE_RESET();
__HAL_RCC_UART10_RELEASE_RESET();
__HAL_RCC_UART10_CLK_ENABLE();
}
#endif
}
STATIC void uart_clock_disable(uint16_t mask) {
#ifdef USART1
if (mask & (1 << 0)) {
__HAL_RCC_USART1_FORCE_RESET();
__HAL_RCC_USART1_RELEASE_RESET();
__HAL_RCC_USART1_CLK_DISABLE();
}
#endif
#ifdef USART2
if (mask & (1 << 1)) {
__HAL_RCC_USART2_FORCE_RESET();
__HAL_RCC_USART2_RELEASE_RESET();
__HAL_RCC_USART2_CLK_DISABLE();
}
#endif
#ifdef USART3
if (mask & (1 << 2)) {
__HAL_RCC_USART3_FORCE_RESET();
__HAL_RCC_USART3_RELEASE_RESET();
__HAL_RCC_USART3_CLK_DISABLE();
}
#endif
#ifdef UART4
if (mask & (1 << 3)) {
__HAL_RCC_UART4_FORCE_RESET();
__HAL_RCC_UART4_RELEASE_RESET();
__HAL_RCC_UART4_CLK_DISABLE();
}
#endif
#ifdef UART5
if (mask & (1 << 4)) {
__HAL_RCC_UART5_FORCE_RESET();
__HAL_RCC_UART5_RELEASE_RESET();
__HAL_RCC_UART5_CLK_DISABLE();
}
#endif
#ifdef USART6
if (mask & (1 << 5)) {
__HAL_RCC_USART6_FORCE_RESET();
__HAL_RCC_USART6_RELEASE_RESET();
__HAL_RCC_USART6_CLK_DISABLE();
}
#endif
#ifdef UART7
if (mask & (1 << 6)) {
__HAL_RCC_UART7_FORCE_RESET();
__HAL_RCC_UART7_RELEASE_RESET();
__HAL_RCC_UART7_CLK_DISABLE();
}
#endif
#ifdef UART8
if (mask & (1 << 7)) {
__HAL_RCC_UART8_FORCE_RESET();
__HAL_RCC_UART8_RELEASE_RESET();
__HAL_RCC_UART8_CLK_DISABLE();
}
#endif
#ifdef UART9
if (mask & (1 << 8)) {
__HAL_RCC_UART9_FORCE_RESET();
__HAL_RCC_UART9_RELEASE_RESET();
__HAL_RCC_UART9_CLK_DISABLE();
}
#endif
#ifdef UART10
if (mask & (1 << 9)) {
__HAL_RCC_UART10_FORCE_RESET();
__HAL_RCC_UART10_RELEASE_RESET();
__HAL_RCC_UART10_CLK_DISABLE();
}
#endif
}
STATIC void uart_assign_irq(busio_uart_obj_t *self, USART_TypeDef *USARTx) {
#ifdef USART1
if (USARTx == USART1) {
self->irq = USART1_IRQn;
}
#endif
#ifdef USART2
if (USARTx == USART2) {
self->irq = USART2_IRQn;
}
#endif
#ifdef USART3
if (USARTx == USART3) {
self->irq = USART3_IRQn;
}
#endif
#ifdef UART4
if (USARTx == UART4) {
self->irq = UART4_IRQn;
}
#endif
#ifdef UART5
if (USARTx == UART5) {
self->irq = UART5_IRQn;
}
#endif
#ifdef USART6
if (USARTx == USART6) {
self->irq = USART6_IRQn;
}
#endif
#ifdef UART7
if (USARTx == UART7) {
self->irq = UART7_IRQn;
}
#endif
#ifdef UART8
if (USARTx == UART8) {
self->irq = UART8_IRQn;
}
#endif
#ifdef UART9
if (USARTx == UART9) {
self->irq = UART9_IRQn;
}
#endif
#ifdef UART10
if (USARTx == UART10) {
self->irq = UART10_IRQn;
}
#endif
}