448 lines
14 KiB
C
448 lines
14 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013, 2014 Damien P. George
|
|
* Copyright (c) 2017 Michael McWethy
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include "py/builtin.h"
|
|
#include "py/runtime.h"
|
|
#include "py/runtime.h"
|
|
|
|
#if MICROPY_PY_BUILTINS_FLOAT
|
|
|
|
#include <math.h>
|
|
|
|
// M_PI is not part of the math.h standard and may not be defined
|
|
// And by defining our own we can ensure it uses the correct const format.
|
|
#define MP_PI MICROPY_FLOAT_CONST(3.14159265358979323846)
|
|
|
|
|
|
//| :mod:`math` --- mathematical functions
|
|
//| ========================================================
|
|
//|
|
|
//| .. module:: math
|
|
//| :synopsis: mathematical functions
|
|
//| :platform: SAMD21/SAMD51
|
|
//|
|
|
//| The `math` module provides some basic mathematical functions for
|
|
//| working with floating-point numbers.
|
|
//|
|
|
|
|
STATIC NORETURN void math_error(void) {
|
|
mp_raise_ValueError("math domain error");
|
|
}
|
|
|
|
#define MATH_FUN_1(py_name, c_name) \
|
|
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj))); } \
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);
|
|
|
|
#define MATH_FUN_2(py_name, c_name) \
|
|
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj, mp_obj_t y_obj) { return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj), mp_obj_get_float(y_obj))); } \
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_math_## py_name ## _obj, mp_math_ ## py_name);
|
|
|
|
#define MATH_FUN_1_TO_BOOL(py_name, c_name) \
|
|
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_bool(c_name(mp_obj_get_float(x_obj))); } \
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);
|
|
|
|
#define MATH_FUN_1_TO_INT(py_name, c_name) \
|
|
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_int_from_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj))); } \
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);
|
|
|
|
#define MATH_FUN_1_ERRCOND(py_name, c_name, error_condition) \
|
|
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { \
|
|
mp_float_t x = mp_obj_get_float(x_obj); \
|
|
if (error_condition) { \
|
|
math_error(); \
|
|
} \
|
|
return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(x)); \
|
|
} \
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);
|
|
|
|
#ifdef MP_NEED_LOG2
|
|
// 1.442695040888963407354163704 is 1/_M_LN2
|
|
#define log2(x) (log(x) * 1.442695040888963407354163704)
|
|
#endif
|
|
//| Constants
|
|
//| ---------
|
|
//|
|
|
//| .. data:: e
|
|
//|
|
|
//| base of the natural logarithm
|
|
//|
|
|
//| .. data:: pi
|
|
//|
|
|
//| the ratio of a circle's circumference to its diameter
|
|
//|
|
|
|
|
//| Functions
|
|
//| ---------
|
|
//|
|
|
//| .. function:: acos(x)
|
|
//|
|
|
//| Return the inverse cosine of ``x``.
|
|
//|
|
|
//| .. function:: asin(x)
|
|
//|
|
|
//| Return the inverse sine of ``x``.
|
|
//|
|
|
//| .. function:: atan(x)
|
|
//|
|
|
//| Return the inverse tangent of ``x``.
|
|
//|
|
|
//| .. function:: atan2(y,x)
|
|
//|
|
|
//| Return the principal value of the inverse tangent of ``y/x``.
|
|
//|
|
|
//| .. function:: ceil(x)
|
|
//|
|
|
//| Return an integer, being ``x`` rounded towards positive infinity.
|
|
//|
|
|
//| .. function:: copysign(x,y)
|
|
//|
|
|
//| Return ``x`` with the sign of ``y``.
|
|
//|
|
|
//| .. function:: cos(x)
|
|
//|
|
|
//| Return the cosine of ``x``.
|
|
//|
|
|
//| .. function:: degrees(x)
|
|
//|
|
|
//| Return radians ``x`` converted to degrees.
|
|
//|
|
|
//| .. function:: exp(x)
|
|
//|
|
|
//| Return the exponential of ``x``.
|
|
//|
|
|
//| .. function:: fabs(x)
|
|
//|
|
|
//| Return the absolute value of ``x``.
|
|
//|
|
|
//| .. function:: floor(x)
|
|
//|
|
|
//| Return an integer, being ``x`` rounded towards negative infinity.
|
|
//|
|
|
//| .. function:: fmod(x,y)
|
|
//|
|
|
//| Return the remainder of ``x/y``.
|
|
//|
|
|
//| .. function:: frexp(x)
|
|
//|
|
|
//| Decomposes a floating-point number into its mantissa and exponent.
|
|
//| The returned value is the tuple ``(m, e)`` such that ``x == m * 2**e``
|
|
//| exactly. If ``x == 0`` then the function returns ``(0.0, 0)``, otherwise
|
|
//| the relation ``0.5 <= abs(m) < 1`` holds.
|
|
//|
|
|
//| .. function:: isfinite(x)
|
|
//|
|
|
//| Return ``True`` if ``x`` is finite.
|
|
//|
|
|
//| .. function:: isinf(x)
|
|
//|
|
|
//| Return ``True`` if ``x`` is infinite.
|
|
//|
|
|
//| .. function:: isnan(x)
|
|
//|
|
|
//| Return ``True`` if ``x`` is not-a-number
|
|
//|
|
|
//| .. function:: ldexp(x, exp)
|
|
//|
|
|
//| Return ``x * (2**exp)``.
|
|
//|
|
|
//| .. function:: modf(x)
|
|
//|
|
|
//| Return a tuple of two floats, being the fractional and integral parts of
|
|
//| ``x``. Both return values have the same sign as ``x``.
|
|
//|
|
|
//| .. function:: pow(x, y)
|
|
//|
|
|
//| Returns `x` to the power of `y`.
|
|
//|
|
|
//| .. function:: radians(x)
|
|
//|
|
|
//| Return degrees ``x`` converted to radians.
|
|
//|
|
|
//| .. function:: sin(x)
|
|
//|
|
|
//| Return the sine of ``x``.
|
|
//|
|
|
//| .. function:: sqrt(x)
|
|
//|
|
|
//| Returns the square root of `x`.
|
|
//|
|
|
//| .. function:: tan(x)
|
|
//|
|
|
//| Return the tangent of ``x``.
|
|
//|
|
|
//| .. function:: trunc(x)
|
|
//|
|
|
//| Return an integer, being ``x`` rounded towards 0.
|
|
//|
|
|
MATH_FUN_1_ERRCOND(sqrt, sqrt, (x < (mp_float_t)0.0))
|
|
|
|
MATH_FUN_2(pow, pow)
|
|
|
|
MATH_FUN_1(exp, exp)
|
|
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
|
|
// Special functions
|
|
// -----------------
|
|
//
|
|
// .. function:: expm1(x)
|
|
//
|
|
// Return ``exp(x) - 1``.
|
|
//
|
|
MATH_FUN_1(expm1, expm1)
|
|
|
|
// .. function:: log2(x)
|
|
//
|
|
// Return the base-2 logarithm of ``x``.
|
|
//
|
|
MATH_FUN_1_ERRCOND(log2, log2, (x <= (mp_float_t)0.0))
|
|
|
|
// .. function:: log10(x)
|
|
//
|
|
// Return the base-10 logarithm of ``x``.
|
|
//
|
|
MATH_FUN_1_ERRCOND(log10, log10, (x <= (mp_float_t)0.0))
|
|
|
|
// .. function:: cosh(x)
|
|
//
|
|
// Return the hyperbolic cosine of ``x``.
|
|
//
|
|
MATH_FUN_1(cosh, cosh)
|
|
|
|
// .. function:: sinh(x)
|
|
//
|
|
// Return the hyperbolic sine of ``x``.
|
|
//
|
|
MATH_FUN_1(sinh, sinh)
|
|
|
|
// .. function:: tanh(x)
|
|
//
|
|
// Return the hyperbolic tangent of ``x``.
|
|
//
|
|
MATH_FUN_1(tanh, tanh)
|
|
|
|
// .. function:: acosh(x)
|
|
//
|
|
// Return the inverse hyperbolic cosine of ``x``.
|
|
//
|
|
MATH_FUN_1(acosh, acosh)
|
|
|
|
// .. function:: asinh(x)
|
|
//
|
|
// Return the inverse hyperbolic sine of ``x``.
|
|
//
|
|
MATH_FUN_1(asinh, asinh)
|
|
|
|
// .. function:: atanh(x)
|
|
//
|
|
// Return the inverse hyperbolic tangent of ``x``.
|
|
//
|
|
MATH_FUN_1(atanh, atanh)
|
|
#endif
|
|
|
|
MATH_FUN_1(cos, cos)
|
|
|
|
MATH_FUN_1(sin, sin)
|
|
|
|
MATH_FUN_1(tan, tan)
|
|
|
|
MATH_FUN_1(acos, acos)
|
|
|
|
MATH_FUN_1(asin, asin)
|
|
|
|
MATH_FUN_1(atan, atan)
|
|
|
|
MATH_FUN_2(atan2, atan2)
|
|
|
|
MATH_FUN_1_TO_INT(ceil, ceil)
|
|
|
|
MATH_FUN_2(copysign, copysign)
|
|
|
|
MATH_FUN_1(fabs, fabs)
|
|
|
|
MATH_FUN_1_TO_INT(floor, floor) //TODO: delegate to x.__floor__() if x is not a float
|
|
|
|
MATH_FUN_2(fmod, fmod)
|
|
|
|
MATH_FUN_1_TO_BOOL(isfinite, isfinite)
|
|
|
|
MATH_FUN_1_TO_BOOL(isinf, isinf)
|
|
|
|
MATH_FUN_1_TO_BOOL(isnan, isnan)
|
|
|
|
MATH_FUN_1_TO_INT(trunc, trunc)
|
|
|
|
MATH_FUN_2(ldexp, ldexp)
|
|
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
|
|
|
|
// .. function:: erf(x)
|
|
//
|
|
// Return the error function of `x`.
|
|
//
|
|
MATH_FUN_1(erf, erf)
|
|
|
|
// .. function:: erfc(x)
|
|
//
|
|
// Return the complementary error function of `x`.
|
|
//
|
|
MATH_FUN_1(erfc, erfc)
|
|
|
|
// .. function:: gamma(x)
|
|
//
|
|
// Return the gamma function of `x`.
|
|
//
|
|
MATH_FUN_1(gamma, tgamma)
|
|
|
|
// .. function:: lgamma(x)
|
|
//
|
|
// Return the natural logarithm of the gamma function of `x`.
|
|
//
|
|
MATH_FUN_1(lgamma, lgamma)
|
|
#endif
|
|
//TODO: factorial, fsum
|
|
|
|
// Function that takes a variable number of arguments
|
|
|
|
// log(x[, base])
|
|
STATIC mp_obj_t mp_math_log(size_t n_args, const mp_obj_t *args) {
|
|
mp_float_t x = mp_obj_get_float(args[0]);
|
|
if (x <= (mp_float_t)0.0) {
|
|
math_error();
|
|
}
|
|
mp_float_t l = MICROPY_FLOAT_C_FUN(log)(x);
|
|
if (n_args == 1) {
|
|
return mp_obj_new_float(l);
|
|
} else {
|
|
mp_float_t base = mp_obj_get_float(args[1]);
|
|
if (base <= (mp_float_t)0.0) {
|
|
math_error();
|
|
// Turn off warning when comparing exactly with integral value 1.0
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wfloat-equal"
|
|
} else if (base == (mp_float_t)1.0) {
|
|
#pragma GCC diagnostic pop
|
|
mp_raise_msg(&mp_type_ZeroDivisionError, "division by zero");
|
|
}
|
|
return mp_obj_new_float(l / MICROPY_FLOAT_C_FUN(log)(base));
|
|
}
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_math_log_obj, 1, 2, mp_math_log);
|
|
|
|
// Functions that return a tuple
|
|
|
|
|
|
STATIC mp_obj_t mp_math_frexp(mp_obj_t x_obj) {
|
|
int int_exponent = 0;
|
|
mp_float_t significand = MICROPY_FLOAT_C_FUN(frexp)(mp_obj_get_float(x_obj), &int_exponent);
|
|
mp_obj_t tuple[2];
|
|
tuple[0] = mp_obj_new_float(significand);
|
|
tuple[1] = mp_obj_new_int(int_exponent);
|
|
return mp_obj_new_tuple(2, tuple);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_frexp_obj, mp_math_frexp);
|
|
|
|
STATIC mp_obj_t mp_math_modf(mp_obj_t x_obj) {
|
|
mp_float_t int_part = 0.0;
|
|
mp_float_t fractional_part = MICROPY_FLOAT_C_FUN(modf)(mp_obj_get_float(x_obj), &int_part);
|
|
mp_obj_t tuple[2];
|
|
tuple[0] = mp_obj_new_float(fractional_part);
|
|
tuple[1] = mp_obj_new_float(int_part);
|
|
return mp_obj_new_tuple(2, tuple);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_modf_obj, mp_math_modf);
|
|
|
|
// Angular conversions
|
|
|
|
|
|
STATIC mp_obj_t mp_math_radians(mp_obj_t x_obj) {
|
|
return mp_obj_new_float(mp_obj_get_float(x_obj) * (MP_PI / MICROPY_FLOAT_CONST(180.0)));
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_radians_obj, mp_math_radians);
|
|
|
|
|
|
STATIC mp_obj_t mp_math_degrees(mp_obj_t x_obj) {
|
|
return mp_obj_new_float(mp_obj_get_float(x_obj) * (MICROPY_FLOAT_CONST(180.0) / MP_PI));
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_degrees_obj, mp_math_degrees);
|
|
|
|
STATIC const mp_rom_map_elem_t mp_module_math_globals_table[] = {
|
|
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_math) },
|
|
{ MP_ROM_QSTR(MP_QSTR_e), mp_const_float_e },
|
|
{ MP_ROM_QSTR(MP_QSTR_pi), mp_const_float_pi },
|
|
{ MP_ROM_QSTR(MP_QSTR_sqrt), MP_ROM_PTR(&mp_math_sqrt_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_pow), MP_ROM_PTR(&mp_math_pow_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_exp), MP_ROM_PTR(&mp_math_exp_obj) },
|
|
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
|
|
{ MP_ROM_QSTR(MP_QSTR_expm1), MP_ROM_PTR(&mp_math_expm1_obj) },
|
|
#endif
|
|
{ MP_ROM_QSTR(MP_QSTR_log), MP_ROM_PTR(&mp_math_log_obj) },
|
|
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
|
|
{ MP_ROM_QSTR(MP_QSTR_log2), MP_ROM_PTR(&mp_math_log2_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_log10), MP_ROM_PTR(&mp_math_log10_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_cosh), MP_ROM_PTR(&mp_math_cosh_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_sinh), MP_ROM_PTR(&mp_math_sinh_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_tanh), MP_ROM_PTR(&mp_math_tanh_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_acosh), MP_ROM_PTR(&mp_math_acosh_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_asinh), MP_ROM_PTR(&mp_math_asinh_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_atanh), MP_ROM_PTR(&mp_math_atanh_obj) },
|
|
#endif
|
|
{ MP_ROM_QSTR(MP_QSTR_cos), MP_ROM_PTR(&mp_math_cos_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_sin), MP_ROM_PTR(&mp_math_sin_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_tan), MP_ROM_PTR(&mp_math_tan_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_acos), MP_ROM_PTR(&mp_math_acos_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_asin), MP_ROM_PTR(&mp_math_asin_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_atan), MP_ROM_PTR(&mp_math_atan_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_atan2), MP_ROM_PTR(&mp_math_atan2_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_ceil), MP_ROM_PTR(&mp_math_ceil_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_copysign), MP_ROM_PTR(&mp_math_copysign_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_fabs), MP_ROM_PTR(&mp_math_fabs_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_floor), MP_ROM_PTR(&mp_math_floor_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_fmod), MP_ROM_PTR(&mp_math_fmod_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_frexp), MP_ROM_PTR(&mp_math_frexp_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_ldexp), MP_ROM_PTR(&mp_math_ldexp_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_modf), MP_ROM_PTR(&mp_math_modf_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_isfinite), MP_ROM_PTR(&mp_math_isfinite_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_isinf), MP_ROM_PTR(&mp_math_isinf_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_isnan), MP_ROM_PTR(&mp_math_isnan_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_trunc), MP_ROM_PTR(&mp_math_trunc_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_radians), MP_ROM_PTR(&mp_math_radians_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_degrees), MP_ROM_PTR(&mp_math_degrees_obj) },
|
|
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
|
|
{ MP_ROM_QSTR(MP_QSTR_erf), MP_ROM_PTR(&mp_math_erf_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_erfc), MP_ROM_PTR(&mp_math_erfc_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_gamma), MP_ROM_PTR(&mp_math_gamma_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_lgamma), MP_ROM_PTR(&mp_math_lgamma_obj) },
|
|
#endif
|
|
};
|
|
|
|
STATIC MP_DEFINE_CONST_DICT(mp_module_math_globals, mp_module_math_globals_table);
|
|
|
|
const mp_obj_module_t math_module = {
|
|
.base = { &mp_type_module },
|
|
.globals = (mp_obj_dict_t*)&mp_module_math_globals,
|
|
};
|
|
|
|
#endif // MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH
|