Damien George a71c83a1d1 Change mp_obj_type_t.name from const char * to qstr.
Ultimately all static strings should be qstr.  This entry in the type
structure is only used for printing error messages (to tell the type of
the bad argument), and printing objects that don't supply a .print method.
2014-02-15 11:34:50 +00:00

386 lines
13 KiB
C

#include <string.h>
#include <stm32f4xx_gpio.h>
#include "nlr.h"
#include "misc.h"
#include "mpconfig.h"
#if MICROPY_HW_HAS_LCD
#include "qstr.h"
#include "parse.h"
#include "obj.h"
#include "runtime.h"
#include "systick.h"
#include "font_petme128_8x8.h"
#include "lcd.h"
#if defined(PYBOARD3)
#define PYB_LCD_PORT (GPIOA)
#define PYB_LCD_CS1_PIN (GPIO_Pin_0)
#define PYB_LCD_RST_PIN (GPIO_Pin_1)
#define PYB_LCD_A0_PIN (GPIO_Pin_2)
#define PYB_LCD_SCL_PIN (GPIO_Pin_3)
#define PYB_LCD_SI_PIN (GPIO_Pin_4)
#elif defined(PYBOARD4)
// X position
#define PYB_LCD_PORT (GPIOA)
#define PYB_LCD_CS1_PIN (GPIO_Pin_2) // X3
#define PYB_LCD_RST_PIN (GPIO_Pin_3) // X4
#define PYB_LCD_A0_PIN (GPIO_Pin_4) // X5
#define PYB_LCD_SCL_PIN (GPIO_Pin_5) // X6
#define PYB_LCD_SI_PIN (GPIO_Pin_7) // X8
#define PYB_LCD_BL_PORT (GPIOC)
#define PYB_LCD_BL_PIN (GPIO_Pin_5) // X12
/*
// Y position
#define PYB_LCD_PORT (GPIOB)
#define PYB_LCD_CS1_PIN (GPIO_Pin_8) // Y3 = PB8
#define PYB_LCD_RST_PIN (GPIO_Pin_9) // Y4 = PB9
#define PYB_LCD_A0_PIN (GPIO_Pin_12) // Y5 = PB12
#define PYB_LCD_SCL_PIN (GPIO_Pin_13) // Y6 = PB13
#define PYB_LCD_SI_PIN (GPIO_Pin_15) // Y8 = PB15
#define PYB_LCD_BL_PORT (GPIOB)
#define PYB_LCD_BL_PIN (GPIO_Pin_1) // Y12 = PB1
*/
#elif defined(STM32F4DISC)
/* Configure if needed */
#define PYB_LCD_PORT (GPIOA)
#define PYB_LCD_CS1_PIN (GPIO_Pin_2) // X3
#define PYB_LCD_RST_PIN (GPIO_Pin_3) // X4
#define PYB_LCD_A0_PIN (GPIO_Pin_4) // X5
#define PYB_LCD_SCL_PIN (GPIO_Pin_5) // X6
#define PYB_LCD_SI_PIN (GPIO_Pin_7) // X8
#define PYB_LCD_BL_PORT (GPIOC)
#define PYB_LCD_BL_PIN (GPIO_Pin_5) // X12
#endif
#define LCD_INSTR (0)
#define LCD_DATA (1)
static void lcd_out(int instr_data, uint8_t i) {
sys_tick_delay_ms(0);
PYB_LCD_PORT->BSRRH = PYB_LCD_CS1_PIN; // CS=0; enable
if (instr_data == LCD_INSTR) {
PYB_LCD_PORT->BSRRH = PYB_LCD_A0_PIN; // A0=0; select instr reg
} else {
PYB_LCD_PORT->BSRRL = PYB_LCD_A0_PIN; // A0=1; select data reg
}
// send byte bigendian, latches on rising clock
for (uint32_t n = 0; n < 8; n++) {
sys_tick_delay_ms(0);
PYB_LCD_PORT->BSRRH = PYB_LCD_SCL_PIN; // SCL=0
if ((i & 0x80) == 0) {
PYB_LCD_PORT->BSRRH = PYB_LCD_SI_PIN; // SI=0
} else {
PYB_LCD_PORT->BSRRL = PYB_LCD_SI_PIN; // SI=1
}
i <<= 1;
sys_tick_delay_ms(0);
PYB_LCD_PORT->BSRRL = PYB_LCD_SCL_PIN; // SCL=1
}
PYB_LCD_PORT->BSRRL = PYB_LCD_CS1_PIN; // CS=1; disable
/*
in Python, native types:
CS1_PIN(const) = 0
n = int(0)
delay_ms(0)
PORT[word:BSRRH] = 1 << CS1_PIN
for n in range(0, 8):
delay_ms(0)
PORT[word:BSRRH] = 1 << SCL_PIN
if i & 0x80 == 0:
PORT[word:BSRRH] = 1 << SI_PIN
else:
PORT[word:BSRRL] = 1 << SI_PIN
i <<= 1
delay_ms(0)
PORT[word:BSRRL] = 1 << SCL_PIN
*/
}
/*
static void lcd_data_out(uint8_t i) {
delay_ms(0);
PYB_LCD_PORT->BSRRH = PYB_LCD_CS1_PIN; // CS=0; enable
PYB_LCD_PORT->BSRRL = PYB_LCD_A0_PIN; // A0=1; select data reg
// send byte bigendian, latches on rising clock
for (uint32_t n = 0; n < 8; n++) {
delay_ms(0);
PYB_LCD_PORT->BSRRH = PYB_LCD_SCL_PIN; // SCL=0
if ((i & 0x80) == 0) {
PYB_LCD_PORT->BSRRH = PYB_LCD_SI_PIN; // SI=0
} else {
PYB_LCD_PORT->BSRRL = PYB_LCD_SI_PIN; // SI=1
}
i <<= 1;
delay_ms(0);
PYB_LCD_PORT->BSRRL = PYB_LCD_SCL_PIN; // SCL=1
}
PYB_LCD_PORT->BSRRL = PYB_LCD_CS1_PIN; // CS=1; disable
}
*/
// writes 8 vertical pixels
// pos 0 is upper left, pos 1 is 8 pixels to right of that, pos 128 is 8 pixels below that
mp_obj_t lcd_draw_pixel_8(mp_obj_t mp_pos, mp_obj_t mp_val) {
int pos = mp_obj_get_int(mp_pos);
int val = mp_obj_get_int(mp_val);
int page = pos / 128;
int offset = pos - (page * 128);
lcd_out(LCD_INSTR, 0xb0 | page); // page address set
lcd_out(LCD_INSTR, 0x10 | ((offset >> 4) & 0x0f)); // column address set upper
lcd_out(LCD_INSTR, 0x00 | (offset & 0x0f)); // column address set lower
lcd_out(LCD_DATA, val); // write data
return mp_const_none;
}
#define LCD_BUF_W (16)
#define LCD_BUF_H (4)
char lcd_char_buffer[LCD_BUF_W * LCD_BUF_H];
int lcd_line;
int lcd_column;
int lcd_next_line;
#define LCD_PIX_BUF_SIZE (128 * 32 / 8)
byte lcd_pix_buf[LCD_PIX_BUF_SIZE];
byte lcd_pix_buf2[LCD_PIX_BUF_SIZE];
mp_obj_t lcd_pix_clear(void) {
memset(lcd_pix_buf, 0, LCD_PIX_BUF_SIZE);
memset(lcd_pix_buf2, 0, LCD_PIX_BUF_SIZE);
return mp_const_none;
}
mp_obj_t lcd_pix_get(mp_obj_t mp_x, mp_obj_t mp_y) {
int x = mp_obj_get_int(mp_x);
int y = mp_obj_get_int(mp_y);
if (0 <= x && x <= 127 && 0 <= y && y <= 31) {
uint byte_pos = x + 128 * ((uint)y >> 3);
if (lcd_pix_buf[byte_pos] & (1 << (y & 7))) {
return mp_obj_new_int(1);
}
}
return mp_obj_new_int(0);
}
mp_obj_t lcd_pix_set(mp_obj_t mp_x, mp_obj_t mp_y) {
int x = mp_obj_get_int(mp_x);
int y = mp_obj_get_int(mp_y);
if (0 <= x && x <= 127 && 0 <= y && y <= 31) {
uint byte_pos = x + 128 * ((uint)y >> 3);
lcd_pix_buf2[byte_pos] |= 1 << (y & 7);
}
return mp_const_none;
}
mp_obj_t lcd_pix_reset(mp_obj_t mp_x, mp_obj_t mp_y) {
int x = mp_obj_get_int(mp_x);
int y = mp_obj_get_int(mp_y);
if (0 <= x && x <= 127 && 0 <= y && y <= 31) {
uint byte_pos = x + 128 * ((uint)y >> 3);
lcd_pix_buf2[byte_pos] &= ~(1 << (y & 7));
}
return mp_const_none;
}
mp_obj_t lcd_pix_show(void) {
memcpy(lcd_pix_buf, lcd_pix_buf2, LCD_PIX_BUF_SIZE);
for (uint page = 0; page < 4; page++) {
lcd_out(LCD_INSTR, 0xb0 | page); // page address set
lcd_out(LCD_INSTR, 0x10); // column address set upper; 0
lcd_out(LCD_INSTR, 0x00); // column address set lower; 0
for (uint i = 0; i < 128; i++) {
lcd_out(LCD_DATA, lcd_pix_buf[i + 128 * page]);
}
}
return mp_const_none;
}
mp_obj_t lcd_print(mp_obj_t text) {
uint len;
const char *data = mp_obj_str_get_data(text, &len);
lcd_print_strn(data, len);
return mp_const_none;
}
mp_obj_t lcd_light(mp_obj_t value) {
#if defined(PYB_LCD_BL_PORT)
if (rt_is_true(value)) {
PYB_LCD_BL_PORT->BSRRL = PYB_LCD_BL_PIN; // set pin high to turn backlight on
} else {
PYB_LCD_BL_PORT->BSRRH = PYB_LCD_BL_PIN; // set pin low to turn backlight off
}
#endif
return mp_const_none;
}
static mp_obj_t mp_lcd = MP_OBJ_NULL;
static mp_obj_t pyb_lcd_init(void) {
if (mp_lcd != MP_OBJ_NULL) {
// already init'd
return mp_lcd;
}
// set the outputs high
PYB_LCD_PORT->BSRRL = PYB_LCD_CS1_PIN;
PYB_LCD_PORT->BSRRL = PYB_LCD_RST_PIN;
PYB_LCD_PORT->BSRRL = PYB_LCD_A0_PIN;
PYB_LCD_PORT->BSRRL = PYB_LCD_SCL_PIN;
PYB_LCD_PORT->BSRRL = PYB_LCD_SI_PIN;
// make them push/pull outputs
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = PYB_LCD_CS1_PIN | PYB_LCD_RST_PIN | PYB_LCD_A0_PIN | PYB_LCD_SCL_PIN | PYB_LCD_SI_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(PYB_LCD_PORT, &GPIO_InitStructure);
#if defined(PYB_LCD_BL_PORT)
// backlight drive pin, starts low (off)
PYB_LCD_BL_PORT->BSRRH = PYB_LCD_BL_PIN;
GPIO_InitStructure.GPIO_Pin = PYB_LCD_BL_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(PYB_LCD_BL_PORT, &GPIO_InitStructure);
#endif
// init the LCD
sys_tick_delay_ms(1); // wait a bit
PYB_LCD_PORT->BSRRH = PYB_LCD_RST_PIN; // RST=0; reset
sys_tick_delay_ms(1); // wait for reset; 2us min
PYB_LCD_PORT->BSRRL = PYB_LCD_RST_PIN; // RST=1; enable
sys_tick_delay_ms(1); // wait for reset; 2us min
lcd_out(LCD_INSTR, 0xa0); // ADC select, normal
lcd_out(LCD_INSTR, 0xc8); // common output mode select, reverse
lcd_out(LCD_INSTR, 0xa2); // LCD bias set, 1/9 bias
lcd_out(LCD_INSTR, 0x2f); // power control set, 0b111=(booster on, vreg on, vfollow on)
lcd_out(LCD_INSTR, 0x21); // v0 voltage regulator internal resistor ratio set, 0b001=small
lcd_out(LCD_INSTR, 0x81); // electronic volume mode set
lcd_out(LCD_INSTR, 0x34); // electronic volume register set, 0b110100
lcd_out(LCD_INSTR, 0x40); // display start line set, 0
lcd_out(LCD_INSTR, 0xaf); // LCD display, on
// clear display
for (int page = 0; page < 4; page++) {
lcd_out(LCD_INSTR, 0xb0 | page); // page address set
lcd_out(LCD_INSTR, 0x10); // column address set upper
lcd_out(LCD_INSTR, 0x00); // column address set lower
for (int i = 0; i < 128; i++) {
lcd_out(LCD_DATA, 0x00);
}
}
for (int i = 0; i < LCD_BUF_H * LCD_BUF_W; i++) {
lcd_char_buffer[i] = ' ';
}
lcd_line = 0;
lcd_column = 0;
lcd_next_line = 0;
// Micro Python interface
mp_obj_t o = mp_obj_new_type(MP_QSTR_LCD, mp_const_empty_tuple, mp_obj_new_dict(0));
rt_store_attr(o, qstr_from_str("lcd8"), rt_make_function_n(2, lcd_draw_pixel_8));
rt_store_attr(o, qstr_from_str("clear"), rt_make_function_n(0, lcd_pix_clear));
rt_store_attr(o, qstr_from_str("get"), rt_make_function_n(2, lcd_pix_get));
rt_store_attr(o, qstr_from_str("set"), rt_make_function_n(2, lcd_pix_set));
rt_store_attr(o, qstr_from_str("reset"), rt_make_function_n(2, lcd_pix_reset));
rt_store_attr(o, qstr_from_str("show"), rt_make_function_n(0, lcd_pix_show));
rt_store_attr(o, qstr_from_str("text"), rt_make_function_n(1, lcd_print));
rt_store_attr(o, qstr_from_str("light"), rt_make_function_n(1, lcd_light));
mp_lcd = o;
return o;
}
static MP_DEFINE_CONST_FUN_OBJ_0(pyb_lcd_init_obj, pyb_lcd_init);
void lcd_init(void) {
mp_lcd = MP_OBJ_NULL;
rt_store_name(qstr_from_str("LCD"), (mp_obj_t)&pyb_lcd_init_obj);
}
void lcd_print_str(const char *str) {
lcd_print_strn(str, strlen(str));
}
void lcd_print_strn(const char *str, unsigned int len) {
int redraw_min = lcd_line * LCD_BUF_W + lcd_column;
int redraw_max = redraw_min;
int did_new_line = 0;
for (; len > 0; len--, str++) {
// move to next line if needed
if (lcd_next_line) {
if (lcd_line + 1 < LCD_BUF_H) {
lcd_line += 1;
} else {
lcd_line = LCD_BUF_H - 1;
for (int i = 0; i < LCD_BUF_W * (LCD_BUF_H - 1); i++) {
lcd_char_buffer[i] = lcd_char_buffer[i + LCD_BUF_W];
}
for (int i = 0; i < LCD_BUF_W; i++) {
lcd_char_buffer[LCD_BUF_W * (LCD_BUF_H - 1) + i] = ' ';
}
redraw_min = 0;
redraw_max = LCD_BUF_W * LCD_BUF_H;
}
lcd_next_line = 0;
lcd_column = 0;
did_new_line = 1;
}
if (*str == '\n') {
lcd_next_line = 1;
} else if (*str == '\r') {
lcd_column = 0;
} else if (*str == '\b') {
if (lcd_column > 0) {
lcd_column--;
}
} else if (lcd_column >= LCD_BUF_W) {
lcd_next_line = 1;
str -= 1;
len += 1;
} else {
lcd_char_buffer[lcd_line * LCD_BUF_W + lcd_column] = *str;
lcd_column += 1;
int max = lcd_line * LCD_BUF_W + lcd_column;
if (max > redraw_max) {
redraw_max = max;
}
}
}
int last_page = -1;
for (int i = redraw_min; i < redraw_max; i++) {
int page = i / LCD_BUF_W;
if (page != last_page) {
int offset = 8 * (i - (page * LCD_BUF_W));
lcd_out(LCD_INSTR, 0xb0 | page); // page address set
lcd_out(LCD_INSTR, 0x10 | ((offset >> 4) & 0x0f)); // column address set upper
lcd_out(LCD_INSTR, 0x00 | (offset & 0x0f)); // column address set lower
last_page = page;
}
int chr = lcd_char_buffer[i];
if (chr < 32 || chr > 126) {
chr = 127;
}
const uint8_t *chr_data = &font_petme128_8x8[(chr - 32) * 8];
for (int j = 0; j < 8; j++) {
lcd_out(LCD_DATA, chr_data[j]);
}
}
if (did_new_line) {
sys_tick_delay_ms(50);
}
}
#endif // MICROPY_HW_HAS_LCD