2023-05-12 14:39:57 -04:00

315 lines
12 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Lucian Copeland for Adafruit Industries
* Copyright (c) 2022 Matthew McGowan for Blues Wireless Inc
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "peripherals/rtc.h"
#include STM32_HAL_H
#include "py/mpconfig.h"
#include "shared/timeutils/timeutils.h"
// Default period for ticks is 1/1024 second
#define TICKS_PER_SECOND 1024
// Based on a 32768 kHz clock
#define SUBTICKS_PER_TICK 32
STATIC RTC_HandleTypeDef hrtc;
#if BOARD_HAS_LOW_SPEED_CRYSTAL
STATIC uint32_t rtc_clock_frequency = LSE_VALUE;
#else
STATIC uint32_t rtc_clock_frequency = LSI_VALUE;
#endif
volatile uint32_t seconds_to_date = 0;
volatile uint32_t cached_date = 0;
volatile uint32_t seconds_to_minute = 0;
volatile uint32_t cached_hours_minutes = 0;
// The RTC starts at 2000-01-01 when it comes up.
// If the RTC is set to a later time, the ticks the RTC returns will be offset by the new time.
// Remember that offset so it can be removed when returning a monotonic tick count.
static int64_t rtc_ticks_offset;
// Normalized to be 0-31 inclusive, so always positive.
static uint8_t rtc_subticks_offset;
volatile bool alarmed_already[2];
bool peripherals_wkup_on = false;
static void (*wkup_callback)(void);
static void (*alarm_callbacks[2])(void);
uint32_t stm32_peripherals_get_rtc_freq(void) {
return rtc_clock_frequency;
}
void stm32_peripherals_rtc_init(void) {
rtc_ticks_offset = 0;
rtc_subticks_offset = 0;
// RTC oscillator selection is handled in peripherals/<family>/<line>/clocks.c
__HAL_RCC_RTC_ENABLE();
hrtc.Instance = RTC;
hrtc.Init.HourFormat = RTC_HOURFORMAT_24;
// Divide async as little as possible so that we have rtc_clock_frequency count in subseconds.
// This ensures our timing > 1 second is correct.
hrtc.Init.AsynchPrediv = 0x0;
hrtc.Init.SynchPrediv = rtc_clock_frequency - 1;
hrtc.Init.OutPut = RTC_OUTPUT_DISABLE;
HAL_RTC_Init(&hrtc);
HAL_RTCEx_EnableBypassShadow(&hrtc);
HAL_NVIC_EnableIRQ(RTC_Alarm_IRQn);
}
// This function is called often for timing so we cache the seconds elapsed computation based on the
// register value. The STM HAL always does shifts and conversion if we use it directly.
STATIC uint64_t stm32_peripherals_rtc_raw_ticks(uint8_t *subticks) {
// Disable IRQs to ensure we read all of the RTC registers as close in time as possible. Read
// SSR twice to make sure we didn't read across a tick.
__disable_irq();
uint32_t first_ssr = (uint32_t)(RTC->SSR);
uint32_t time = (uint32_t)(RTC->TR & RTC_TR_RESERVED_MASK);
uint32_t date = (uint32_t)(RTC->DR & RTC_DR_RESERVED_MASK);
uint32_t ssr = (uint32_t)(RTC->SSR);
if (ssr != first_ssr) {
first_ssr = ssr;
time = (uint32_t)(RTC->TR & RTC_TR_RESERVED_MASK);
date = (uint32_t)(RTC->DR & RTC_DR_RESERVED_MASK);
ssr = (uint32_t)(RTC->SSR);
}
__enable_irq();
uint32_t subseconds = rtc_clock_frequency - 1 - ssr;
if (date != cached_date) {
uint32_t year = (uint8_t)((date & (RTC_DR_YT | RTC_DR_YU)) >> 16U);
uint8_t month = (uint8_t)((date & (RTC_DR_MT | RTC_DR_MU)) >> 8U);
uint8_t day = (uint8_t)(date & (RTC_DR_DT | RTC_DR_DU));
// Add 2000 since the year is only the last two digits.
year = 2000 + (uint32_t)RTC_Bcd2ToByte(year);
month = (uint8_t)RTC_Bcd2ToByte(month);
day = (uint8_t)RTC_Bcd2ToByte(day);
seconds_to_date = timeutils_seconds_since_2000(year, month, day, 0, 0, 0);
cached_date = date;
}
uint32_t hours_minutes = time & (RTC_TR_HT | RTC_TR_HU | RTC_TR_MNT | RTC_TR_MNU);
if (hours_minutes != cached_hours_minutes) {
uint8_t hours = (uint8_t)((time & (RTC_TR_HT | RTC_TR_HU)) >> 16U);
uint8_t minutes = (uint8_t)((time & (RTC_TR_MNT | RTC_TR_MNU)) >> 8U);
hours = (uint8_t)RTC_Bcd2ToByte(hours);
minutes = (uint8_t)RTC_Bcd2ToByte(minutes);
seconds_to_minute = 60 * (60 * hours + minutes);
cached_hours_minutes = hours_minutes;
}
uint8_t seconds = (uint8_t)(time & (RTC_TR_ST | RTC_TR_SU));
seconds = (uint8_t)RTC_Bcd2ToByte(seconds);
if (subticks != NULL) {
*subticks = subseconds % SUBTICKS_PER_TICK;
}
uint64_t raw_ticks = ((uint64_t)TICKS_PER_SECOND) * (seconds_to_date + seconds_to_minute + seconds) + subseconds / SUBTICKS_PER_TICK;
return raw_ticks;
}
// This function returns monotonically increasing ticks by adjusting away the RTC tick offset
// from the last time the date was set.
uint64_t stm32_peripherals_rtc_monotonic_ticks(uint8_t *subticks) {
uint8_t raw_subticks;
uint64_t monotonic_ticks = stm32_peripherals_rtc_raw_ticks(&raw_subticks) - rtc_ticks_offset;
int8_t monotonic_subticks = raw_subticks - rtc_subticks_offset;
// Difference might be negative. Normalize to 0-31.
// `while` not really necessary; should only loop 0 or 1 times.
while (monotonic_subticks < 0) {
monotonic_ticks--;
monotonic_subticks += SUBTICKS_PER_TICK;
}
*subticks = (uint8_t)monotonic_subticks;
return monotonic_ticks;
}
#if CIRCUITPY_RTC
void stm32_peripherals_rtc_get_time(timeutils_struct_time_t *tm) {
RTC_DateTypeDef date = {0};
RTC_TimeTypeDef time = {0};
int code;
if ((code = HAL_RTC_GetTime(&hrtc, &time, RTC_FORMAT_BIN)) == HAL_OK &&
(code = HAL_RTC_GetDate(&hrtc, &date, RTC_FORMAT_BIN)) == HAL_OK) {
tm->tm_hour = time.Hours;
tm->tm_min = time.Minutes;
tm->tm_sec = time.Seconds;
tm->tm_wday = date.WeekDay - 1;
tm->tm_mday = date.Date;
tm->tm_mon = date.Month;
tm->tm_year = date.Year + 2000;
tm->tm_yday = -1;
}
}
void stm32_peripherals_rtc_set_time(timeutils_struct_time_t *tm) {
RTC_DateTypeDef date = {0};
RTC_TimeTypeDef time = {0};
uint8_t current_monotonic_subticks;
uint64_t current_monotonic_ticks = stm32_peripherals_rtc_monotonic_ticks(&current_monotonic_subticks);
// SubSeconds will always be set to zero.
time.Hours = tm->tm_hour;
time.Minutes = tm->tm_min;
time.Seconds = tm->tm_sec;
date.WeekDay = tm->tm_wday + 1;
date.Date = tm->tm_mday;
date.Month = tm->tm_mon;
date.Year = tm->tm_year - 2000;
time.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
time.StoreOperation = RTC_STOREOPERATION_RESET;
if (HAL_RTC_SetTime(&hrtc, &time, RTC_FORMAT_BIN) != HAL_OK ||
HAL_RTC_SetDate(&hrtc, &date, RTC_FORMAT_BIN) != HAL_OK) {
// todo - throw an exception
}
uint8_t raw_subticks;
rtc_ticks_offset = stm32_peripherals_rtc_raw_ticks(&raw_subticks) - current_monotonic_ticks;
int8_t rtc_subticks_offset_signed = raw_subticks - current_monotonic_subticks;
// Difference might be negative. Normalize subticks to 0-31.
// `while` not really necessary; should only loop 0 or 1 times.
while (rtc_subticks_offset_signed < 0) {
rtc_ticks_offset--;
rtc_subticks_offset_signed += SUBTICKS_PER_TICK;
}
rtc_subticks_offset = (uint8_t)rtc_subticks_offset_signed;
}
#endif
void stm32_peripherals_rtc_assign_wkup_callback(void (*callback)(void)) {
wkup_callback = callback;
}
void stm32_peripherals_rtc_set_wakeup_mode_seconds(uint32_t seconds) {
// prep stuff from CubeMX
__HAL_PWR_CLEAR_FLAG(PWR_FLAG_WU);
__HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(&hrtc, RTC_FLAG_WUTF);
HAL_RTCEx_SetWakeUpTimer_IT(&hrtc, (rtc_clock_frequency / 16) * seconds, RTC_WAKEUPCLOCK_RTCCLK_DIV16);
}
void stm32_peripherals_rtc_set_wakeup_mode_tick(void) {
HAL_RTCEx_SetWakeUpTimer_IT(&hrtc, (rtc_clock_frequency / 16) / TICKS_PER_SECOND, RTC_WAKEUPCLOCK_RTCCLK_DIV2);
}
void stm32_peripherals_rtc_enable_wakeup_timer(void) {
peripherals_wkup_on = true;
HAL_NVIC_SetPriority(RTC_WKUP_IRQn, 1, 0U);
HAL_NVIC_EnableIRQ(RTC_WKUP_IRQn);
}
void stm32_peripherals_rtc_disable_wakeup_timer(void) {
peripherals_wkup_on = false;
HAL_NVIC_DisableIRQ(RTC_WKUP_IRQn);
HAL_RTCEx_DeactivateWakeUpTimer(&hrtc);
}
void stm32_peripherals_rtc_reset_alarms(void) {
HAL_RTC_DeactivateAlarm(&hrtc, RTC_ALARM_A);
HAL_RTC_DeactivateAlarm(&hrtc, RTC_ALARM_B);
}
void stm32_peripherals_rtc_assign_alarm_callback(uint8_t alarm_idx, void (*callback)(void)) {
alarm_callbacks[alarm_idx] = callback;
}
void stm32_peripherals_rtc_set_alarm(uint8_t alarm_idx, uint32_t ticks) {
uint64_t raw_ticks = stm32_peripherals_rtc_raw_ticks(NULL) + ticks;
RTC_AlarmTypeDef alarm;
if (ticks > TICKS_PER_SECOND) {
timeutils_struct_time_t tm;
timeutils_seconds_since_2000_to_struct_time(raw_ticks / TICKS_PER_SECOND, &tm);
alarm.AlarmTime.Hours = tm.tm_hour;
alarm.AlarmTime.Minutes = tm.tm_min;
alarm.AlarmTime.Seconds = tm.tm_sec;
alarm.AlarmDateWeekDay = tm.tm_mday;
// Masking here means that the value is ignored so we set none.
alarm.AlarmMask = RTC_ALARMMASK_NONE;
} else {
// Masking here means that the value is ignored so we set them all. Only the subseconds
// value matters.
alarm.AlarmMask = RTC_ALARMMASK_ALL;
}
alarm.AlarmTime.SubSeconds = rtc_clock_frequency - 1 -
((raw_ticks % TICKS_PER_SECOND) * SUBTICKS_PER_TICK);
if (alarm.AlarmTime.SubSeconds > rtc_clock_frequency) {
alarm.AlarmTime.SubSeconds = alarm.AlarmTime.SubSeconds +
rtc_clock_frequency;
}
alarm.AlarmTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
alarm.AlarmTime.StoreOperation = RTC_STOREOPERATION_SET;
// Masking here means that the bits are ignored so we set none of them.
alarm.AlarmSubSecondMask = RTC_ALARMSUBSECONDMASK_NONE;
alarm.AlarmDateWeekDaySel = RTC_ALARMDATEWEEKDAYSEL_DATE;
alarm.Alarm = (alarm_idx == PERIPHERALS_ALARM_A) ? RTC_ALARM_A : RTC_ALARM_B;
HAL_RTC_SetAlarm_IT(&hrtc, &alarm, RTC_FORMAT_BIN);
HAL_NVIC_EnableIRQ(RTC_Alarm_IRQn);
alarmed_already[alarm_idx] = false;
}
bool stm32_peripherals_rtc_alarm_triggered(uint8_t alarm_idx) {
return alarmed_already[alarm_idx];
}
void RTC_WKUP_IRQHandler(void) {
if (wkup_callback) {
wkup_callback();
}
__HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(&hrtc, RTC_FLAG_WUTF);
__HAL_RTC_WAKEUPTIMER_EXTI_CLEAR_FLAG();
hrtc.State = HAL_RTC_STATE_READY;
}
void RTC_Alarm_IRQHandler(void) {
HAL_RTC_AlarmIRQHandler(&hrtc);
}
void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *_hrtc) {
if (alarm_callbacks[PERIPHERALS_ALARM_A]) {
alarm_callbacks[PERIPHERALS_ALARM_A]();
}
HAL_RTC_DeactivateAlarm(_hrtc, RTC_ALARM_A);
alarmed_already[PERIPHERALS_ALARM_A] = true;
}
void HAL_RTCEx_AlarmBEventCallback(RTC_HandleTypeDef *_hrtc) {
if (alarm_callbacks[PERIPHERALS_ALARM_B]) {
alarm_callbacks[PERIPHERALS_ALARM_B]();
}
HAL_RTC_DeactivateAlarm(_hrtc, RTC_ALARM_B);
alarmed_already[PERIPHERALS_ALARM_B] = true;
}