Scott Shawcroft dc76306cfa
Enable a BLE workflow
nRF CircuitPython boards will now provide the file transfer
service defined here: https://github.com/adafruit/Adafruit_CircuitPython_BLE_File_Transfer

USB capable boards will only advertise if previously bonded to a
device or if the reset button is pressed during the fast blue
flashes on start up. When pressed, the board will restart again but
the blue period will not flash.

Boards without USB will always advertise.

When previously bonded, the advertisement is private so that no
other peers can connect. If advertising publicly, the tx power is
lowered to reduce the likelihood of bonding from a distance.

This PR also fixes issues with loading identities of bonded peers
so that our address can now be resolved and we can resolve others'
addresses when scanning.
2021-06-24 12:59:14 -07:00

377 lines
14 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2019 Dan Halbert for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include "ble.h"
#include "ble_drv.h"
#include "shared-bindings/_bleio/__init__.h"
#include "shared-bindings/_bleio/Adapter.h"
#include "shared-bindings/nvm/ByteArray.h"
#include "supervisor/shared/tick.h"
#include "nrf_soc.h"
#include "bonding.h"
// Internal flash area reserved for bonding storage.
#define BONDING_PAGES_START_ADDR CIRCUITPY_BLE_CONFIG_START_ADDR
#define BONDING_PAGES_END_ADDR (CIRCUITPY_BLE_CONFIG_START_ADDR + CIRCUITPY_BLE_CONFIG_SIZE)
// First and last four bytes are magic bytes for id and version. Data is in between.
// 'BD01'
const uint32_t BONDING_FLAG = ('1' | '0' << 8 | 'D' << 16 | 'B' << 24);
#define BONDING_DATA_START_ADDR (BONDING_PAGES_START_ADDR + sizeof(BONDING_FLAG))
#define BONDING_DATA_END_ADDR (BONDING_PAGES_END_ADDR - sizeof(BONDING_FLAG))
#define BONDING_START_FLAG_ADDR BONDING_PAGES_START_ADDR
#define BONDING_END_FLAG_ADDR BONDING_DATA_END_ADDR
// Save both system and user service info.
#define SYS_ATTR_FLAGS (BLE_GATTS_SYS_ATTR_FLAG_SYS_SRVCS | BLE_GATTS_SYS_ATTR_FLAG_USR_SRVCS)
#if BONDING_DEBUG
void bonding_print_block(bonding_block_t *block) {
printf("at 0x%08lx: is_central: %1d, type: 0x%x, ediv: 0x%04x, data_length: %d\n",
(uint32_t)block, block->is_central, block->type, block->ediv, block->data_length);
}
void bonding_print_keys(bonding_keys_t *keys) {
for (size_t i = 0; i < sizeof(bonding_keys_t); i++) {
printf("%x", ((uint8_t *)keys)[i]);
}
printf("\n");
}
#endif
STATIC size_t compute_block_size(uint16_t data_length) {
// Round data size up to the nearest 32-bit address.
return sizeof(bonding_block_t) + ((data_length + 3) & ~0x3);
}
void bonding_erase_storage(void) {
// Erase all pages in the bonding area.
for (uint32_t page_address = BONDING_PAGES_START_ADDR;
page_address < BONDING_PAGES_END_ADDR;
page_address += FLASH_PAGE_SIZE) {
// Argument is page number, not address.
sd_flash_page_erase_sync(page_address / FLASH_PAGE_SIZE);
}
// Write marker words at the beginning and the end of the bonding area.
uint32_t flag = BONDING_FLAG;
sd_flash_write_sync((uint32_t *)BONDING_START_FLAG_ADDR, &flag, 1);
sd_flash_write_sync((uint32_t *)BONDING_END_FLAG_ADDR, &flag, 1);
}
// Given NULL to start or block address, return the address of the next valid block.
// The last block returned is the unused block at the end.
// Return NULL if we have run off the end of the bonding space.
STATIC bonding_block_t *next_block(bonding_block_t *block) {
while (1) {
// Advance to next block.
if (block == NULL) {
return (bonding_block_t *)BONDING_DATA_START_ADDR;
} else if (block->type == BLOCK_UNUSED) {
// Already at last block (the unused block).
return NULL;
}
// Advance to next block.
block = (bonding_block_t *)((uint8_t *)block + compute_block_size(block->data_length));
if (block >= (bonding_block_t *)BONDING_DATA_END_ADDR) {
// Went past end of bonding space.
return NULL;
}
if (block->type != BLOCK_INVALID) {
// Found an empty or a valid block.
return block;
}
// Invalid block (was erased); try again.
}
}
// Find the block with given is_central, type and ediv value.
// If type == BLOCK_UNUSED, ediv is ignored and the the sole unused block at the end is returned.
// If not found, return NULL.
STATIC bonding_block_t *find_existing_block(bool is_central, bonding_block_type_t type, uint16_t ediv) {
bonding_block_t *block = NULL;
while (1) {
block = next_block(block);
if (block == NULL) {
return NULL;
}
// If types match, and block is unused, just return it.
// Otherwise check that is_central and ediv match.
if (type == block->type) {
if (type == BLOCK_UNUSED ||
(is_central == block->is_central && ediv == block->ediv)) {
return block;
}
}
}
}
size_t bonding_peripheral_bond_count(void) {
bonding_block_t *block = NULL;
size_t count = 0;
while (1) {
block = next_block(block);
if (block == NULL) {
return count;
}
if (block->type != BLOCK_UNUSED && block->type != BLOCK_INVALID && !block->is_central) {
count++;
}
}
}
// Get an empty block large enough to store data_length data.
STATIC bonding_block_t *find_unused_block(uint16_t data_length) {
bonding_block_t *unused_block = find_existing_block(true, BLOCK_UNUSED, EDIV_INVALID);
// If no more room, erase all existing blocks and start over.
if (!unused_block ||
(uint8_t *)unused_block + compute_block_size(data_length) >= (uint8_t *)BONDING_DATA_END_ADDR) {
bonding_erase_storage();
unused_block = (bonding_block_t *)BONDING_DATA_START_ADDR;
}
return unused_block;
}
// Set the header word to all 0's, to mark the block as invalid.
// We don't change data_length, so we can still skip over this block.
STATIC void invalidate_block(bonding_block_t *block) {
uint32_t zero = 0;
sd_flash_write_sync((uint32_t *)block, &zero, 1);
}
// Write bonding block header.
STATIC void write_block_header(bonding_block_t *dest_block, bonding_block_t *source_block_header) {
sd_flash_write_sync((uint32_t *)dest_block, (uint32_t *)source_block_header, sizeof(bonding_block_t) / 4);
}
// Write variable-length data at end of bonding block.
STATIC void write_block_data(bonding_block_t *dest_block, uint8_t *data, uint16_t data_length) {
// Minimize the number of writes. Datasheet says no more than two writes per word before erasing again.
// Start writing after the current header.
uint32_t *flash_word_p = (uint32_t *)((uint8_t *)dest_block + sizeof(bonding_block_t));
while (1) {
uint32_t word = 0xffffffff;
memcpy(&word, data, data_length >= 4 ? 4 : data_length);
sd_flash_write_sync(flash_word_p, &word, 1);
if (data_length <= 4) {
break;
}
data_length -= 4;
data += 4;
// Increment by word size.
flash_word_p++;
}
}
STATIC void write_sys_attr_block(bleio_connection_internal_t *connection) {
uint16_t length = 0;
// First find out how big a buffer we need, then fetch the data.
if (sd_ble_gatts_sys_attr_get(connection->conn_handle, NULL, &length, SYS_ATTR_FLAGS) != NRF_SUCCESS) {
return;
}
uint8_t sys_attr[length];
if (sd_ble_gatts_sys_attr_get(connection->conn_handle, sys_attr, &length, SYS_ATTR_FLAGS) != NRF_SUCCESS) {
return;
}
// Is there an existing sys_attr block that matches the current sys_attr data?
bonding_block_t *existing_block =
find_existing_block(connection->is_central, BLOCK_SYS_ATTR, connection->ediv);
if (existing_block) {
if (length == existing_block->data_length &&
memcmp(sys_attr, existing_block->data, length) == 0) {
// Identical block found. No need to store again.
return;
}
// Data doesn't match. Invalidate block and store a new one.
invalidate_block(existing_block);
}
bonding_block_t block_header = {
.is_central = connection->is_central,
.type = BLOCK_SYS_ATTR,
.ediv = connection->ediv,
.conn_handle = connection->conn_handle,
.data_length = length,
};
bonding_block_t *new_block = find_unused_block(length);
write_block_header(new_block, &block_header);
write_block_data(new_block, sys_attr, length);
return;
}
STATIC void write_keys_block(bleio_connection_internal_t *connection) {
uint16_t const ediv = connection->is_central
? connection->bonding_keys.peer_enc.master_id.ediv
: connection->bonding_keys.own_enc.master_id.ediv;
// Is there an existing keys block that matches the ediv?
bonding_block_t *existing_block = find_existing_block(connection->is_central, BLOCK_KEYS, ediv);
if (existing_block) {
if (existing_block->data_length == sizeof(bonding_keys_t) &&
memcmp(existing_block->data, &connection->bonding_keys, sizeof(bonding_keys_t)) == 0) {
// Identical block found. No need to store again.
return;
}
// Data doesn't match. Invalidate block and store a new one.
invalidate_block(existing_block);
}
// Invalidate any existing blocks that match the peer address.
existing_block = next_block(NULL);
while (existing_block != NULL) {
if (existing_block->type == BLOCK_KEYS && connection->is_central == existing_block->is_central &&
existing_block->data_length == sizeof(bonding_keys_t)) {
const ble_gap_addr_t *existing_peer = &((const bonding_keys_t *)existing_block->data)->peer_id.id_addr_info;
const ble_gap_addr_t *connecting_peer = &connection->bonding_keys.peer_id.id_addr_info;
if (memcmp(existing_peer->addr, connecting_peer->addr, 6) == 0 &&
memcmp(existing_block->data, &connection->bonding_keys, sizeof(bonding_keys_t)) != 0) {
// Mismatched block found. Invalidate it.
invalidate_block(existing_block);
}
}
existing_block = next_block(existing_block);
}
bonding_block_t block_header = {
.is_central = connection->is_central,
.type = BLOCK_KEYS,
.ediv = ediv,
.conn_handle = connection->conn_handle,
.data_length = sizeof(bonding_keys_t),
};
bonding_block_t *new_block = find_unused_block(sizeof(bonding_keys_t));
write_block_header(new_block, &block_header);
write_block_data(new_block, (uint8_t *)&connection->bonding_keys, sizeof(bonding_keys_t));
}
void bonding_clear_keys(bonding_keys_t *bonding_keys) {
memset((uint8_t *)bonding_keys, 0, sizeof(bonding_keys_t));
}
void bonding_reset(void) {
if (BONDING_FLAG != *((uint32_t *)BONDING_START_FLAG_ADDR) ||
BONDING_FLAG != *((uint32_t *)BONDING_END_FLAG_ADDR)) {
bonding_erase_storage();
}
}
// Write bonding blocks to flash. Requests have been queued during evt handlers.
void bonding_background(void) {
// A paired connection will request that its keys and CCCD values be stored.
// The CCCD store whenever a CCCD value is written.
for (size_t i = 0; i < BLEIO_TOTAL_CONNECTION_COUNT; i++) {
bleio_connection_internal_t *connection = &bleio_connections[i];
// Wait at least one second before saving CCCD, to consolidate
// writes that involve multiple CCCDs. For instance, for HID,
// three CCCD's are set in short succession by the HID client.
if (connection->do_bond_cccds) {
uint64_t current_ticks_ms = supervisor_ticks_ms64();
if (current_ticks_ms - connection->do_bond_cccds_request_time >= 1000) {
write_sys_attr_block(connection);
connection->do_bond_cccds = false;
}
}
if (connection->do_bond_keys) {
write_keys_block(connection);
connection->do_bond_keys = false;
}
}
}
bool bonding_load_cccd_info(bool is_central, uint16_t conn_handle, uint16_t ediv) {
bonding_block_t *block = find_existing_block(is_central, BLOCK_SYS_ATTR, ediv);
if (block == NULL) {
return false;
}
return NRF_SUCCESS ==
sd_ble_gatts_sys_attr_set(conn_handle, block->data, block->data_length, SYS_ATTR_FLAGS);
}
bool bonding_load_keys(bool is_central, uint16_t ediv, bonding_keys_t *bonding_keys) {
bonding_block_t *block = find_existing_block(is_central, BLOCK_KEYS, ediv);
if (block == NULL) {
return false;
}
if (sizeof(bonding_keys_t) != block->data_length) {
// bonding_keys_t is a fixed length, so lengths should match.
return false;
}
memcpy(bonding_keys, block->data, block->data_length);
return true;
}
size_t bonding_load_identities(bool is_central, const ble_gap_id_key_t **keys, size_t max_length) {
bonding_block_t *block = NULL;
size_t len = 0;
while (len < max_length) {
block = next_block(block);
if (block == NULL) {
return len;
}
if (block->type != BLOCK_UNUSED &&
block->type != BLOCK_INVALID &&
block->is_central == is_central) {
if (sizeof(bonding_keys_t) != block->data_length) {
// bonding_keys_t is a fixed length, so lengths should match.
return len;
}
const bonding_keys_t *key_set = (const bonding_keys_t *)block->data;
keys[len] = &key_set->peer_id;
len++;
}
}
return len;
}
const ble_gap_enc_key_t *bonding_load_peer_encryption_key(bool is_central, const ble_gap_addr_t *peer) {
bonding_block_t *block = next_block(NULL);
while (block != NULL) {
if (block->type == BLOCK_KEYS && block->is_central == is_central) {
const bonding_keys_t *key_set = (const bonding_keys_t *)block->data;
if (memcmp(key_set->peer_id.id_addr_info.addr, peer->addr, 6) == 0) {
return &key_set->peer_enc;
}
}
block = next_block(block);
}
return NULL;
}