circuitpython/ports/silabs/common-hal/analogio/AnalogOut.c

168 lines
5.7 KiB
C

/*
* This file is part of Adafruit for EFR32 project
*
* The MIT License (MIT)
*
* Copyright 2023 Silicon Laboratories Inc. www.silabs.com
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/mperrno.h"
#include "py/runtime.h"
#include "shared-bindings/analogio/AnalogOut.h"
#include "shared-bindings/microcontroller/Pin.h"
#include "supervisor/shared/translate/translate.h"
#include "common-hal/microcontroller/Pin.h"
#include "em_vdac.h"
// Set the VDAC to max frequency of 1 MHz
#define CLK_VDAC_FREQ 1000000
// List DAC pin and channel supported
mcu_dac_pin_obj_t mcu_dac_list[DAC_BANK_ARRAY_LEN] = {
DAC(VDAC0, 0, FN_VDAC0_CH0, false, 0, &pin_PB0),
DAC(VDAC0, 1, FN_VDAC0_CH1, false, 0, &pin_PB1),
DAC(VDAC1, 0, FN_VDAC1_CH0, false, 0, &pin_PB2),
DAC(VDAC1, 1, FN_VDAC1_CH1, false, 0, &pin_PB3),
};
// Construct analogout pin. This function is called when init analogout
void common_hal_analogio_analogout_construct(analogio_analogout_obj_t *self,
const mcu_pin_obj_t *pin) {
uint8_t dac_num = DAC_BANK_ARRAY_LEN;
mcu_dac_pin_obj_t *p_dac;
uint8_t dac_index;
if (self->dac == NULL) {
for (dac_index = 0; dac_index < dac_num; dac_index++) {
p_dac = &mcu_dac_list[dac_index];
if (p_dac->pin == pin) {
self->dac = p_dac;
self->dac->is_used = true;
self->dac->value = 0;
break;
}
}
}
if (self->dac == NULL) {
mp_raise_ValueError(translate("DAC Device Init Error"));
}
// Use default settings
VDAC_Init_TypeDef init = VDAC_INIT_DEFAULT;
VDAC_InitChannel_TypeDef initChannel = VDAC_INITCHANNEL_DEFAULT;
// Use the HFRCOEM23 to clock the VDAC in order to operate in EM3 mode
CMU_ClockSelectSet(self->dac->vdac == VDAC0 ?
cmuClock_VDAC0:cmuClock_VDAC1, cmuSelect_HFRCOEM23);
// Enable the HFRCOEM23 and VDAC clocks
CMU_ClockEnable(cmuClock_HFRCOEM23, true);
CMU_ClockEnable(self->dac->vdac == VDAC0 ?
cmuClock_VDAC0 : cmuClock_VDAC1, true);
// Calculate the VDAC clock prescaler value resulting in a 1 MHz VDAC clock
init.prescaler = VDAC_PrescaleCalc(VDAC0, CLK_VDAC_FREQ);
init.reference = vdacRef2V5;
// Clocking is requested on demand
init.onDemandClk = false;
// Disable High Capacitance Load mode
initChannel.highCapLoadEnable = false;
// Use Low Power mode
initChannel.powerMode = vdacPowerModeLowPower;
// Initialize the VDAC and VDAC channel
VDAC_Init(self->dac->vdac, &init);
VDAC_InitChannel(self->dac->vdac, &initChannel, self->dac->channel);
// Enable the VDAC
VDAC_Enable(self->dac->vdac, self->dac->channel, true);
for (dac_index = 0; dac_index < dac_num; dac_index++) {
p_dac = &mcu_dac_list[dac_index];
if (p_dac->vdac == self->dac->vdac && p_dac->pin != self->dac->pin
&& p_dac->is_used == true) {
VDAC_InitChannel(p_dac->vdac, &initChannel, p_dac->channel);
VDAC_Enable(p_dac->vdac, p_dac->channel, true);
VDAC_ChannelOutputSet(p_dac->vdac, p_dac->channel,
p_dac->value >> 4);
break;
}
}
VDAC_ChannelOutputSet(self->dac->vdac, self->dac->channel, 0);
common_hal_mcu_pin_claim(pin);
}
// Check obj is deinited or not
bool common_hal_analogio_analogout_deinited(analogio_analogout_obj_t *self) {
return self->dac == NULL;
}
// Deinit analogout obj
void common_hal_analogio_analogout_deinit(analogio_analogout_obj_t *self) {
uint8_t dac_num = DAC_BANK_ARRAY_LEN;
mcu_dac_pin_obj_t *p_dac;
uint8_t dac_index;
VDAC_Enable(self->dac->vdac, self->dac->channel, false);
for (dac_index = 0; dac_index < dac_num; dac_index++) {
p_dac = &mcu_dac_list[dac_index];
if (p_dac->vdac == self->dac->vdac && p_dac->pin != self->dac->pin
&& p_dac->is_used == false) {
VDAC_Reset(self->dac->vdac);
}
}
common_hal_reset_pin(self->dac->pin);
self->dac->value = 0;
self->dac->is_used = false;
self->dac = NULL;
}
// Set value for dac pin
// dac value 0 - 65535 (0 - 2.5V)
void common_hal_analogio_analogout_set_value(analogio_analogout_obj_t *self,
uint16_t value) {
self->dac->value = value;
// Write the output value to VDAC DATA register
VDAC_ChannelOutputSet(self->dac->vdac, self->dac->channel, value >> 4);
}
// Function reset dac peripheral
void analogout_reset(void) {
uint8_t dac_index;
mcu_dac_pin_obj_t *p_dac;
for (dac_index = 0; dac_index < DAC_BANK_ARRAY_LEN; dac_index++) {
p_dac = &mcu_dac_list[dac_index];
if (p_dac->is_used == true) {
VDAC_Reset(p_dac->vdac);
}
}
}