424 lines
13 KiB
C
424 lines
13 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2017 Scott Shawcroft for Adafruit Industries
|
|
* Copyright (c) 2019 Lucian Copeland for Adafruit Industries
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include "supervisor/port.h"
|
|
#include "boards/board.h"
|
|
#include "lib/timeutils/timeutils.h"
|
|
|
|
#include "common-hal/microcontroller/Pin.h"
|
|
|
|
#if CIRCUITPY_BUSIO
|
|
#include "common-hal/busio/I2C.h"
|
|
#include "common-hal/busio/SPI.h"
|
|
#include "common-hal/busio/UART.h"
|
|
#endif
|
|
#if CIRCUITPY_PULSEIO
|
|
#include "common-hal/pulseio/PWMOut.h"
|
|
#include "common-hal/pulseio/PulseOut.h"
|
|
#include "common-hal/pulseio/PulseIn.h"
|
|
#endif
|
|
|
|
#include "clocks.h"
|
|
#include "gpio.h"
|
|
|
|
#include STM32_HAL_H
|
|
|
|
//only enable the Reset Handler overwrite for the H7 for now
|
|
#if (CPY_STM32H7)
|
|
|
|
// Device memories must be accessed in order.
|
|
#define DEVICE 2
|
|
// Normal memory can have accesses reorder and prefetched.
|
|
#define NORMAL 0
|
|
// Prevents instruction access.
|
|
#define NO_EXECUTION 1
|
|
#define EXECUTION 0
|
|
// Shareable if the memory system manages coherency.
|
|
#define NOT_SHAREABLE 0
|
|
#define SHAREABLE 1
|
|
#define NOT_CACHEABLE 0
|
|
#define CACHEABLE 1
|
|
#define NOT_BUFFERABLE 0
|
|
#define BUFFERABLE 1
|
|
#define NO_SUBREGIONS 0
|
|
|
|
extern uint32_t _ld_stack_top;
|
|
|
|
extern uint32_t _ld_d1_ram_bss_start;
|
|
extern uint32_t _ld_d1_ram_bss_size;
|
|
extern uint32_t _ld_d1_ram_data_destination;
|
|
extern uint32_t _ld_d1_ram_data_size;
|
|
extern uint32_t _ld_d1_ram_data_flash_copy;
|
|
extern uint32_t _ld_dtcm_bss_start;
|
|
extern uint32_t _ld_dtcm_bss_size;
|
|
extern uint32_t _ld_dtcm_data_destination;
|
|
extern uint32_t _ld_dtcm_data_size;
|
|
extern uint32_t _ld_dtcm_data_flash_copy;
|
|
extern uint32_t _ld_itcm_destination;
|
|
extern uint32_t _ld_itcm_size;
|
|
extern uint32_t _ld_itcm_flash_copy;
|
|
|
|
extern void main(void);
|
|
extern void SystemInit(void);
|
|
|
|
// This replaces the Reset_Handler in startup_*.S and SystemInit in system_*.c.
|
|
__attribute__((used, naked)) void Reset_Handler(void) {
|
|
__disable_irq();
|
|
__set_MSP((uint32_t) &_ld_stack_top);
|
|
|
|
/* Disable MPU */
|
|
ARM_MPU_Disable();
|
|
|
|
// Copy all of the itcm code to run from ITCM. Do this while the MPU is disabled because we write
|
|
// protect it.
|
|
for (uint32_t i = 0; i < ((size_t) &_ld_itcm_size) / 4; i++) {
|
|
(&_ld_itcm_destination)[i] = (&_ld_itcm_flash_copy)[i];
|
|
}
|
|
|
|
// The first number in RBAR is the region number. When searching for a policy, the region with
|
|
// the highest number wins. If none match, then the default policy set at enable applies.
|
|
|
|
// Mark all the flash the same until instructed otherwise.
|
|
MPU->RBAR = ARM_MPU_RBAR(11, 0x08000000U);
|
|
MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, NO_SUBREGIONS, ARM_MPU_REGION_SIZE_2MB);
|
|
|
|
// This the ITCM. Set it to read-only because we've loaded everything already and it's easy to
|
|
// accidentally write the wrong value to 0x00000000 (aka NULL).
|
|
MPU->RBAR = ARM_MPU_RBAR(12, 0x00000000U);
|
|
MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_RO, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, NO_SUBREGIONS, ARM_MPU_REGION_SIZE_64KB);
|
|
|
|
// This the DTCM.
|
|
MPU->RBAR = ARM_MPU_RBAR(14, 0x20000000U);
|
|
MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, NO_SUBREGIONS, ARM_MPU_REGION_SIZE_128KB);
|
|
|
|
// This is AXI SRAM (D1).
|
|
MPU->RBAR = ARM_MPU_RBAR(15, 0x24000000U);
|
|
MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, NO_SUBREGIONS, ARM_MPU_REGION_SIZE_512KB);
|
|
|
|
/* Enable MPU */
|
|
ARM_MPU_Enable(MPU_CTRL_PRIVDEFENA_Msk);
|
|
|
|
// Copy all of the data to run from DTCM.
|
|
for (uint32_t i = 0; i < ((size_t) &_ld_dtcm_data_size) / 4; i++) {
|
|
(&_ld_dtcm_data_destination)[i] = (&_ld_dtcm_data_flash_copy)[i];
|
|
}
|
|
|
|
// Clear DTCM bss.
|
|
for (uint32_t i = 0; i < ((size_t) &_ld_dtcm_bss_size) / 4; i++) {
|
|
(&_ld_dtcm_bss_start)[i] = 0;
|
|
}
|
|
|
|
// Copy all of the data to run from D1 RAM.
|
|
for (uint32_t i = 0; i < ((size_t) &_ld_d1_ram_data_size) / 4; i++) {
|
|
(&_ld_d1_ram_data_destination)[i] = (&_ld_d1_ram_data_flash_copy)[i];
|
|
}
|
|
|
|
// Clear D1 RAM bss.
|
|
for (uint32_t i = 0; i < ((size_t) &_ld_d1_ram_bss_size) / 4; i++) {
|
|
(&_ld_d1_ram_bss_start)[i] = 0;
|
|
}
|
|
|
|
SystemInit();
|
|
__enable_irq();
|
|
main();
|
|
}
|
|
#endif //end H7 specific code
|
|
|
|
// Low power clock variables
|
|
static volatile uint32_t systick_ms;
|
|
static RTC_HandleTypeDef _hrtc;
|
|
|
|
#if BOARD_HAS_LOW_SPEED_CRYSTAL
|
|
static uint32_t rtc_clock_frequency = LSE_VALUE;
|
|
#else
|
|
static uint32_t rtc_clock_frequency = LSI_VALUE;
|
|
#endif
|
|
|
|
safe_mode_t port_init(void) {
|
|
HAL_Init(); // Turns on SysTick
|
|
__HAL_RCC_SYSCFG_CLK_ENABLE();
|
|
|
|
#if (CPY_STM32F4)
|
|
__HAL_RCC_PWR_CLK_ENABLE();
|
|
#endif
|
|
|
|
stm32_peripherals_clocks_init();
|
|
stm32_peripherals_gpio_init();
|
|
|
|
// RTC oscillator selection is handled in peripherals/<family>/<line>/clocks.c
|
|
__HAL_RCC_RTC_ENABLE();
|
|
_hrtc.Instance = RTC;
|
|
_hrtc.Init.HourFormat = RTC_HOURFORMAT_24;
|
|
// Divide async as little as possible so that we have rtc_clock_frequency count in subseconds.
|
|
// This ensures our timing > 1 second is correct.
|
|
_hrtc.Init.AsynchPrediv = 0x0;
|
|
_hrtc.Init.SynchPrediv = rtc_clock_frequency - 1;
|
|
_hrtc.Init.OutPut = RTC_OUTPUT_DISABLE;
|
|
|
|
HAL_RTC_Init(&_hrtc);
|
|
HAL_NVIC_EnableIRQ(RTC_Alarm_IRQn);
|
|
|
|
// Turn off SysTick
|
|
SysTick->CTRL = 0;
|
|
|
|
return NO_SAFE_MODE;
|
|
}
|
|
|
|
void HAL_Delay(uint32_t delay_ms) {
|
|
if (SysTick->CTRL != 0) {
|
|
// SysTick is on, so use it
|
|
uint32_t tickstart = systick_ms;
|
|
while (systick_ms - tickstart < delay_ms) {
|
|
}
|
|
} else {
|
|
mp_hal_delay_ms(delay_ms);
|
|
}
|
|
}
|
|
|
|
uint32_t HAL_GetTick() {
|
|
if (SysTick->CTRL != 0) {
|
|
return systick_ms;
|
|
} else {
|
|
uint8_t subticks;
|
|
uint32_t result = (uint32_t)port_get_raw_ticks(&subticks);
|
|
return result;
|
|
}
|
|
}
|
|
|
|
|
|
void SysTick_Handler(void) {
|
|
systick_ms += 1;
|
|
// Read the CTRL register to clear the SysTick interrupt.
|
|
SysTick->CTRL;
|
|
}
|
|
|
|
void reset_port(void) {
|
|
reset_all_pins();
|
|
#if CIRCUITPY_BUSIO
|
|
i2c_reset();
|
|
spi_reset();
|
|
uart_reset();
|
|
#endif
|
|
#if CIRCUITPY_PULSEIO
|
|
pwmout_reset();
|
|
pulseout_reset();
|
|
pulsein_reset();
|
|
#endif
|
|
}
|
|
|
|
void reset_to_bootloader(void) {
|
|
|
|
}
|
|
|
|
void reset_cpu(void) {
|
|
NVIC_SystemReset();
|
|
}
|
|
|
|
extern uint32_t _ld_heap_start, _ld_heap_end, _ld_stack_top, _ld_stack_bottom;
|
|
|
|
uint32_t *port_heap_get_bottom(void) {
|
|
return &_ld_heap_start;
|
|
}
|
|
|
|
uint32_t *port_heap_get_top(void) {
|
|
return &_ld_heap_end;
|
|
}
|
|
|
|
supervisor_allocation* port_fixed_stack(void) {
|
|
return NULL;
|
|
}
|
|
|
|
uint32_t *port_stack_get_limit(void) {
|
|
return &_ld_stack_bottom;
|
|
}
|
|
|
|
uint32_t *port_stack_get_top(void) {
|
|
return &_ld_stack_top;
|
|
}
|
|
|
|
extern uint32_t _ebss;
|
|
|
|
// Place the word to save just after our BSS section that gets blanked.
|
|
void port_set_saved_word(uint32_t value) {
|
|
_ebss = value;
|
|
}
|
|
|
|
uint32_t port_get_saved_word(void) {
|
|
return _ebss;
|
|
}
|
|
|
|
__attribute__((used)) void MemManage_Handler(void)
|
|
{
|
|
reset_into_safe_mode(MEM_MANAGE);
|
|
while (true) {
|
|
asm("nop;");
|
|
}
|
|
}
|
|
|
|
__attribute__((used)) void BusFault_Handler(void)
|
|
{
|
|
reset_into_safe_mode(MEM_MANAGE);
|
|
while (true) {
|
|
asm("nop;");
|
|
}
|
|
}
|
|
|
|
__attribute__((used)) void UsageFault_Handler(void)
|
|
{
|
|
reset_into_safe_mode(MEM_MANAGE);
|
|
while (true) {
|
|
asm("nop;");
|
|
}
|
|
}
|
|
|
|
__attribute__((used)) void HardFault_Handler(void)
|
|
{
|
|
reset_into_safe_mode(HARD_CRASH);
|
|
while (true) {
|
|
asm("nop;");
|
|
}
|
|
}
|
|
|
|
// This function is called often for timing so we cache the seconds elapsed computation based on the
|
|
// register value. The STM HAL always does shifts and conversion if we use it directly.
|
|
volatile uint32_t seconds_to_date = 0;
|
|
volatile uint32_t cached_date = 0;
|
|
volatile uint32_t seconds_to_minute = 0;
|
|
volatile uint32_t cached_hours_minutes = 0;
|
|
uint64_t port_get_raw_ticks(uint8_t* subticks) {
|
|
uint32_t subseconds = rtc_clock_frequency - (uint32_t)(RTC->SSR);
|
|
uint32_t time = (uint32_t)(RTC->TR & RTC_TR_RESERVED_MASK);
|
|
uint32_t date = (uint32_t)(RTC->DR & RTC_DR_RESERVED_MASK);
|
|
if (date != cached_date) {
|
|
uint32_t year = (uint8_t)((date & (RTC_DR_YT | RTC_DR_YU)) >> 16U);
|
|
uint8_t month = (uint8_t)((date & (RTC_DR_MT | RTC_DR_MU)) >> 8U);
|
|
uint8_t day = (uint8_t)(date & (RTC_DR_DT | RTC_DR_DU));
|
|
// Add 2000 since the year is only the last two digits.
|
|
year = 2000 + (uint32_t)RTC_Bcd2ToByte(year);
|
|
month = (uint8_t)RTC_Bcd2ToByte(month);
|
|
day = (uint8_t)RTC_Bcd2ToByte(day);
|
|
seconds_to_date = timeutils_seconds_since_2000(year, month, day, 0, 0, 0);
|
|
cached_date = date;
|
|
}
|
|
uint32_t hours_minutes = time & (RTC_TR_HT | RTC_TR_HU | RTC_TR_MNT | RTC_TR_MNU);
|
|
if (hours_minutes != cached_hours_minutes) {
|
|
uint8_t hours = (uint8_t)((time & (RTC_TR_HT | RTC_TR_HU)) >> 16U);
|
|
uint8_t minutes = (uint8_t)((time & (RTC_TR_MNT | RTC_TR_MNU)) >> 8U);
|
|
hours = (uint8_t)RTC_Bcd2ToByte(hours);
|
|
minutes = (uint8_t)RTC_Bcd2ToByte(minutes);
|
|
seconds_to_minute = 60 * (60 * hours + minutes);
|
|
}
|
|
uint8_t seconds = (uint8_t)(time & (RTC_TR_ST | RTC_TR_SU));
|
|
seconds = (uint8_t)RTC_Bcd2ToByte(seconds);
|
|
if (subticks != NULL) {
|
|
*subticks = subseconds % 32;
|
|
}
|
|
|
|
uint64_t raw_ticks = ((uint64_t) 1024) * (seconds_to_date + seconds_to_minute + seconds) + subseconds / 32;
|
|
return raw_ticks;
|
|
}
|
|
|
|
void RTC_WKUP_IRQHandler(void) {
|
|
supervisor_tick();
|
|
__HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(&_hrtc, RTC_FLAG_WUTF);
|
|
__HAL_RTC_WAKEUPTIMER_EXTI_CLEAR_FLAG();
|
|
}
|
|
|
|
volatile bool alarmed_already = false;
|
|
void RTC_Alarm_IRQHandler(void) {
|
|
HAL_RTC_DeactivateAlarm(&_hrtc, RTC_ALARM_A);
|
|
__HAL_RTC_ALARM_EXTI_CLEAR_FLAG();
|
|
__HAL_RTC_ALARM_CLEAR_FLAG(&_hrtc, RTC_FLAG_ALRAF);
|
|
alarmed_already = true;
|
|
}
|
|
|
|
// Enable 1/1024 second tick.
|
|
void port_enable_tick(void) {
|
|
HAL_RTCEx_SetWakeUpTimer_IT(&_hrtc, rtc_clock_frequency / 1024 / 2, RTC_WAKEUPCLOCK_RTCCLK_DIV2);
|
|
HAL_NVIC_SetPriority(RTC_WKUP_IRQn, 1, 0U);
|
|
HAL_NVIC_EnableIRQ(RTC_WKUP_IRQn);
|
|
}
|
|
extern volatile uint32_t autoreload_delay_ms;
|
|
|
|
// Disable 1/1024 second tick.
|
|
void port_disable_tick(void) {
|
|
HAL_NVIC_DisableIRQ(RTC_WKUP_IRQn);
|
|
HAL_RTCEx_DeactivateWakeUpTimer(&_hrtc);
|
|
}
|
|
|
|
void port_interrupt_after_ticks(uint32_t ticks) {
|
|
uint64_t raw_ticks = port_get_raw_ticks(NULL) + ticks;
|
|
|
|
RTC_AlarmTypeDef alarm;
|
|
if (ticks > 1024) {
|
|
timeutils_struct_time_t tm;
|
|
timeutils_seconds_since_2000_to_struct_time(raw_ticks / 1024, &tm);
|
|
alarm.AlarmTime.Hours = tm.tm_hour;
|
|
alarm.AlarmTime.Minutes = tm.tm_min;
|
|
alarm.AlarmTime.Seconds = tm.tm_sec;
|
|
alarm.AlarmDateWeekDay = tm.tm_mday;
|
|
// Masking here means that the value is ignored so we set none.
|
|
alarm.AlarmMask = RTC_ALARMMASK_NONE;
|
|
} else {
|
|
// Masking here means that the value is ignored so we set them all. Only the subseconds
|
|
// value matters.
|
|
alarm.AlarmMask = RTC_ALARMMASK_ALL;
|
|
}
|
|
|
|
alarm.AlarmTime.SubSeconds = rtc_clock_frequency -
|
|
((raw_ticks % 1024) * 32);
|
|
alarm.AlarmTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
|
|
alarm.AlarmTime.StoreOperation = RTC_STOREOPERATION_SET;
|
|
// Masking here means that the bits are ignored so we set none of them.
|
|
alarm.AlarmSubSecondMask = RTC_ALARMSUBSECONDMASK_NONE;
|
|
alarm.AlarmDateWeekDaySel = RTC_ALARMDATEWEEKDAYSEL_DATE;
|
|
alarm.Alarm = RTC_ALARM_A;
|
|
|
|
HAL_RTC_SetAlarm_IT(&_hrtc, &alarm, RTC_FORMAT_BIN);
|
|
alarmed_already = false;
|
|
}
|
|
|
|
void port_sleep_until_interrupt(void) {
|
|
// Clear the FPU interrupt because it can prevent us from sleeping.
|
|
if (__get_FPSCR() & ~(0x9f)) {
|
|
__set_FPSCR(__get_FPSCR() & ~(0x9f));
|
|
(void) __get_FPSCR();
|
|
}
|
|
if (alarmed_already) {
|
|
return;
|
|
}
|
|
__WFI();
|
|
}
|
|
|
|
// Required by __libc_init_array in startup code if we are compiling using
|
|
// -nostdlib/-nostartfiles.
|
|
void _init(void)
|
|
{
|
|
|
|
}
|