This implements (most of) the PEP-498 spec for f-strings and is based on https://github.com/micropython/micropython/pull/4998 by @klardotsh. It is implemented in the lexer as a syntax translation to `str.format`: f"{a}" --> "{}".format(a) It also supports: f"{a=}" --> "a={}".format(a) This is done by extracting the arguments into a temporary vstr buffer, then after the string has been tokenized, the lexer input queue is saved and the contents of the temporary vstr buffer are injected into the lexer instead. There are four main limitations: - raw f-strings (`fr` or `rf` prefixes) are not supported and will raise `SyntaxError: raw f-strings are not supported`. - literal concatenation of f-strings with adjacent strings will fail "{}" f"{a}" --> "{}{}".format(a) (str.format will incorrectly use the braces from the non-f-string) f"{a}" f"{a}" --> "{}".format(a) "{}".format(a) (cannot concatenate) - PEP-498 requires the full parser to understand the interpolated argument, however because this entirely runs in the lexer it cannot resolve nested braces in expressions like f"{'}'}" - The !r, !s, and !a conversions are not supported. Includes tests and cpydiffs. Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This is the experimental, community-supported Windows port of MicroPython. It is based on Unix port, and expected to remain so. The port requires additional testing, debugging, and patches. Please consider to contribute.
All gcc-based builds use the gcc compiler from Mingw-w64, which is the advancement of the original mingw project. The latter is getting obsolete and is not actively supported by MicroPython.
Build instruction assume you're in the ports/windows directory.
Building on Debian/Ubuntu Linux system
sudo apt-get install python3 build-essential gcc-mingw-w64
make -C ../../mpy-cross
make CROSS_COMPILE=i686-w64-mingw32-
Building under Cygwin
Install Cygwin, then install following packages using Cygwin's setup.exe:
- mingw64-i686-gcc-core
- mingw64-x86_64-gcc-core
- make
Also install the python3 package, or install Python globally for Windows (see below).
Build using:
make -C ../../mpy-cross CROSS_COMPILE=i686-w64-mingw32-
make CROSS_COMPILE=i686-w64-mingw32-
Or for 64bit:
make -C ../../mpy-cross CROSS_COMPILE=x86_64-w64-mingw32-
make CROSS_COMPILE=x86_64-w64-mingw32-
Building under MSYS2
Install MSYS2 from http://repo.msys2.org/distrib, start the msys2.exe shell and install the build tools:
pacman -Syuu
pacman -S make mingw-w64-x86_64-gcc pkg-config python3
Start the mingw64.exe shell and build:
make -C ../../mpy-cross STRIP=echo SIZE=echo
make
Building using MS Visual Studio 2013 (or higher)
Install Python. There are several ways to do this, for example: download and install the latest Python 3 release from https://www.python.org/downloads/windows or from https://docs.conda.io/en/latest/miniconda.html, or open the Microsoft Store app and search for Python and install it.
Install Visual Studio and the C++ toolset (for recent versions: install the free Visual Studio Community edition and the Desktop development with C++ workload).
In the IDE, open micropython-cross.vcxproj
and micropython.vcxproj
and build.
To build from the command line:
msbuild ../../mpy-cross/mpy-cross.vcxproj
msbuild micropython.vcxproj
Stack usage
The msvc compiler is quite stack-hungry which might result in a "maximum recursion depth exceeded" RuntimeError for code with lots of nested function calls. There are several ways to deal with this:
- increase the threshold used for detection by altering the argument to
mp_stack_set_limit
inports/unix/main.c
- disable detection all together by setting
MICROPY_STACK_CHECK
to "0" inports/windows/mpconfigport.h
- disable the /GL compiler flag by setting
WholeProgramOptimization
to "false"
See issue 2927 for more information.
Running the tests
This is similar for all ports:
cd ../../tests
python ./run-tests.py
Though when running on Cygwin and using Cygwin's Python installation you'll need:
python3 ./run-tests.py
Depending on the combination of platform and Python version used it might be needed to first set the MICROPY_MICROPYTHON environment variable to the full path of micropython.exe.
Running on Linux using Wine
The default build (MICROPY_USE_READLINE=1) uses extended Windows console
functions and thus should be ran using the wineconsole
tool. Depending
on the Wine build configuration, you may also want to select the curses
backend which has the look&feel of a standard Unix console:
wineconsole --backend=curses ./micropython.exe
For more info, see https://www.winehq.org/docs/wineusr-guide/cui-programs .
If built without line editing and history capabilities
(MICROPY_USE_READLINE=0), the resulting binary can be run using the standard
wine
tool.