circuitpython/ports/nrf/boards/microbit/modules/microbitdisplay.c
2020-04-05 15:02:06 +10:00

577 lines
21 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2015 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/gc.h"
#include "nrf_gpio.h"
#include "microbitimage.h"
#include "microbitdisplay.h"
#include "iters.h"
#include "ticker.h"
#define min(a,b) (((a)<(b))?(a):(b))
void microbit_display_show(microbit_display_obj_t *display, microbit_image_obj_t *image) {
mp_int_t w = min(imageWidth(image), 5);
mp_int_t h = min(imageHeight(image), 5);
mp_int_t x = 0;
mp_int_t brightnesses = 0;
for (; x < w; ++x) {
mp_int_t y = 0;
for (; y < h; ++y) {
uint8_t pix = imageGetPixelValue(image, x, y);
display->image_buffer[x][y] = pix;
brightnesses |= (1 << pix);
}
for (; y < 5; ++y) {
display->image_buffer[x][y] = 0;
}
}
for (; x < 5; ++x) {
for (mp_int_t y = 0; y < 5; ++y) {
display->image_buffer[x][y] = 0;
}
}
display->brightnesses = brightnesses;
}
#define DEFAULT_PRINT_SPEED 400
mp_obj_t microbit_display_show_func(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// Cancel any animations.
MP_STATE_PORT(async_data)[0] = NULL;
MP_STATE_PORT(async_data)[1] = NULL;
static const mp_arg_t show_allowed_args[] = {
{ MP_QSTR_image, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_delay, MP_ARG_INT, {.u_int = DEFAULT_PRINT_SPEED} },
{ MP_QSTR_clear, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
{ MP_QSTR_wait, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = true} },
{ MP_QSTR_loop, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
};
// Parse the args.
microbit_display_obj_t *self = (microbit_display_obj_t*)pos_args[0];
mp_arg_val_t args[MP_ARRAY_SIZE(show_allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(show_allowed_args), show_allowed_args, args);
mp_obj_t image = args[0].u_obj;
mp_int_t delay = args[1].u_int;
bool clear = args[2].u_bool;
bool wait = args[3].u_bool;
bool loop = args[4].u_bool;
if (mp_obj_is_str(image)) {
// arg is a string object
size_t len;
const char *str = mp_obj_str_get_data(image, &len);
if (len == 0) {
// There are no chars; do nothing.
return mp_const_none;
} else if (len == 1) {
if (!clear && !loop) {
// A single char; convert to an image and print that.
image = microbit_image_for_char(str[0]);
goto single_image_immediate;
}
}
image = microbit_string_facade(image);
} else if (mp_obj_get_type(image) == &microbit_image_type) {
if (!clear && !loop) {
goto single_image_immediate;
}
image = mp_obj_new_tuple(1, &image);
}
// iterable:
if (args[4].u_bool) { /*loop*/
image = microbit_repeat_iterator(image);
}
microbit_display_animate(self, image, delay, clear, wait);
return mp_const_none;
single_image_immediate:
microbit_display_show(self, (microbit_image_obj_t *)image);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(microbit_display_show_obj, 1, microbit_display_show_func);
static uint8_t async_mode;
static mp_obj_t async_iterator = NULL;
// Record if an error occurs in async animation. Unfortunately there is no way to report this.
static volatile bool wakeup_event = false;
static mp_uint_t async_delay = 1000;
static mp_uint_t async_tick = 0;
static bool async_clear = false;
bool microbit_display_active_animation(void) {
return async_mode == ASYNC_MODE_ANIMATION;
}
STATIC void async_stop(void) {
async_iterator = NULL;
async_mode = ASYNC_MODE_STOPPED;
async_tick = 0;
async_delay = 1000;
async_clear = false;
MP_STATE_PORT(async_data)[0] = NULL;
MP_STATE_PORT(async_data)[1] = NULL;
wakeup_event = true;
}
STATIC void wait_for_event(void) {
while (!wakeup_event) {
// allow CTRL-C to stop the animation
if (MP_STATE_VM(mp_pending_exception) != MP_OBJ_NULL) {
async_stop();
return;
}
__WFI();
}
wakeup_event = false;
}
typedef struct {
uint8_t x;
uint8_t y;
} DisplayPoint;
#define NO_CONN 0
#define ROW_COUNT 3
#define COLUMN_COUNT 9
static const DisplayPoint display_map[COLUMN_COUNT][ROW_COUNT] = {
{{0,0}, {4,2}, {2,4}},
{{2,0}, {0,2}, {4,4}},
{{4,0}, {2,2}, {0,4}},
{{4,3}, {1,0}, {0,1}},
{{3,3}, {3,0}, {1,1}},
{{2,3}, {3,4}, {2,1}},
{{1,3}, {1,4}, {3,1}},
{{0,3}, {NO_CONN,NO_CONN}, {4,1}},
{{1,2}, {NO_CONN,NO_CONN}, {3,2}}
};
#define MIN_COLUMN_PIN 4
#define COLUMN_PINS_MASK 0x1ff0
#define MIN_ROW_PIN 13
#define MAX_ROW_PIN 15
#define ROW_PINS_MASK 0xe000
static inline void displaySetPinsForRow(microbit_display_obj_t * p_display, uint8_t brightness) {
if (brightness == 0) {
nrf_gpio_port_out_clear(NRF_GPIO, COLUMN_PINS_MASK & ~p_display->pins_for_brightness[brightness]);
} else {
nrf_gpio_pin_set(p_display->pins_for_brightness[brightness]);
}
}
/* This is the primary PWM driver/display driver. It will operate on one row
* (9 pins) per invocation. It will turn on LEDs with maximum brightness,
* then let the "callback" callback turn off the LEDs as appropriate for the
* required brightness level.
*
* For each row
* Turn off all the LEDs in the previous row
* Set the column bits high (off)
* Set the row strobe low (off)
* Turn on all the LEDs in the current row that have maximum brightness
* Set the row strobe high (on)
* Set some/all column bits low (on)
* Register the PWM callback
* For each callback start with brightness 0
* If brightness 0
* Turn off the LEDs specified at this level
* Else
* Turn on the LEDs specified at this level
* If brightness max
* Disable the PWM callback
* Else
* Re-queue the PWM callback after the appropriate delay
*/
static void displayAdvanceRow(microbit_display_obj_t * p_display) {
/* Clear all of the column bits */
nrf_gpio_port_out_set(NRF_GPIO, COLUMN_PINS_MASK);
/* Clear the strobe bit for this row */
nrf_gpio_pin_clear(p_display->strobe_row + MIN_ROW_PIN);
/* Move to the next row. Before this, "this row" refers to the row
* manipulated by the previous invocation of this function. After this,
* "this row" refers to the row manipulated by the current invocation of
* this function. */
p_display->strobe_row++;
// Reset the row counts and bit mask when we have hit the max.
if (p_display->strobe_row == ROW_COUNT) {
p_display->strobe_row = 0;
}
// Set pin for this row.
// Prepare row for rendering.
for (int i = 0; i <= MAX_BRIGHTNESS; i++) {
p_display->pins_for_brightness[i] = 0;
}
for (int i = 0; i < COLUMN_COUNT; i++) {
int x = display_map[i][p_display->strobe_row].x;
int y = display_map[i][p_display->strobe_row].y;
int brightness = microbit_display_obj.image_buffer[x][y];
p_display->pins_for_brightness[brightness] |= (1<<(i+MIN_COLUMN_PIN));
(void)brightness;
}
/* Enable the strobe bit for this row */
nrf_gpio_pin_set(p_display->strobe_row + MIN_ROW_PIN);
/* Enable the column bits for all pins that need to be on. */
nrf_gpio_port_out_clear(NRF_GPIO, p_display->pins_for_brightness[MAX_BRIGHTNESS]);
}
static const uint16_t render_timings[] =
// The scale is (approximately) exponential,
// each step is approx x1.9 greater than the previous.
{ 0, // Bright, Ticks Duration, Relative power
2, // 1, 2, 32us, inf
2, // 2, 4, 64us, 200%
4, // 3, 8, 128us, 200%
7, // 4, 15, 240us, 187%
13, // 5, 28, 448us, 187%
25, // 6, 53, 848us, 189%
49, // 7, 102, 1632us, 192%
97, // 8, 199, 3184us, 195%
// Always on 9, 375, 6000us, 188%
};
#define DISPLAY_TICKER_SLOT 1
/* This is the PWM callback. It is registered by the animation callback and
* will unregister itself when all of the brightness steps are complete. */
static int32_t callback(void) {
microbit_display_obj_t *display = &microbit_display_obj;
mp_uint_t brightness = display->previous_brightness;
displaySetPinsForRow(display, brightness);
brightness += 1;
if (brightness == MAX_BRIGHTNESS) {
clear_ticker_callback(DISPLAY_TICKER_SLOT);
return -1;
}
display->previous_brightness = brightness;
// Return interval (in 16us ticks) until next callback
return render_timings[brightness];
}
static void draw_object(mp_obj_t obj) {
microbit_display_obj_t *display = (microbit_display_obj_t*)MP_STATE_PORT(async_data)[0];
if (obj == MP_OBJ_STOP_ITERATION) {
if (async_clear) {
microbit_display_show(&microbit_display_obj, BLANK_IMAGE);
async_clear = false;
} else {
async_stop();
}
} else if (mp_obj_get_type(obj) == &microbit_image_type) {
microbit_display_show(display, (microbit_image_obj_t *)obj);
} else if (mp_obj_is_str(obj)) {
size_t len;
const char *str = mp_obj_str_get_data(obj, &len);
if (len == 1) {
microbit_display_show(display, microbit_image_for_char(str[0]));
} else {
async_stop();
}
} else {
MP_STATE_VM(mp_pending_exception) = mp_obj_new_exception_msg(&mp_type_TypeError, MP_ERROR_TEXT("not an image."));
async_stop();
}
}
static void microbit_display_update(void) {
async_tick += MILLISECONDS_PER_MACRO_TICK;
if (async_tick < async_delay) {
return;
}
async_tick = 0;
switch (async_mode) {
case ASYNC_MODE_ANIMATION:
{
if (MP_STATE_PORT(async_data)[0] == NULL || MP_STATE_PORT(async_data)[1] == NULL) {
async_stop();
break;
}
/* WARNING: We are executing in an interrupt handler.
* If an exception is raised here then we must hand it to the VM. */
mp_obj_t obj;
nlr_buf_t nlr;
gc_lock();
if (nlr_push(&nlr) == 0) {
obj = mp_iternext_allow_raise(async_iterator);
nlr_pop();
gc_unlock();
} else {
gc_unlock();
if (!mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(((mp_obj_base_t*)nlr.ret_val)->type),
MP_OBJ_FROM_PTR(&mp_type_StopIteration))) {
// An exception other than StopIteration, so set it for the VM to raise later
// If memory error, write an appropriate message.
if (mp_obj_get_type(nlr.ret_val) == &mp_type_MemoryError) {
mp_printf(&mp_plat_print, "Allocation in interrupt handler");
}
MP_STATE_VM(mp_pending_exception) = MP_OBJ_FROM_PTR(nlr.ret_val);
}
obj = MP_OBJ_STOP_ITERATION;
}
draw_object(obj);
break;
}
case ASYNC_MODE_CLEAR:
microbit_display_show(&microbit_display_obj, BLANK_IMAGE);
async_stop();
break;
}
}
#define GREYSCALE_MASK ((1<<MAX_BRIGHTNESS)-2)
/* This is the top-level animation/display registered callback. */
void microbit_display_tick(void) {
/* Do nothing if the display is not active. */
if (!microbit_display_obj.active) {
return;
}
displayAdvanceRow(&microbit_display_obj);
microbit_display_update();
microbit_display_obj.previous_brightness = 0;
if (microbit_display_obj.brightnesses & GREYSCALE_MASK) {
set_ticker_callback(DISPLAY_TICKER_SLOT, callback, 1800);
}
}
void microbit_display_animate(microbit_display_obj_t *self, mp_obj_t iterable, mp_int_t delay, bool clear, bool wait) {
// Reset the repeat state.
MP_STATE_PORT(async_data)[0] = NULL;
MP_STATE_PORT(async_data)[1] = NULL;
async_iterator = mp_getiter(iterable, NULL);
async_delay = delay;
async_clear = clear;
MP_STATE_PORT(async_data)[0] = self; // so it doesn't get GC'd
MP_STATE_PORT(async_data)[1] = async_iterator;
wakeup_event = false;
mp_obj_t obj = mp_iternext_allow_raise(async_iterator);
draw_object(obj);
async_tick = 0;
async_mode = ASYNC_MODE_ANIMATION;
if (wait) {
wait_for_event();
}
}
// Delay in ms in between moving display one column to the left.
#define DEFAULT_SCROLL_SPEED 150
void microbit_display_scroll(microbit_display_obj_t *self, const char* str, bool wait) {
mp_obj_t iterable = scrolling_string_image_iterable(str, strlen(str), NULL, false, false);
microbit_display_animate(self, iterable, DEFAULT_SCROLL_SPEED, false, wait);
}
mp_obj_t microbit_display_scroll_func(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t scroll_allowed_args[] = {
{ MP_QSTR_text, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_delay, MP_ARG_INT, {.u_int = DEFAULT_SCROLL_SPEED} },
{ MP_QSTR_wait, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = true} },
{ MP_QSTR_monospace, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
{ MP_QSTR_loop, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
};
// Parse the args.
microbit_display_obj_t *self = (microbit_display_obj_t*)pos_args[0];
mp_arg_val_t args[MP_ARRAY_SIZE(scroll_allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(scroll_allowed_args), scroll_allowed_args, args);
size_t len;
const char* str = mp_obj_str_get_data(args[0].u_obj, &len);
mp_obj_t iterable = scrolling_string_image_iterable(str, len, args[0].u_obj, args[3].u_bool /*monospace?*/, args[4].u_bool /*loop*/);
microbit_display_animate(self, iterable, args[1].u_int /*delay*/, false/*clear*/, args[2].u_bool/*wait?*/);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(microbit_display_scroll_obj, 1, microbit_display_scroll_func);
mp_obj_t microbit_display_on_func(mp_obj_t obj) {
microbit_display_obj_t *self = (microbit_display_obj_t*)obj;
/* Try to reclaim the pins we need */
/*
microbit_obj_pin_fail_if_cant_acquire(&microbit_p3_obj);
microbit_obj_pin_fail_if_cant_acquire(&microbit_p4_obj);
microbit_obj_pin_fail_if_cant_acquire(&microbit_p6_obj);
microbit_obj_pin_fail_if_cant_acquire(&microbit_p7_obj);
microbit_obj_pin_fail_if_cant_acquire(&microbit_p9_obj);
microbit_obj_pin_fail_if_cant_acquire(&microbit_p10_obj);
microbit_obj_pin_acquire(&microbit_p3_obj, microbit_pin_mode_display);
microbit_obj_pin_acquire(&microbit_p4_obj, microbit_pin_mode_display);
microbit_obj_pin_acquire(&microbit_p6_obj, microbit_pin_mode_display);
microbit_obj_pin_acquire(&microbit_p7_obj, microbit_pin_mode_display);
microbit_obj_pin_acquire(&microbit_p9_obj, microbit_pin_mode_display);
microbit_obj_pin_acquire(&microbit_p10_obj, microbit_pin_mode_display);
*/
/* Make sure all pins are in the correct state */
microbit_display_init();
/* Re-enable the display loop. This will resume any animations in
* progress and display any static image. */
self->active = true;
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(microbit_display_on_obj, microbit_display_on_func);
mp_obj_t microbit_display_off_func(mp_obj_t obj) {
microbit_display_obj_t *self = (microbit_display_obj_t*)obj;
/* Disable the display loop. This will pause any animations in progress.
* It will not prevent a user from attempting to modify the state, but
* modifications will not appear to have any effect until the display loop
* is re-enabled. */
self->active = false;
/* Disable the row strobes, allowing the columns to be used freely for
* GPIO. */
nrf_gpio_port_out_clear(0, ROW_PINS_MASK);
/* Free pins for other uses */
/*
microbit_obj_pin_free(&microbit_p3_obj);
microbit_obj_pin_free(&microbit_p4_obj);
microbit_obj_pin_free(&microbit_p6_obj);
microbit_obj_pin_free(&microbit_p7_obj);
microbit_obj_pin_free(&microbit_p9_obj);
microbit_obj_pin_free(&microbit_p10_obj);
*/
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(microbit_display_off_obj, microbit_display_off_func);
mp_obj_t microbit_display_is_on_func(mp_obj_t obj) {
microbit_display_obj_t *self = (microbit_display_obj_t*)obj;
if (self->active) {
return mp_const_true;
}
else {
return mp_const_false;
}
}
MP_DEFINE_CONST_FUN_OBJ_1(microbit_display_is_on_obj, microbit_display_is_on_func);
void microbit_display_clear(void) {
// Reset repeat state, cancel animation and clear screen.
wakeup_event = false;
async_mode = ASYNC_MODE_CLEAR;
async_tick = async_delay - MILLISECONDS_PER_MACRO_TICK;
wait_for_event();
}
mp_obj_t microbit_display_clear_func(mp_obj_t self_in) {
microbit_display_clear();
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(microbit_display_clear_obj, microbit_display_clear_func);
void microbit_display_set_pixel(microbit_display_obj_t *display, mp_int_t x, mp_int_t y, mp_int_t bright) {
if (x < 0 || y < 0 || x > 4 || y > 4) {
mp_raise_ValueError(MP_ERROR_TEXT("index out of bounds."));
}
if (bright < 0 || bright > MAX_BRIGHTNESS) {
mp_raise_ValueError(MP_ERROR_TEXT("brightness out of bounds."));
}
display->image_buffer[x][y] = bright;
display->brightnesses |= (1 << bright);
}
STATIC mp_obj_t microbit_display_set_pixel_func(mp_uint_t n_args, const mp_obj_t *args) {
(void)n_args;
microbit_display_obj_t *self = (microbit_display_obj_t*)args[0];
microbit_display_set_pixel(self, mp_obj_get_int(args[1]), mp_obj_get_int(args[2]), mp_obj_get_int(args[3]));
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(microbit_display_set_pixel_obj, 4, 4, microbit_display_set_pixel_func);
mp_int_t microbit_display_get_pixel(microbit_display_obj_t *display, mp_int_t x, mp_int_t y) {
if (x < 0 || y < 0 || x > 4 || y > 4) {
mp_raise_ValueError(MP_ERROR_TEXT("index out of bounds."));
}
return display->image_buffer[x][y];
}
STATIC mp_obj_t microbit_display_get_pixel_func(mp_obj_t self_in, mp_obj_t x_in, mp_obj_t y_in) {
microbit_display_obj_t *self = (microbit_display_obj_t*)self_in;
return MP_OBJ_NEW_SMALL_INT(microbit_display_get_pixel(self, mp_obj_get_int(x_in), mp_obj_get_int(y_in)));
}
MP_DEFINE_CONST_FUN_OBJ_3(microbit_display_get_pixel_obj, microbit_display_get_pixel_func);
STATIC const mp_rom_map_elem_t microbit_display_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_get_pixel), MP_ROM_PTR(&microbit_display_get_pixel_obj) },
{ MP_ROM_QSTR(MP_QSTR_set_pixel), MP_ROM_PTR(&microbit_display_set_pixel_obj) },
{ MP_ROM_QSTR(MP_QSTR_show), MP_ROM_PTR(&microbit_display_show_obj) },
{ MP_ROM_QSTR(MP_QSTR_scroll), MP_ROM_PTR(&microbit_display_scroll_obj) },
{ MP_ROM_QSTR(MP_QSTR_clear), MP_ROM_PTR(&microbit_display_clear_obj) },
{ MP_ROM_QSTR(MP_QSTR_on), MP_ROM_PTR(&microbit_display_on_obj) },
{ MP_ROM_QSTR(MP_QSTR_off), MP_ROM_PTR(&microbit_display_off_obj) },
{ MP_ROM_QSTR(MP_QSTR_is_on), MP_ROM_PTR(&microbit_display_is_on_obj) },
};
STATIC MP_DEFINE_CONST_DICT(microbit_display_locals_dict, microbit_display_locals_dict_table);
const mp_obj_type_t microbit_display_type = {
{ &mp_type_type },
.name = MP_QSTR_MicroBitDisplay,
.print = NULL,
.make_new = NULL,
.call = NULL,
.unary_op = NULL,
.binary_op = NULL,
.attr = NULL,
.subscr = NULL,
.getiter = NULL,
.iternext = NULL,
.buffer_p = {NULL},
.locals_dict = (mp_obj_dict_t*)&microbit_display_locals_dict,
};
microbit_display_obj_t microbit_display_obj = {
{&microbit_display_type},
{{ 0, }},
.previous_brightness = 0,
.active = 1,
.strobe_row = 0,
.brightnesses = 0,
.pins_for_brightness = { 0 },
};
void microbit_display_init(void) {
// Set pins as output.
for (int i = MIN_COLUMN_PIN; i <= MAX_ROW_PIN; i++) {
nrf_gpio_cfg_output(i);
}
}