ec9ea97413
For STMG4 MCUs, the peripheral registers for DAC have to be accessed by words (32bits) because DAC is connected to AHB directly. (This requirement is also there for other MCU series. However, if DAC is connected to APB like F4/L1/L4 MCUs, AHB byte or half-word transfer is changed into a 32-bit APB transfer. This means that PSIZE does not have to be DMA_PDATAALIGN_WORD on these MCUs, and in fact must be BYTE/HALFWORD to function correctly.) Fixes issue #9563. Signed-off-by: Yuuki NAGAO <wf.yn386@gmail.com>
527 lines
18 KiB
C
527 lines
18 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013-2019 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include "py/runtime.h"
|
|
#include "py/mphal.h"
|
|
#include "timer.h"
|
|
#include "dac.h"
|
|
#include "dma.h"
|
|
#include "pin.h"
|
|
|
|
/// \moduleref pyb
|
|
/// \class DAC - digital to analog conversion
|
|
///
|
|
/// The DAC is used to output analog values (a specific voltage) on pin X5 or pin X6.
|
|
/// The voltage will be between 0 and 3.3V.
|
|
///
|
|
/// *This module will undergo changes to the API.*
|
|
///
|
|
/// Example usage:
|
|
///
|
|
/// from pyb import DAC
|
|
///
|
|
/// dac = DAC(1) # create DAC 1 on pin X5
|
|
/// dac.write(128) # write a value to the DAC (makes X5 1.65V)
|
|
///
|
|
/// To output a continuous sine-wave:
|
|
///
|
|
/// import math
|
|
/// from pyb import DAC
|
|
///
|
|
/// # create a buffer containing a sine-wave
|
|
/// buf = bytearray(100)
|
|
/// for i in range(len(buf)):
|
|
/// buf[i] = 128 + int(127 * math.sin(2 * math.pi * i / len(buf)))
|
|
///
|
|
/// # output the sine-wave at 400Hz
|
|
/// dac = DAC(1)
|
|
/// dac.write_timed(buf, 400 * len(buf), mode=DAC.CIRCULAR)
|
|
|
|
#if defined(MICROPY_HW_ENABLE_DAC) && MICROPY_HW_ENABLE_DAC
|
|
|
|
#if defined(STM32H5) || defined(STM32H7)
|
|
#define DAC DAC1
|
|
#endif
|
|
|
|
#if defined(TIM6)
|
|
STATIC void TIM6_Config(uint freq) {
|
|
// Init TIM6 at the required frequency (in Hz)
|
|
TIM_HandleTypeDef *tim = timer_tim6_init(freq);
|
|
|
|
// TIM6 TRGO selection
|
|
TIM_MasterConfigTypeDef config;
|
|
config.MasterOutputTrigger = TIM_TRGO_UPDATE;
|
|
config.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
|
|
HAL_TIMEx_MasterConfigSynchronization(tim, &config);
|
|
|
|
// TIM6 start counter
|
|
HAL_TIM_Base_Start(tim);
|
|
}
|
|
#endif
|
|
|
|
STATIC uint32_t TIMx_Config(mp_obj_t timer) {
|
|
// TRGO selection to trigger DAC
|
|
TIM_HandleTypeDef *tim = pyb_timer_get_handle(timer);
|
|
TIM_MasterConfigTypeDef config;
|
|
config.MasterOutputTrigger = TIM_TRGO_UPDATE;
|
|
config.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
|
|
HAL_TIMEx_MasterConfigSynchronization(tim, &config);
|
|
|
|
// work out the trigger channel (only certain ones are supported)
|
|
if (tim->Instance == TIM2) {
|
|
return DAC_TRIGGER_T2_TRGO;
|
|
#if defined(TIM4)
|
|
} else if (tim->Instance == TIM4) {
|
|
return DAC_TRIGGER_T4_TRGO;
|
|
#endif
|
|
#if defined(TIM5) && defined(DAC_TRIGGER_T5_TRGO) // G474 doesn't have this
|
|
} else if (tim->Instance == TIM5) {
|
|
return DAC_TRIGGER_T5_TRGO;
|
|
#endif
|
|
#if defined(TIM6)
|
|
} else if (tim->Instance == TIM6) {
|
|
return DAC_TRIGGER_T6_TRGO;
|
|
#endif
|
|
#if defined(TIM7)
|
|
} else if (tim->Instance == TIM7) {
|
|
return DAC_TRIGGER_T7_TRGO;
|
|
#endif
|
|
#if defined(TIM8)
|
|
} else if (tim->Instance == TIM8) {
|
|
return DAC_TRIGGER_T8_TRGO;
|
|
#endif
|
|
} else {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("Timer does not support DAC triggering"));
|
|
}
|
|
}
|
|
|
|
STATIC void dac_deinit(uint32_t dac_channel) {
|
|
DAC->CR &= ~(DAC_CR_EN1 << dac_channel);
|
|
#if defined(STM32G0) || defined(STM32G4) || defined(STM32H5) || defined(STM32H7) || defined(STM32L4)
|
|
DAC->MCR = (DAC->MCR & ~(DAC_MCR_MODE1_Msk << dac_channel)) | (DAC_OUTPUTBUFFER_DISABLE << dac_channel);
|
|
#else
|
|
DAC->CR |= DAC_CR_BOFF1 << dac_channel;
|
|
#endif
|
|
}
|
|
|
|
void dac_deinit_all(void) {
|
|
dac_deinit(DAC_CHANNEL_1);
|
|
#if !defined(STM32L452xx)
|
|
dac_deinit(DAC_CHANNEL_2);
|
|
#endif
|
|
}
|
|
|
|
STATIC void dac_config_channel(uint32_t dac_channel, uint32_t trig, uint32_t outbuf) {
|
|
DAC->CR &= ~(DAC_CR_EN1 << dac_channel);
|
|
uint32_t cr_off = DAC_CR_DMAEN1 | DAC_CR_MAMP1 | DAC_CR_WAVE1 | DAC_CR_TSEL1 | DAC_CR_TEN1;
|
|
uint32_t cr_on = trig;
|
|
#if defined(STM32G0) || defined(STM32G4) || defined(STM32H5) || defined(STM32H7) || defined(STM32L4)
|
|
DAC->MCR = (DAC->MCR & ~(DAC_MCR_MODE1_Msk << dac_channel)) | (outbuf << dac_channel);
|
|
#else
|
|
cr_off |= DAC_CR_BOFF1;
|
|
cr_on |= outbuf;
|
|
#endif
|
|
DAC->CR = (DAC->CR & ~(cr_off << dac_channel)) | (cr_on << dac_channel);
|
|
}
|
|
|
|
STATIC void dac_set_value(uint32_t dac_channel, uint32_t align, uint32_t value) {
|
|
uint32_t base;
|
|
if (dac_channel == DAC_CHANNEL_1) {
|
|
base = (uint32_t)&DAC->DHR12R1;
|
|
#if !defined(STM32L452xx)
|
|
} else {
|
|
base = (uint32_t)&DAC->DHR12R2;
|
|
#endif
|
|
}
|
|
*(volatile uint32_t *)(base + align) = value;
|
|
}
|
|
|
|
STATIC void dac_start(uint32_t dac_channel) {
|
|
DAC->CR |= DAC_CR_EN1 << dac_channel;
|
|
}
|
|
|
|
STATIC void dac_start_dma(uint32_t dac_channel, const dma_descr_t *dma_descr, uint32_t dma_mode, uint32_t bit_size, uint32_t dac_align, size_t len, void *buf) {
|
|
uint32_t dma_align;
|
|
if (bit_size == 8) {
|
|
#if defined(STM32G4)
|
|
// For STM32G4, DAC registers have to be accessed by words (32-bit).
|
|
dma_align = DMA_MDATAALIGN_BYTE | DMA_PDATAALIGN_WORD;
|
|
#else
|
|
dma_align = DMA_MDATAALIGN_BYTE | DMA_PDATAALIGN_BYTE;
|
|
#endif
|
|
} else {
|
|
#if defined(STM32G4)
|
|
// For STM32G4, DAC registers have to be accessed by words (32-bit).
|
|
dma_align = DMA_MDATAALIGN_HALFWORD | DMA_PDATAALIGN_WORD;
|
|
#else
|
|
dma_align = DMA_MDATAALIGN_HALFWORD | DMA_PDATAALIGN_HALFWORD;
|
|
#endif
|
|
}
|
|
|
|
uint32_t base;
|
|
if (dac_channel == DAC_CHANNEL_1) {
|
|
base = (uint32_t)&DAC->DHR12R1;
|
|
#if !defined(STM32L452xx)
|
|
} else {
|
|
base = (uint32_t)&DAC->DHR12R2;
|
|
#endif
|
|
}
|
|
|
|
dma_nohal_deinit(dma_descr);
|
|
dma_nohal_init(dma_descr, DMA_MEMORY_TO_PERIPH | dma_mode | dma_align);
|
|
dma_nohal_start(dma_descr, (uint32_t)buf, base + dac_align, len);
|
|
|
|
DAC->CR |= DAC_CR_EN1 << dac_channel;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
// MicroPython bindings
|
|
|
|
typedef struct _pyb_dac_obj_t {
|
|
mp_obj_base_t base;
|
|
uint8_t dac_channel; // DAC_CHANNEL_1 or DAC_CHANNEL_2. STM32L452 only has CHANNEL_1.
|
|
uint8_t bits; // 8 or 12
|
|
uint8_t outbuf_single;
|
|
uint8_t outbuf_waveform;
|
|
} pyb_dac_obj_t;
|
|
|
|
STATIC pyb_dac_obj_t pyb_dac_obj[2];
|
|
|
|
STATIC void pyb_dac_reconfigure(pyb_dac_obj_t *self, uint32_t cr, uint32_t outbuf, uint32_t value) {
|
|
bool restart = false;
|
|
const uint32_t cr_mask = DAC_CR_DMAEN1 | DAC_CR_MAMP1 | DAC_CR_WAVE1 | DAC_CR_TSEL1 | DAC_CR_TEN1 | DAC_CR_EN1;
|
|
if (((DAC->CR >> self->dac_channel) & cr_mask) != (cr | DAC_CR_EN1)) {
|
|
const dma_descr_t *tx_dma_descr;
|
|
if (self->dac_channel == DAC_CHANNEL_1) {
|
|
tx_dma_descr = &dma_DAC_1_TX;
|
|
#if !defined(STM32L452xx)
|
|
} else {
|
|
tx_dma_descr = &dma_DAC_2_TX;
|
|
#endif
|
|
}
|
|
dma_nohal_deinit(tx_dma_descr);
|
|
dac_config_channel(self->dac_channel, cr, outbuf);
|
|
restart = true;
|
|
}
|
|
dac_set_value(self->dac_channel, DAC_ALIGN_12B_R, value);
|
|
if (restart) {
|
|
dac_start(self->dac_channel);
|
|
}
|
|
}
|
|
|
|
STATIC void pyb_dac_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
|
|
pyb_dac_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
mp_printf(print, "DAC(%u, bits=%u)",
|
|
self->dac_channel == DAC_CHANNEL_1 ? 1 : 2,
|
|
self->bits);
|
|
}
|
|
|
|
STATIC mp_obj_t pyb_dac_init_helper(pyb_dac_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_bits, MP_ARG_INT, {.u_int = 8} },
|
|
{ MP_QSTR_buffering, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
|
|
};
|
|
|
|
// parse args
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
// GPIO configuration
|
|
mp_hal_pin_obj_t pin;
|
|
if (self->dac_channel == DAC_CHANNEL_1) {
|
|
pin = pin_A4;
|
|
#if !defined(STM32L452xx)
|
|
} else {
|
|
pin = pin_A5;
|
|
#endif
|
|
}
|
|
mp_hal_pin_config(pin, MP_HAL_PIN_MODE_ANALOG, MP_HAL_PIN_PULL_NONE, 0);
|
|
|
|
// DAC peripheral clock
|
|
#if defined(STM32F4) || defined(STM32F7)
|
|
__DAC_CLK_ENABLE();
|
|
#elif defined(STM32H7)
|
|
__HAL_RCC_DAC12_CLK_ENABLE();
|
|
#elif defined(STM32F0) || defined(STM32G0) || defined(STM32G4) || defined(STM32H5) || defined(STM32L4)
|
|
__HAL_RCC_DAC1_CLK_ENABLE();
|
|
#elif defined(STM32L1)
|
|
__HAL_RCC_DAC_CLK_ENABLE();
|
|
#else
|
|
#error Unsupported Processor
|
|
#endif
|
|
|
|
// Stop the DAC in case it was already running
|
|
DAC->CR &= ~(DAC_CR_EN1 << self->dac_channel);
|
|
|
|
// set bit resolution
|
|
if (args[0].u_int == 8 || args[0].u_int == 12) {
|
|
self->bits = args[0].u_int;
|
|
} else {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("unsupported bits"));
|
|
}
|
|
|
|
// set output buffer config
|
|
if (args[1].u_obj == mp_const_none) {
|
|
// due to legacy, default values differ for single and waveform outputs
|
|
self->outbuf_single = DAC_OUTPUTBUFFER_DISABLE;
|
|
self->outbuf_waveform = DAC_OUTPUTBUFFER_ENABLE;
|
|
} else if (mp_obj_is_true(args[1].u_obj)) {
|
|
self->outbuf_single = DAC_OUTPUTBUFFER_ENABLE;
|
|
self->outbuf_waveform = DAC_OUTPUTBUFFER_ENABLE;
|
|
} else {
|
|
self->outbuf_single = DAC_OUTPUTBUFFER_DISABLE;
|
|
self->outbuf_waveform = DAC_OUTPUTBUFFER_DISABLE;
|
|
}
|
|
|
|
return mp_const_none;
|
|
}
|
|
|
|
// create the dac object
|
|
// currently support either DAC1 on X5 (id = 1) or DAC2 on X6 (id = 2)
|
|
|
|
/// \classmethod \constructor(port)
|
|
/// Construct a new DAC object.
|
|
///
|
|
/// `port` can be a pin object, or an integer (1 or 2).
|
|
/// DAC(1) is on pin X5 and DAC(2) is on pin X6.
|
|
STATIC mp_obj_t pyb_dac_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
|
// check arguments
|
|
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
|
|
|
|
// get pin/channel to output on
|
|
mp_int_t dac_id;
|
|
if (mp_obj_is_int(args[0])) {
|
|
dac_id = mp_obj_get_int(args[0]);
|
|
} else {
|
|
const pin_obj_t *pin = pin_find(args[0]);
|
|
if (pin == pin_A4) {
|
|
dac_id = 1;
|
|
} else if (pin == pin_A5) {
|
|
dac_id = 2;
|
|
} else {
|
|
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("Pin(%q) doesn't have DAC capabilities"), pin->name);
|
|
}
|
|
}
|
|
|
|
uint32_t dac_channel;
|
|
if (dac_id == 1) {
|
|
dac_channel = DAC_CHANNEL_1;
|
|
#if !defined(STM32L452xx)
|
|
} else if (dac_id == 2) {
|
|
dac_channel = DAC_CHANNEL_2;
|
|
#endif
|
|
} else {
|
|
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("DAC(%d) doesn't exist"), dac_id);
|
|
}
|
|
|
|
pyb_dac_obj_t *dac = &pyb_dac_obj[dac_id - 1];
|
|
dac->base.type = &pyb_dac_type;
|
|
dac->dac_channel = dac_channel;
|
|
|
|
if (dac->bits == 0 || n_args > 1 || n_kw > 0) {
|
|
// configure the peripheral
|
|
mp_map_t kw_args;
|
|
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
|
|
pyb_dac_init_helper(dac, n_args - 1, args + 1, &kw_args);
|
|
}
|
|
|
|
// return object
|
|
return MP_OBJ_FROM_PTR(dac);
|
|
}
|
|
|
|
STATIC mp_obj_t pyb_dac_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
|
|
return pyb_dac_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_dac_init_obj, 1, pyb_dac_init);
|
|
|
|
/// \method deinit()
|
|
/// Turn off the DAC, enable other use of pin.
|
|
STATIC mp_obj_t pyb_dac_deinit(mp_obj_t self_in) {
|
|
pyb_dac_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
dac_deinit(self->dac_channel);
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_dac_deinit_obj, pyb_dac_deinit);
|
|
|
|
#if defined(TIM6)
|
|
/// \method noise(freq)
|
|
/// Generate a pseudo-random noise signal. A new random sample is written
|
|
/// to the DAC output at the given frequency.
|
|
STATIC mp_obj_t pyb_dac_noise(mp_obj_t self_in, mp_obj_t freq) {
|
|
pyb_dac_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
|
|
// set TIM6 to trigger the DAC at the given frequency
|
|
TIM6_Config(mp_obj_get_int(freq));
|
|
|
|
// Configure DAC in noise mode with trigger via TIM6
|
|
uint32_t cr = DAC_LFSRUNMASK_BITS11_0 | DAC_CR_WAVE1_0 | DAC_TRIGGER_T6_TRGO;
|
|
pyb_dac_reconfigure(self, cr, self->outbuf_waveform, 0);
|
|
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_noise_obj, pyb_dac_noise);
|
|
#endif
|
|
|
|
#if defined(TIM6)
|
|
/// \method triangle(freq)
|
|
/// Generate a triangle wave. The value on the DAC output changes at
|
|
/// the given frequency, and the frequency of the repeating triangle wave
|
|
/// itself is 8192 times smaller.
|
|
STATIC mp_obj_t pyb_dac_triangle(mp_obj_t self_in, mp_obj_t freq) {
|
|
pyb_dac_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
|
|
// set TIM6 to trigger the DAC at the given frequency
|
|
TIM6_Config(mp_obj_get_int(freq));
|
|
|
|
// Configure DAC in full-scale triangle mode with trigger via TIM6
|
|
uint32_t cr = DAC_TRIANGLEAMPLITUDE_4095 | DAC_CR_WAVE1_1 | DAC_TRIGGER_T6_TRGO;
|
|
pyb_dac_reconfigure(self, cr, self->outbuf_waveform, 0);
|
|
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_triangle_obj, pyb_dac_triangle);
|
|
#endif
|
|
|
|
/// \method write(value)
|
|
/// Direct access to the DAC output (8 bit only at the moment).
|
|
STATIC mp_obj_t pyb_dac_write(mp_obj_t self_in, mp_obj_t val) {
|
|
pyb_dac_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
|
|
// DAC output is always 12-bit at the hardware level, and we provide support
|
|
// for multiple bit "resolutions" simply by shifting the input value.
|
|
uint32_t cr = DAC_TRIGGER_NONE;
|
|
uint32_t value = mp_obj_get_int(val) << (12 - self->bits);
|
|
pyb_dac_reconfigure(self, cr, self->outbuf_single, value);
|
|
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_write_obj, pyb_dac_write);
|
|
|
|
#if defined(TIM6)
|
|
/// \method write_timed(data, freq, *, mode=DAC.NORMAL)
|
|
/// Initiates a burst of RAM to DAC using a DMA transfer.
|
|
/// The input data is treated as an array of bytes (8 bit data).
|
|
///
|
|
/// `freq` can be an integer specifying the frequency to write the DAC
|
|
/// samples at, using Timer(6). Or it can be an already-initialised
|
|
/// Timer object which is used to trigger the DAC sample. Valid timers
|
|
/// are 2, 4, 5, 6, 7 and 8.
|
|
///
|
|
/// `mode` can be `DAC.NORMAL` or `DAC.CIRCULAR`.
|
|
///
|
|
// TODO add callback argument, to call when transfer is finished
|
|
// TODO add double buffer argument
|
|
//
|
|
// TODO reconsider API, eg: write_trig(data, *, trig=None, loop=False)
|
|
// Then trigger can be timer (preinitialised with desired freq) or pin (extint9),
|
|
// and we can reuse the same timer for both DACs (and maybe also ADC) without
|
|
// setting the freq twice.
|
|
// Can still do 1-liner: dac.write_trig(buf, trig=Timer(6, freq=100), loop=True)
|
|
mp_obj_t pyb_dac_write_timed(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
|
|
{ MP_QSTR_freq, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
|
|
{ MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DMA_NORMAL} },
|
|
};
|
|
|
|
// parse args
|
|
pyb_dac_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
// get the data to write
|
|
mp_buffer_info_t bufinfo;
|
|
mp_get_buffer_raise(args[0].u_obj, &bufinfo, MP_BUFFER_READ);
|
|
|
|
uint32_t dac_trigger;
|
|
if (mp_obj_is_integer(args[1].u_obj)) {
|
|
// set TIM6 to trigger the DAC at the given frequency
|
|
TIM6_Config(mp_obj_get_int(args[1].u_obj));
|
|
dac_trigger = DAC_TRIGGER_T6_TRGO;
|
|
} else {
|
|
// set the supplied timer to trigger the DAC (timer should be initialised)
|
|
dac_trigger = TIMx_Config(args[1].u_obj);
|
|
}
|
|
|
|
dac_config_channel(self->dac_channel, DAC_CR_DMAEN1 | dac_trigger, self->outbuf_waveform);
|
|
|
|
const dma_descr_t *tx_dma_descr;
|
|
if (self->dac_channel == DAC_CHANNEL_1) {
|
|
tx_dma_descr = &dma_DAC_1_TX;
|
|
#if !defined(STM32L452xx)
|
|
} else {
|
|
tx_dma_descr = &dma_DAC_2_TX;
|
|
#endif
|
|
}
|
|
|
|
uint32_t align;
|
|
if (self->bits == 8) {
|
|
align = DAC_ALIGN_8B_R;
|
|
} else {
|
|
align = DAC_ALIGN_12B_R;
|
|
bufinfo.len /= 2;
|
|
}
|
|
|
|
dac_start_dma(self->dac_channel, tx_dma_descr, args[2].u_int, self->bits, align, bufinfo.len, bufinfo.buf);
|
|
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_dac_write_timed_obj, 1, pyb_dac_write_timed);
|
|
#endif
|
|
|
|
STATIC const mp_rom_map_elem_t pyb_dac_locals_dict_table[] = {
|
|
// instance methods
|
|
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_dac_init_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_dac_deinit_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&pyb_dac_write_obj) },
|
|
#if defined(TIM6)
|
|
{ MP_ROM_QSTR(MP_QSTR_noise), MP_ROM_PTR(&pyb_dac_noise_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_triangle), MP_ROM_PTR(&pyb_dac_triangle_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_write_timed), MP_ROM_PTR(&pyb_dac_write_timed_obj) },
|
|
#endif
|
|
|
|
// class constants
|
|
{ MP_ROM_QSTR(MP_QSTR_NORMAL), MP_ROM_INT(DMA_NORMAL) },
|
|
{ MP_ROM_QSTR(MP_QSTR_CIRCULAR), MP_ROM_INT(DMA_CIRCULAR) },
|
|
};
|
|
|
|
STATIC MP_DEFINE_CONST_DICT(pyb_dac_locals_dict, pyb_dac_locals_dict_table);
|
|
|
|
MP_DEFINE_CONST_OBJ_TYPE(
|
|
pyb_dac_type,
|
|
MP_QSTR_DAC,
|
|
MP_TYPE_FLAG_NONE,
|
|
make_new, pyb_dac_make_new,
|
|
print, pyb_dac_print,
|
|
locals_dict, &pyb_dac_locals_dict
|
|
);
|
|
|
|
#endif // MICROPY_HW_ENABLE_DAC
|