467 lines
14 KiB
C
467 lines
14 KiB
C
/*
|
|
* This file is part of the Micro Python project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2020 Jeff Epler for Adafruit Industries
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
// This implementation largely follows the structure of adafruit_sdcard.py
|
|
|
|
#include "shared-bindings/busio/SPI.h"
|
|
#include "shared-bindings/digitalio/DigitalInOut.h"
|
|
#include "shared-bindings/time/__init__.h"
|
|
#include "shared-bindings/util.h"
|
|
#include "shared-module/sdcardio/SDCard.h"
|
|
|
|
#include "py/mperrno.h"
|
|
|
|
#if 0
|
|
#define DEBUG_PRINT(...) ((void)mp_printf(&mp_plat_print, ## __VA_ARGS__))
|
|
#else
|
|
#define DEBUG_PRINT(...) ((void)0)
|
|
#endif
|
|
|
|
#define CMD_TIMEOUT (200)
|
|
|
|
#define R1_IDLE_STATE (1<<0)
|
|
#define R1_ILLEGAL_COMMAND (1<<2)
|
|
|
|
#define TOKEN_CMD25 (0xFC)
|
|
#define TOKEN_STOP_TRAN (0xFD)
|
|
#define TOKEN_DATA (0xFE)
|
|
|
|
STATIC bool lock_and_configure_bus(sdcardio_sdcard_obj_t *self) {
|
|
if (!common_hal_busio_spi_try_lock(self->bus)) {
|
|
return false;
|
|
}
|
|
common_hal_busio_spi_configure(self->bus, self->baudrate, 0, 0, 8);
|
|
common_hal_digitalio_digitalinout_set_value(&self->cs, false);
|
|
return true;
|
|
}
|
|
|
|
STATIC void lock_bus_or_throw(sdcardio_sdcard_obj_t *self) {
|
|
if (!lock_and_configure_bus(self)) {
|
|
mp_raise_OSError(EAGAIN);
|
|
}
|
|
}
|
|
|
|
STATIC void clock_card(sdcardio_sdcard_obj_t *self, int bytes) {
|
|
uint8_t buf[] = {0xff};
|
|
common_hal_digitalio_digitalinout_set_value(&self->cs, true);
|
|
for (int i=0; i<bytes; i++) {
|
|
common_hal_busio_spi_write(self->bus, buf, 1);
|
|
}
|
|
}
|
|
|
|
STATIC void extraclock_and_unlock_bus(sdcardio_sdcard_obj_t *self) {
|
|
clock_card(self, 1);
|
|
common_hal_busio_spi_unlock(self->bus);
|
|
}
|
|
|
|
static uint8_t CRC7(const uint8_t* data, uint8_t n) {
|
|
uint8_t crc = 0;
|
|
for (uint8_t i = 0; i < n; i++) {
|
|
uint8_t d = data[i];
|
|
for (uint8_t j = 0; j < 8; j++) {
|
|
crc <<= 1;
|
|
if ((d & 0x80) ^ (crc & 0x80)) {
|
|
crc ^= 0x09;
|
|
}
|
|
d <<= 1;
|
|
}
|
|
}
|
|
return (crc << 1) | 1;
|
|
}
|
|
|
|
#define READY_TIMEOUT_NS (300 * 1000 * 1000) // 300ms
|
|
STATIC void wait_for_ready(sdcardio_sdcard_obj_t *self) {
|
|
uint64_t deadline = common_hal_time_monotonic_ns() + READY_TIMEOUT_NS;
|
|
while (common_hal_time_monotonic_ns() < deadline) {
|
|
uint8_t b;
|
|
common_hal_busio_spi_read(self->bus, &b, 1, 0xff);
|
|
if (b == 0xff) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// In Python API, defaults are response=None, data_block=True, wait=True
|
|
STATIC int cmd(sdcardio_sdcard_obj_t *self, int cmd, int arg, void *response_buf, size_t response_len, bool data_block, bool wait) {
|
|
DEBUG_PRINT("cmd % 3d [%02x] arg=% 11d [%08x] len=%d%s%s\n", cmd, cmd, arg, arg, response_len, data_block ? " data" : "", wait ? " wait" : "");
|
|
uint8_t cmdbuf[6];
|
|
cmdbuf[0] = cmd | 0x40;
|
|
cmdbuf[1] = (arg >> 24) & 0xff;
|
|
cmdbuf[2] = (arg >> 16) & 0xff;
|
|
cmdbuf[3] = (arg >> 8) & 0xff;
|
|
cmdbuf[4] = arg & 0xff;
|
|
cmdbuf[5] = CRC7(cmdbuf, 5);
|
|
|
|
if (wait) {
|
|
wait_for_ready(self);
|
|
}
|
|
|
|
common_hal_busio_spi_write(self->bus, cmdbuf, sizeof(cmdbuf));
|
|
|
|
// Wait for the response (response[7] == 0)
|
|
bool response_received = false;
|
|
for (int i=0; i<CMD_TIMEOUT; i++) {
|
|
common_hal_busio_spi_read(self->bus, cmdbuf, 1, 0xff);
|
|
if ((cmdbuf[0] & 0x80) == 0) {
|
|
response_received = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!response_received) {
|
|
return -EIO;
|
|
}
|
|
|
|
if (response_buf) {
|
|
|
|
if (data_block) {
|
|
cmdbuf[1] = 0xff;
|
|
do {
|
|
// Wait for the start block byte
|
|
common_hal_busio_spi_read(self->bus, cmdbuf+1, 1, 0xff);
|
|
} while (cmdbuf[1] != 0xfe);
|
|
}
|
|
|
|
common_hal_busio_spi_read(self->bus, response_buf, response_len, 0xff);
|
|
|
|
if (data_block) {
|
|
// Read and discard the CRC-CCITT checksum
|
|
common_hal_busio_spi_read(self->bus, cmdbuf+1, 2, 0xff);
|
|
}
|
|
|
|
}
|
|
|
|
return cmdbuf[0];
|
|
}
|
|
|
|
STATIC int block_cmd(sdcardio_sdcard_obj_t *self, int cmd_, int block, void *response_buf, size_t response_len, bool data_block, bool wait) {
|
|
return cmd(self, cmd_, block * self->cdv, response_buf, response_len, true, true);
|
|
}
|
|
|
|
STATIC bool cmd_nodata(sdcardio_sdcard_obj_t* self, int cmd, int response) {
|
|
uint8_t cmdbuf[2] = {cmd, 0xff};
|
|
|
|
common_hal_busio_spi_write(self->bus, cmdbuf, sizeof(cmdbuf));
|
|
|
|
// Wait for the response (response[7] == response)
|
|
for (int i=0; i<CMD_TIMEOUT; i++) {
|
|
common_hal_busio_spi_read(self->bus, cmdbuf, 1, 0xff);
|
|
if (cmdbuf[0] == response) {
|
|
return 0;
|
|
}
|
|
}
|
|
return -EIO;
|
|
}
|
|
|
|
STATIC const compressed_string_t *init_card_v1(sdcardio_sdcard_obj_t *self) {
|
|
for (int i=0; i<CMD_TIMEOUT; i++) {
|
|
if (cmd(self, 41, 0, NULL, 0, true, true) == 0) {
|
|
return NULL;
|
|
}
|
|
}
|
|
return translate("timeout waiting for v1 card");
|
|
}
|
|
|
|
STATIC const compressed_string_t *init_card_v2(sdcardio_sdcard_obj_t *self) {
|
|
for (int i=0; i<CMD_TIMEOUT; i++) {
|
|
uint8_t ocr[4];
|
|
common_hal_time_delay_ms(50);
|
|
cmd(self, 58, 0, ocr, sizeof(ocr), false, true);
|
|
cmd(self, 55, 0, NULL, 0, true, true);
|
|
if (cmd(self, 41, 0x40000000, NULL, 0, true, true) == 0) {
|
|
cmd(self, 58, 0, ocr, sizeof(ocr), false, true);
|
|
if ((ocr[0] & 0x40) != 0) {
|
|
self->cdv = 1;
|
|
}
|
|
return NULL;
|
|
}
|
|
}
|
|
return translate("timeout waiting for v2 card");
|
|
}
|
|
|
|
STATIC const compressed_string_t *init_card(sdcardio_sdcard_obj_t *self) {
|
|
clock_card(self, 10);
|
|
|
|
common_hal_digitalio_digitalinout_set_value(&self->cs, false);
|
|
|
|
// CMD0: init card: should return _R1_IDLE_STATE (allow 5 attempts)
|
|
{
|
|
bool reached_idle_state = false;
|
|
for (int i=0; i<5; i++) {
|
|
if (cmd(self, 0, 0, NULL, 0, true, true) == R1_IDLE_STATE) {
|
|
reached_idle_state = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!reached_idle_state) {
|
|
return translate("no SD card");
|
|
}
|
|
}
|
|
|
|
// CMD8: determine card version
|
|
{
|
|
uint8_t rb7[4];
|
|
int response = cmd(self, 8, 0x1AA, rb7, sizeof(rb7), false, true);
|
|
if (response == R1_IDLE_STATE) {
|
|
const compressed_string_t *result =init_card_v2(self);
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
} else if (response == (R1_IDLE_STATE | R1_ILLEGAL_COMMAND)) {
|
|
const compressed_string_t *result =init_card_v1(self);
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
} else {
|
|
return translate("couldn't determine SD card version");
|
|
}
|
|
}
|
|
|
|
// CMD9: get number of sectors
|
|
{
|
|
uint8_t csd[16];
|
|
int response = cmd(self, 9, 0, csd, sizeof(csd), true, true);
|
|
if (response != 0) {
|
|
return translate("no response from SD card");
|
|
}
|
|
int csd_version = (csd[0] & 0xC0) >> 6;
|
|
if (csd_version >= 2) {
|
|
return translate("SD card CSD format not supported");
|
|
}
|
|
|
|
if (csd_version == 1) {
|
|
self->sectors = ((csd[8] << 8 | csd[9]) + 1) * 1024;
|
|
} else {
|
|
uint32_t block_length = 1 << (csd[5] & 0xF);
|
|
uint32_t c_size = ((csd[6] & 0x3) << 10) | (csd[7] << 2) | ((csd[8] & 0xC) >> 6);
|
|
uint32_t mult = 1 << (((csd[9] & 0x3) << 1 | (csd[10] & 0x80) >> 7) + 2);
|
|
self->sectors = block_length / 512 * mult * (c_size + 1);
|
|
}
|
|
}
|
|
|
|
// CMD16: set block length to 512 bytes
|
|
{
|
|
int response = cmd(self, 16, 512, NULL, 0, true, true);
|
|
if (response != 0) {
|
|
return translate("can't set 512 block size");
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void common_hal_sdcardio_sdcard_construct(sdcardio_sdcard_obj_t *self, busio_spi_obj_t *bus, mcu_pin_obj_t *cs, int baudrate) {
|
|
self->bus = bus;
|
|
common_hal_digitalio_digitalinout_construct(&self->cs, cs);
|
|
common_hal_digitalio_digitalinout_switch_to_output(&self->cs, true, DRIVE_MODE_PUSH_PULL);
|
|
|
|
self->cdv = 512;
|
|
self->sectors = 0;
|
|
self->baudrate = 250000;
|
|
|
|
lock_bus_or_throw(self);
|
|
const compressed_string_t *result = init_card(self);
|
|
extraclock_and_unlock_bus(self);
|
|
|
|
if (result != NULL) {
|
|
common_hal_digitalio_digitalinout_deinit(&self->cs);
|
|
mp_raise_OSError_msg(result);
|
|
}
|
|
|
|
self->baudrate = baudrate;
|
|
}
|
|
|
|
void common_hal_sdcardio_sdcard_deinit(sdcardio_sdcard_obj_t *self) {
|
|
if (!self->bus) {
|
|
return;
|
|
}
|
|
self->bus = 0;
|
|
common_hal_digitalio_digitalinout_deinit(&self->cs);
|
|
}
|
|
|
|
void common_hal_sdcardio_check_for_deinit(sdcardio_sdcard_obj_t *self) {
|
|
if (!self->bus) {
|
|
raise_deinited_error();
|
|
}
|
|
}
|
|
|
|
int common_hal_sdcardio_sdcard_get_blockcount(sdcardio_sdcard_obj_t *self) {
|
|
common_hal_sdcardio_check_for_deinit(self);
|
|
return self->sectors;
|
|
}
|
|
|
|
int readinto(sdcardio_sdcard_obj_t *self, void *buf, size_t size) {
|
|
uint8_t aux[2] = {0, 0};
|
|
while (aux[0] != 0xfe) {
|
|
common_hal_busio_spi_read(self->bus, aux, 1, 0xff);
|
|
}
|
|
|
|
common_hal_busio_spi_read(self->bus, buf, size, 0xff);
|
|
|
|
// Read checksum and throw it away
|
|
common_hal_busio_spi_read(self->bus, aux, sizeof(aux), 0xff);
|
|
return 0;
|
|
}
|
|
|
|
int readblocks(sdcardio_sdcard_obj_t *self, uint32_t start_block, mp_buffer_info_t *buf) {
|
|
uint32_t nblocks = buf->len / 512;
|
|
if (nblocks == 1) {
|
|
// Use CMD17 to read a single block
|
|
return block_cmd(self, 17, start_block, buf->buf, buf->len, true, true);
|
|
} else {
|
|
// Use CMD18 to read multiple blocks
|
|
int r = block_cmd(self, 18, start_block, NULL, 0, true, true);
|
|
if (r < 0) {
|
|
return r;
|
|
}
|
|
|
|
uint8_t *ptr = buf->buf;
|
|
while (nblocks--) {
|
|
r = readinto(self, ptr, 512);
|
|
if (r < 0) {
|
|
return r;
|
|
}
|
|
ptr += 512;
|
|
}
|
|
|
|
// End the multi-block read
|
|
r = cmd(self, 12, 0, NULL, 0, true, false);
|
|
|
|
// Return first status 0 or last before card ready (0xff)
|
|
while (r != 0) {
|
|
uint8_t single_byte;
|
|
common_hal_busio_spi_read(self->bus, &single_byte, 1, 0xff);
|
|
if (single_byte & 0x80) {
|
|
return r;
|
|
}
|
|
r = single_byte;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int common_hal_sdcardio_sdcard_readblocks(sdcardio_sdcard_obj_t *self, uint32_t start_block, mp_buffer_info_t *buf) {
|
|
common_hal_sdcardio_check_for_deinit(self);
|
|
if (buf->len % 512 != 0) {
|
|
mp_raise_ValueError(translate("Buffer length must be a multiple of 512"));
|
|
}
|
|
|
|
lock_and_configure_bus(self);
|
|
int r = readblocks(self, start_block, buf);
|
|
extraclock_and_unlock_bus(self);
|
|
return r;
|
|
}
|
|
|
|
int _write(sdcardio_sdcard_obj_t *self, uint8_t token, void *buf, size_t size) {
|
|
wait_for_ready(self);
|
|
|
|
uint8_t cmd[2];
|
|
cmd[0] = token;
|
|
|
|
common_hal_busio_spi_write(self->bus, cmd, 1);
|
|
common_hal_busio_spi_write(self->bus, buf, size);
|
|
|
|
cmd[0] = cmd[1] = 0xff;
|
|
common_hal_busio_spi_write(self->bus, cmd, 2);
|
|
|
|
// Check the response
|
|
// This differs from the traditional adafruit_sdcard handling,
|
|
// but adafruit_sdcard also ignored the return value of SDCard._write(!)
|
|
// so nobody noticed
|
|
//
|
|
//
|
|
// Response is as follows:
|
|
// x x x 0 STAT 1
|
|
// 7 6 5 4 3..1 0
|
|
// with STATUS 010 indicating "data accepted", and other status bit
|
|
// combinations indicating failure.
|
|
// In practice, I was seeing cmd[0] as 0xe5, indicating success
|
|
for (int i=0; i<CMD_TIMEOUT; i++) {
|
|
common_hal_busio_spi_read(self->bus, cmd, 1, 0xff);
|
|
DEBUG_PRINT("i=%02d cmd[0] = 0x%02x\n", i, cmd[0]);
|
|
if ((cmd[0] & 0b00010001) == 0b00000001) {
|
|
if ((cmd[0] & 0x1f) != 0x5) {
|
|
return -EIO;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Wait for the write to finish
|
|
do {
|
|
common_hal_busio_spi_read(self->bus, cmd, 1, 0xff);
|
|
} while (cmd[0] == 0);
|
|
|
|
// Success
|
|
return 0;
|
|
}
|
|
|
|
int writeblocks(sdcardio_sdcard_obj_t *self, uint32_t start_block, mp_buffer_info_t *buf) {
|
|
common_hal_sdcardio_check_for_deinit(self);
|
|
uint32_t nblocks = buf->len / 512;
|
|
if (nblocks == 1) {
|
|
// Use CMD24 to write a single block
|
|
int r = block_cmd(self, 24, start_block, NULL, 0, true, true);
|
|
if (r < 0) {
|
|
return r;
|
|
}
|
|
r = _write(self, TOKEN_DATA, buf->buf, buf->len);
|
|
if (r < 0) {
|
|
return r;
|
|
}
|
|
} else {
|
|
// Use CMD25 to write multiple block
|
|
int r = block_cmd(self, 25, start_block, NULL, 0, true, true);
|
|
if (r < 0) {
|
|
return r;
|
|
}
|
|
|
|
uint8_t *ptr = buf->buf;
|
|
while (nblocks--) {
|
|
r = _write(self, TOKEN_CMD25, ptr, 512);
|
|
if (r < 0) {
|
|
return r;
|
|
}
|
|
ptr += 512;
|
|
}
|
|
|
|
cmd_nodata(self, TOKEN_STOP_TRAN, 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int common_hal_sdcardio_sdcard_writeblocks(sdcardio_sdcard_obj_t *self, uint32_t start_block, mp_buffer_info_t *buf) {
|
|
common_hal_sdcardio_check_for_deinit(self);
|
|
if (buf->len % 512 != 0) {
|
|
mp_raise_ValueError(translate("Buffer length must be a multiple of 512"));
|
|
}
|
|
lock_and_configure_bus(self);
|
|
int r = writeblocks(self, start_block, buf);
|
|
extraclock_and_unlock_bus(self);
|
|
return r;
|
|
}
|