circuitpython/ports/nrf/common-hal/busio/I2C.c
2017-12-21 13:49:14 +01:00

208 lines
6.3 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Sandeep Mistry All right reserved.
* Copyright (c) 2017 hathach
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/busio/I2C.h"
#include "py/mperrno.h"
#include "py/runtime.h"
#include "pins.h"
#include "nrf.h"
void common_hal_busio_i2c_construct(busio_i2c_obj_t *self, const mcu_pin_obj_t* scl, const mcu_pin_obj_t* sda, uint32_t frequency) {
if (scl->pin == sda->pin) {
mp_raise_ValueError("Invalid pins");
}
NRF_GPIO->PIN_CNF[scl->pin] = ((uint32_t)GPIO_PIN_CNF_DIR_Input << GPIO_PIN_CNF_DIR_Pos)
| ((uint32_t)GPIO_PIN_CNF_INPUT_Disconnect << GPIO_PIN_CNF_INPUT_Pos)
| ((uint32_t)GPIO_PIN_CNF_PULL_Disabled << GPIO_PIN_CNF_PULL_Pos)
| ((uint32_t)GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos)
| ((uint32_t)GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos);
NRF_GPIO->PIN_CNF[sda->pin] = ((uint32_t)GPIO_PIN_CNF_DIR_Input << GPIO_PIN_CNF_DIR_Pos)
| ((uint32_t)GPIO_PIN_CNF_INPUT_Disconnect << GPIO_PIN_CNF_INPUT_Pos)
| ((uint32_t)GPIO_PIN_CNF_PULL_Disabled << GPIO_PIN_CNF_PULL_Pos)
| ((uint32_t)GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos)
| ((uint32_t)GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos);
// 1 for I2C, 0 for SPI
self->twi = NRF_TWIM1;
if ( frequency < 100000 ) {
self->twi->FREQUENCY = TWIM_FREQUENCY_FREQUENCY_K100;
}else if ( frequency < 250000 ) {
self->twi->FREQUENCY = TWIM_FREQUENCY_FREQUENCY_K250;
}else {
self->twi->FREQUENCY = TWIM_FREQUENCY_FREQUENCY_K400;
}
self->twi->ENABLE = (TWIM_ENABLE_ENABLE_Enabled << TWIM_ENABLE_ENABLE_Pos);
self->twi->PSEL.SCL = scl->pin;
self->twi->PSEL.SDA = sda->pin;
}
bool common_hal_busio_i2c_deinited(busio_i2c_obj_t *self) {
return self->twi->ENABLE == 0;
}
void common_hal_busio_i2c_deinit(busio_i2c_obj_t *self) {
if (common_hal_busio_i2c_deinited(self)) {
return;
}
uint8_t scl_pin = self->twi->PSEL.SCL;
uint8_t sda_pin = self->twi->PSEL.SDA;
self->twi->ENABLE = (TWIM_ENABLE_ENABLE_Disabled << TWIM_ENABLE_ENABLE_Pos);
self->twi->PSEL.SCL = (TWIM_PSEL_SCL_CONNECT_Disconnected << TWIM_PSEL_SCL_CONNECT_Pos);
self->twi->PSEL.SDA = (TWIM_PSEL_SDA_CONNECT_Disconnected << TWIM_PSEL_SDA_CONNECT_Pos);
reset_pin(scl_pin);
reset_pin(sda_pin);
}
bool common_hal_busio_i2c_probe(busio_i2c_obj_t *self, uint8_t addr) {
// Write no data when just probing
return 0 == common_hal_busio_i2c_write(self, addr, NULL, 0, true);
}
bool common_hal_busio_i2c_try_lock(busio_i2c_obj_t *self) {
bool grabbed_lock = false;
// CRITICAL_SECTION_ENTER()
if (!self->has_lock) {
grabbed_lock = true;
self->has_lock = true;
}
// CRITICAL_SECTION_LEAVE();
return grabbed_lock;
}
bool common_hal_busio_i2c_has_lock(busio_i2c_obj_t *self) {
return self->has_lock;
}
void common_hal_busio_i2c_unlock(busio_i2c_obj_t *self) {
self->has_lock = false;
}
uint8_t common_hal_busio_i2c_write(busio_i2c_obj_t *self, uint16_t addr, const uint8_t *data, size_t len, bool stopBit) {
NRF_TWIM_Type* twi = self->twi;
twi->ADDRESS = addr;
twi->TASKS_RESUME = 1;
twi->TXD.PTR = (uint32_t) data;
twi->TXD.MAXCNT = len;
twi->TASKS_STARTTX = 1;
// Wait for TX started
while(!twi->EVENTS_TXSTARTED && !twi->EVENTS_ERROR) {}
twi->EVENTS_TXSTARTED = 0;
// Wait for TX complete
if ( len )
{
while(!twi->EVENTS_LASTTX && !twi->EVENTS_ERROR) {}
twi->EVENTS_LASTTX = 0x0UL;
}
if (stopBit || twi->EVENTS_ERROR)
{
twi->TASKS_STOP = 0x1UL;
while(!twi->EVENTS_STOPPED);
twi->EVENTS_STOPPED = 0x0UL;
}
else
{
twi->TASKS_SUSPEND = 0x1UL;
while(!twi->EVENTS_SUSPENDED);
twi->EVENTS_SUSPENDED = 0x0UL;
}
if (twi->EVENTS_ERROR)
{
twi->EVENTS_ERROR = 0x0UL;
uint32_t error = twi->ERRORSRC;
twi->ERRORSRC = error;
return error;
}
return 0;
}
uint8_t common_hal_busio_i2c_read(busio_i2c_obj_t *self, uint16_t addr, uint8_t *data, size_t len) {
NRF_TWIM_Type* twi = self->twi;
if(len == 0) return 0;
bool stopBit = true; // should be a parameter
twi->ADDRESS = addr;
twi->TASKS_RESUME = 0x1UL;
twi->RXD.PTR = (uint32_t) data;
twi->RXD.MAXCNT = len;
twi->TASKS_STARTRX = 0x1UL;
while(!twi->EVENTS_RXSTARTED && !twi->EVENTS_ERROR);
twi->EVENTS_RXSTARTED = 0x0UL;
while(!twi->EVENTS_LASTRX && !twi->EVENTS_ERROR);
twi->EVENTS_LASTRX = 0x0UL;
if (stopBit || twi->EVENTS_ERROR)
{
twi->TASKS_STOP = 0x1UL;
while(!twi->EVENTS_STOPPED);
twi->EVENTS_STOPPED = 0x0UL;
}
else
{
twi->TASKS_SUSPEND = 0x1UL;
while(!twi->EVENTS_SUSPENDED);
twi->EVENTS_SUSPENDED = 0x0UL;
}
if (twi->EVENTS_ERROR)
{
twi->EVENTS_ERROR = 0x0UL;
uint32_t error = twi->ERRORSRC;
twi->ERRORSRC = error;
return error;
}
// number of byte read
// (void) _p_twim->RXD.AMOUNT;
return 0;
}