884 lines
34 KiB
C
884 lines
34 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2017-2020 Nick Moore
|
|
* Copyright (c) 2018 shawwwn <shawwwn1@gmail.com>
|
|
* Copyright (c) 2020-2021 Glenn Moloney @glenn20
|
|
* Copyright (c) 2023 MicroDev
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include "esp_now.h"
|
|
|
|
#include "py/runtime.h"
|
|
#include "py/objarray.h"
|
|
#include "py/objproperty.h"
|
|
#include "py/stream.h"
|
|
#include "py/ringbuf.h"
|
|
|
|
#include "mphalport.h"
|
|
|
|
#include "bindings/espnow/__init__.h"
|
|
#include "bindings/espnow/ESPNow.h"
|
|
|
|
#include "shared-bindings/util.h"
|
|
#include "shared-bindings/wifi/__init__.h"
|
|
|
|
#define ESPNOW_MAGIC 0x99
|
|
|
|
// The maximum length of an espnow packet (bytes)
|
|
#define MAX_PACKET_LEN (sizeof(espnow_packet_t) + ESP_NOW_MAX_DATA_LEN)
|
|
|
|
// Enough for 2 full-size packets: 2 * (6 + 7 + 250) = 526 bytes
|
|
// Will allocate an additional 7 bytes for buffer overhead
|
|
#define DEFAULT_RECV_BUFFER_SIZE (2 * MAX_PACKET_LEN)
|
|
|
|
// Default timeout (millisec) to wait for incoming ESPNow messages (5 minutes).
|
|
#define DEFAULT_RECV_TIMEOUT_MS (5 * 60 * 1000)
|
|
|
|
// Time to wait (millisec) for responses from sent packets: (2 seconds).
|
|
#define DEFAULT_SEND_TIMEOUT_MS (2 * 1000)
|
|
|
|
// Number of milliseconds to wait for pending responses to sent packets.
|
|
// This is a fallback which should never be reached.
|
|
#define PENDING_RESPONSES_TIMEOUT_MS 100
|
|
#define PENDING_RESPONSES_BUSY_POLL_MS 10
|
|
|
|
// ESPNow packet format for the receive buffer.
|
|
// Use this for peeking at the header of the next packet in the buffer.
|
|
typedef struct {
|
|
uint8_t magic; // = ESPNOW_MAGIC
|
|
uint8_t msg_len; // Length of the message
|
|
uint32_t time_ms; // Timestamp (ms) when packet is received
|
|
int8_t rssi; // RSSI value (dBm) (-127 to 0)
|
|
} __attribute__((packed)) espnow_header_t;
|
|
|
|
typedef struct {
|
|
espnow_header_t header; // The header
|
|
uint8_t peer[6]; // Peer address
|
|
uint8_t msg[0]; // Message is up to 250 bytes
|
|
} __attribute__((packed)) espnow_packet_t;
|
|
|
|
// The data structure for the espnow_singleton.
|
|
typedef struct _espnow_obj_t {
|
|
mp_obj_base_t base;
|
|
ringbuf_t *recv_buffer; // A buffer for received packets
|
|
size_t recv_buffer_size; // The size of the recv_buffer
|
|
wifi_phy_rate_t phy_rate; // The ESP-NOW physical layer rate.
|
|
volatile size_t rx_packets; // # of received packets
|
|
volatile size_t rx_failures; // # of dropped packets (buffer full)
|
|
size_t tx_packets; // # of sent packets
|
|
volatile size_t tx_responses; // # of sent packet responses received
|
|
volatile size_t tx_failures; // # of sent packet responses failed
|
|
size_t peers_count; // Cache the # of peers for send(sync=True)
|
|
mp_obj_t peers_table; // A dictionary of discovered peers
|
|
} espnow_obj_t;
|
|
|
|
static void check_esp_err(esp_err_t status) {
|
|
if (status != ESP_OK) {
|
|
mp_raise_RuntimeError(translate("an error occured"));
|
|
}
|
|
}
|
|
|
|
// --- Initialisation and Config functions ---
|
|
|
|
// Return a pointer to the ESPNow module singleton
|
|
static espnow_obj_t *_get_singleton(void) {
|
|
return MP_STATE_PORT(espnow_singleton);
|
|
}
|
|
|
|
static bool espnow_deinited(espnow_obj_t *self) {
|
|
return self->recv_buffer == NULL;
|
|
}
|
|
|
|
static void check_for_deinit(espnow_obj_t *self) {
|
|
if (espnow_deinited(self)) {
|
|
raise_deinited_error();
|
|
}
|
|
}
|
|
|
|
static void _set_buffer_size(espnow_obj_t *self, mp_int_t value) {
|
|
self->recv_buffer_size = mp_arg_validate_int_min(value, MAX_PACKET_LEN, MP_QSTR_buffer_size);
|
|
};
|
|
|
|
static void _set_phy_rate(espnow_obj_t *self, mp_int_t value) {
|
|
self->phy_rate = mp_arg_validate_int_range(value, 0, WIFI_PHY_RATE_MAX - 1, MP_QSTR_phy_rate);
|
|
};
|
|
|
|
//| class ESPNow:
|
|
//| """Provides access to the ESP-NOW protocol."""
|
|
//|
|
|
//| def __init__(self, buffer_size: Optional[int], phy_rate: Optional[int]) -> None:
|
|
//| """Allocate and initialize `ESPNow` instance as a singleton.
|
|
//|
|
|
//| :param int buffer_size: The size of the internal ring buffer (length > 263 bytes). Default: 526 bytes.
|
|
//| :param int phy_rate: The ESP-NOW physical layer rate. Default 1 Mbps."""
|
|
//| ...
|
|
STATIC mp_obj_t espnow_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
|
|
enum { ARG_buffer_size, ARG_phy_rate };
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_buffer_size, MP_ARG_INT, { .u_int = DEFAULT_RECV_BUFFER_SIZE } },
|
|
{ MP_QSTR_phy_rate, MP_ARG_INT, { .u_int = WIFI_PHY_RATE_1M_L } },
|
|
};
|
|
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
espnow_obj_t *self = _get_singleton();
|
|
|
|
if (self == NULL) {
|
|
self = m_new_obj(espnow_obj_t);
|
|
self->base.type = &espnow_type;
|
|
|
|
_set_buffer_size(self, args[ARG_buffer_size].u_int);
|
|
_set_phy_rate(self, args[ARG_phy_rate].u_int);
|
|
|
|
self->peers_table = mp_obj_new_dict(0);
|
|
|
|
// Prevent user code modifying the dict
|
|
mp_obj_dict_get_map(self->peers_table)->is_fixed = 1;
|
|
|
|
// Set the global singleton pointer for the espnow protocol.
|
|
MP_STATE_PORT(espnow_singleton) = self;
|
|
}
|
|
|
|
return self;
|
|
}
|
|
|
|
// --- The ESP-NOW send and recv callback routines ---
|
|
|
|
// Callback triggered when a sent packet is acknowledged by the peer (or not).
|
|
// Just count the number of responses and number of failures.
|
|
// These are used in the send() logic.
|
|
static void send_cb(const uint8_t *mac, esp_now_send_status_t status) {
|
|
espnow_obj_t *self = _get_singleton();
|
|
self->tx_responses++;
|
|
if (status != ESP_NOW_SEND_SUCCESS) {
|
|
self->tx_failures++;
|
|
}
|
|
}
|
|
|
|
static inline int8_t _get_rssi_from_wifi_packet(const uint8_t *msg);
|
|
|
|
// Callback triggered when an ESP-NOW packet is received.
|
|
// Write the peer MAC address and the message into the recv_buffer as an ESPNow packet.
|
|
// If the buffer is full, drop the message and increment the dropped count.
|
|
static void recv_cb(const uint8_t *mac, const uint8_t *msg, int msg_len) {
|
|
espnow_obj_t *self = _get_singleton();
|
|
ringbuf_t *buf = self->recv_buffer;
|
|
|
|
if (sizeof(espnow_packet_t) + msg_len > ringbuf_num_empty(buf)) {
|
|
self->rx_failures++;
|
|
return;
|
|
}
|
|
|
|
espnow_header_t header;
|
|
header.magic = ESPNOW_MAGIC;
|
|
header.msg_len = msg_len;
|
|
header.rssi = _get_rssi_from_wifi_packet(msg);
|
|
header.time_ms = mp_hal_ticks_ms();
|
|
|
|
ringbuf_put_n(buf, (uint8_t *)&header, sizeof(header));
|
|
ringbuf_put_n(buf, mac, ESP_NOW_ETH_ALEN);
|
|
ringbuf_put_n(buf, msg, msg_len);
|
|
|
|
self->rx_packets++;
|
|
}
|
|
|
|
// Initialize the ESP-NOW software stack,
|
|
// register callbacks and allocate the recv data buffers.
|
|
static void espnow_init(espnow_obj_t *self) {
|
|
if (espnow_deinited(self)) {
|
|
self->recv_buffer = m_new_obj(ringbuf_t);
|
|
if (!ringbuf_alloc(self->recv_buffer, self->recv_buffer_size, true)) {
|
|
m_malloc_fail(self->recv_buffer_size);
|
|
}
|
|
|
|
if (!common_hal_wifi_radio_get_enabled(&common_hal_wifi_radio_obj)) {
|
|
common_hal_wifi_init(false);
|
|
common_hal_wifi_radio_set_enabled(&common_hal_wifi_radio_obj, true);
|
|
}
|
|
|
|
check_esp_err(esp_wifi_config_espnow_rate(ESP_IF_WIFI_STA, self->phy_rate));
|
|
check_esp_err(esp_wifi_config_espnow_rate(ESP_IF_WIFI_AP, self->phy_rate));
|
|
|
|
check_esp_err(esp_now_init());
|
|
check_esp_err(esp_now_register_send_cb(send_cb));
|
|
check_esp_err(esp_now_register_recv_cb(recv_cb));
|
|
}
|
|
}
|
|
|
|
// De-initialize the ESP-NOW software stack,
|
|
// disable callbacks and deallocate the recv data buffers.
|
|
static void espnow_deinit(espnow_obj_t *self) {
|
|
if (self != NULL && !espnow_deinited(self)) {
|
|
check_esp_err(esp_now_unregister_send_cb());
|
|
check_esp_err(esp_now_unregister_recv_cb());
|
|
check_esp_err(esp_now_deinit());
|
|
self->recv_buffer->buf = NULL;
|
|
self->recv_buffer = NULL;
|
|
self->peers_count = 0; // esp_now_deinit() removes all peers.
|
|
self->tx_packets = self->tx_responses;
|
|
}
|
|
}
|
|
|
|
void espnow_reset(void) {
|
|
espnow_deinit(_get_singleton());
|
|
MP_STATE_PORT(espnow_singleton) = NULL;
|
|
}
|
|
|
|
// Return C pointer to byte memory string/bytes/bytearray in obj.
|
|
// Raise ValueError if the length does not match expected len.
|
|
static uint8_t *_get_bytes_len(mp_obj_t obj, size_t len, mp_uint_t rw) {
|
|
mp_buffer_info_t bufinfo;
|
|
mp_get_buffer_raise(obj, &bufinfo, rw);
|
|
mp_arg_validate_length(bufinfo.len, len, MP_QSTR_buffer);
|
|
return (uint8_t *)bufinfo.buf;
|
|
}
|
|
|
|
//| def set_pmk(self, pmk: ReadableBuffer) -> None:
|
|
//| """Set the ESP-NOW Primary Master Key (pmk) for encrypted communications.
|
|
//|
|
|
//| :param ReadableBuffer pmk: The ESP-NOW Primary Master Key (length = 16 bytes)."""
|
|
//| ...
|
|
STATIC mp_obj_t espnow_set_pmk(mp_obj_t self_in, mp_obj_t key) {
|
|
check_esp_err(esp_now_set_pmk(_get_bytes_len(key, ESP_NOW_KEY_LEN, MP_BUFFER_READ)));
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_2(espnow_set_pmk_obj, espnow_set_pmk);
|
|
|
|
//| active: bool
|
|
//| """Initialize or de-initialize the `ESPNow` communication protocol."""
|
|
//|
|
|
STATIC mp_obj_t espnow_get_active(const mp_obj_t self_in) {
|
|
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
return mp_obj_new_bool(!espnow_deinited(self));
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_active_obj, espnow_get_active);
|
|
|
|
STATIC mp_obj_t espnow_set_active(const mp_obj_t self_in, const mp_obj_t value) {
|
|
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
mp_obj_is_true(value) ? espnow_init(self) : espnow_deinit(self);
|
|
return mp_const_none;
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_2(espnow_set_active_obj, espnow_set_active);
|
|
|
|
MP_PROPERTY_GETSET(espnow_active_obj,
|
|
(mp_obj_t)&espnow_get_active_obj,
|
|
(mp_obj_t)&espnow_set_active_obj);
|
|
|
|
|
|
//| buffer_size: int
|
|
//| """The size of the internal ring buffer."""
|
|
//|
|
|
STATIC mp_obj_t espnow_get_buffer_size(const mp_obj_t self_in) {
|
|
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
return MP_OBJ_NEW_SMALL_INT(self->recv_buffer_size);
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_buffer_size_obj, espnow_get_buffer_size);
|
|
|
|
STATIC mp_obj_t espnow_set_buffer_size(const mp_obj_t self_in, const mp_obj_t value) {
|
|
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
_set_buffer_size(self, mp_obj_get_int(value));
|
|
return mp_const_none;
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_2(espnow_set_buffer_size_obj, espnow_set_buffer_size);
|
|
|
|
MP_PROPERTY_GETSET(espnow_buffer_size_obj,
|
|
(mp_obj_t)&espnow_get_buffer_size_obj,
|
|
(mp_obj_t)&espnow_set_buffer_size_obj);
|
|
|
|
//| phy_rate: int
|
|
//| """The ESP-NOW physical layer rate."""
|
|
//|
|
|
STATIC mp_obj_t espnow_get_phy_rate(const mp_obj_t self_in) {
|
|
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
return MP_OBJ_NEW_SMALL_INT(self->phy_rate);
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_phy_rate_obj, espnow_get_phy_rate);
|
|
|
|
STATIC mp_obj_t espnow_set_phy_rate(const mp_obj_t self_in, const mp_obj_t value) {
|
|
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
_set_phy_rate(self, mp_obj_get_int(value));
|
|
return mp_const_none;
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_2(espnow_set_phy_rate_obj, espnow_set_phy_rate);
|
|
|
|
MP_PROPERTY_GETSET(espnow_phy_rate_obj,
|
|
(mp_obj_t)&espnow_get_phy_rate_obj,
|
|
(mp_obj_t)&espnow_set_phy_rate_obj);
|
|
|
|
//| stats: Tuple[int, int, int, int, int]
|
|
//| """Provide some useful stats in a `tuple` of
|
|
//| (tx_packets, tx_responses, tx_failures, rx_packets, rx_failures). (read-only)"""
|
|
//|
|
|
STATIC mp_obj_t espnow_get_stats(mp_obj_t self_in) {
|
|
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
return MP_OBJ_NEW_TUPLE(
|
|
mp_obj_new_int(self->tx_packets),
|
|
mp_obj_new_int(self->tx_responses),
|
|
mp_obj_new_int(self->tx_failures),
|
|
mp_obj_new_int(self->rx_packets),
|
|
mp_obj_new_int(self->rx_failures));
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_stats_obj, espnow_get_stats);
|
|
|
|
MP_PROPERTY_GETTER(espnow_stats_obj,
|
|
(mp_obj_t)&espnow_get_stats_obj);
|
|
|
|
// --- Maintaining the peer table and reading RSSI values ---
|
|
|
|
// We maintain a peers table for several reasons, to:
|
|
// - support monitoring the RSSI values for all peers; and
|
|
// - to return unique bytestrings for each peer which supports more efficient
|
|
// application memory usage and peer handling.
|
|
|
|
// Get the RSSI value from the wifi packet header
|
|
static inline int8_t _get_rssi_from_wifi_packet(const uint8_t *msg) {
|
|
// Warning: Secret magic to get the rssi from the wifi packet header
|
|
// See espnow.c:espnow_recv_cb() at https://github.com/espressif/esp-now/
|
|
// In the wifi packet the msg comes after a wifi_promiscuous_pkt_t
|
|
// and a espnow_frame_format_t.
|
|
// Backtrack to get a pointer to the wifi_promiscuous_pkt_t.
|
|
#define SIZEOF_ESPNOW_FRAME_FORMAT 39
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wcast-align"
|
|
wifi_promiscuous_pkt_t *wifi_packet = (wifi_promiscuous_pkt_t *)(
|
|
msg - SIZEOF_ESPNOW_FRAME_FORMAT - sizeof(wifi_promiscuous_pkt_t));
|
|
#pragma GCC diagnostic pop
|
|
return wifi_packet->rx_ctrl.rssi;
|
|
}
|
|
|
|
// Lookup a peer in the peers table and return a reference to the item in the peers_table.
|
|
// Add peer to the table if it is not found (may alloc memory). Will not return NULL.
|
|
static mp_map_elem_t *_lookup_add_peer(espnow_obj_t *self, const uint8_t *peer) {
|
|
// We do not want to allocate any new memory in the case that the peer
|
|
// already exists in the peers_table (which is almost all the time).
|
|
// So, we use a byte string on the stack and look that up in the dict.
|
|
mp_map_t *map = mp_obj_dict_get_map(self->peers_table);
|
|
mp_obj_str_t peer_obj = {{&mp_type_bytes}, 0, ESP_NOW_ETH_ALEN, peer};
|
|
mp_map_elem_t *item = mp_map_lookup(map, &peer_obj, MP_MAP_LOOKUP);
|
|
if (item == NULL) {
|
|
// If not found, add the peer using a new bytestring
|
|
map->is_fixed = 0; // Allow to modify the dict
|
|
mp_obj_t new_peer = mp_obj_new_bytes(peer, ESP_NOW_ETH_ALEN);
|
|
item = mp_map_lookup(map, new_peer, MP_MAP_LOOKUP_ADD_IF_NOT_FOUND);
|
|
item->value = mp_obj_new_list(2, NULL);
|
|
map->is_fixed = 1; // Relock the dict
|
|
}
|
|
return item;
|
|
}
|
|
|
|
// Update the peers table with the new rssi value from a received packet and
|
|
// return a reference to the item in the peers_table.
|
|
static void _update_rssi(espnow_obj_t *self, const uint8_t *peer, int8_t rssi, uint32_t time_ms) {
|
|
// Lookup the peer in the device table
|
|
mp_map_elem_t *item = _lookup_add_peer(self, peer);
|
|
mp_obj_list_t *list = MP_OBJ_TO_PTR(item->value);
|
|
list->items[0] = MP_OBJ_NEW_SMALL_INT(rssi);
|
|
list->items[1] = mp_obj_new_int(time_ms);
|
|
}
|
|
|
|
// --- Handling espnow packets in the recv buffer ---
|
|
|
|
// --- Send and Receive ESP-NOW data ---
|
|
|
|
// Return C pointer to the MAC address.
|
|
// Raise ValueError if mac is wrong type or is not 6 bytes long.
|
|
static const uint8_t *_get_peer_addr(mp_obj_t mac) {
|
|
return mp_obj_is_true(mac) ? _get_bytes_len(mac, ESP_NOW_ETH_ALEN, MP_BUFFER_READ) : NULL;
|
|
}
|
|
|
|
// Used by espnow_send() for sends() with sync==True.
|
|
// Wait till all pending sent packet responses have been received.
|
|
// ie. self->tx_responses == self->tx_packets.
|
|
static void _wait_for_pending_responses(espnow_obj_t *self) {
|
|
mp_uint_t t, start = mp_hal_ticks_ms();
|
|
while (self->tx_responses < self->tx_packets) {
|
|
if ((t = mp_hal_ticks_ms() - start) > PENDING_RESPONSES_TIMEOUT_MS) {
|
|
mp_raise_OSError(MP_ETIMEDOUT);
|
|
}
|
|
if (t > PENDING_RESPONSES_BUSY_POLL_MS) {
|
|
// After 10ms of busy waiting give other tasks a look in.
|
|
RUN_BACKGROUND_TASKS;
|
|
}
|
|
}
|
|
}
|
|
|
|
//| def send(
|
|
//| self,
|
|
//| message: ReadableBuffer,
|
|
//| mac: Optional[ReadableBuffer],
|
|
//| sync: bool = True,
|
|
//| ) -> bool:
|
|
//| """Send a message to the peer's mac address. Optionally wait for a response.
|
|
//|
|
|
//| :param ReadableBuffer message: The message to send (length <= 250 bytes).
|
|
//| :param ReadableBuffer mac: The peer's address (length = 6 bytes). If `None` or any non-true value, send to all registered peers.
|
|
//| :param bool sync: If `True`, wait for response from peer(s) after sending.
|
|
//|
|
|
//| :returns:
|
|
//| `True` if sync == `False` and message sent successfully.
|
|
//| `True` if sync == `True` and message is received successfully by all recipients
|
|
//| `False` if sync == `True` and message is not received by at least one recipient
|
|
//|
|
|
//| :raises EAGAIN: if the internal espnow buffers are full."""
|
|
//| ...
|
|
STATIC mp_obj_t espnow_send(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
enum { ARG_message, ARG_mac, ARG_sync };
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_message, MP_ARG_OBJ | MP_ARG_REQUIRED },
|
|
{ MP_QSTR_mac, MP_ARG_OBJ, { .u_obj = mp_const_none } },
|
|
{ MP_QSTR_sync, MP_ARG_BOOL, { .u_bool = mp_const_true } },
|
|
};
|
|
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
espnow_obj_t *self = pos_args[0];
|
|
check_for_deinit(self);
|
|
|
|
const bool sync = mp_obj_is_true(args[ARG_sync].u_obj);
|
|
|
|
if (sync) {
|
|
// Flush out any pending responses.
|
|
// If the last call was sync == False there may be outstanding responses
|
|
// still to be received (possible many if we just had a burst of unsync send()s).
|
|
// We need to wait for all pending responses if this call has sync = True.
|
|
_wait_for_pending_responses(self);
|
|
}
|
|
|
|
const uint8_t *peer_addr = _get_peer_addr(args[ARG_mac].u_obj);
|
|
|
|
// Get a pointer to the data buffer of the message
|
|
mp_buffer_info_t message;
|
|
mp_get_buffer_raise(args[ARG_message].u_obj, &message, MP_BUFFER_READ);
|
|
|
|
// Send the packet - try, try again if internal esp-now buffers are full.
|
|
esp_err_t err;
|
|
size_t saved_failures = self->tx_failures;
|
|
mp_uint_t start = mp_hal_ticks_ms();
|
|
|
|
while ((ESP_ERR_ESPNOW_NO_MEM == (err = esp_now_send(peer_addr, message.buf, message.len))) &&
|
|
(mp_hal_ticks_ms() - start) <= DEFAULT_SEND_TIMEOUT_MS) {
|
|
RUN_BACKGROUND_TASKS;
|
|
}
|
|
check_esp_err(err);
|
|
|
|
// Increment the sent packet count.
|
|
// If peer_addr == NULL msg will be sent to all peers EXCEPT any broadcast or multicast addresses.
|
|
self->tx_packets += ((peer_addr == NULL) ? self->peers_count : 1);
|
|
|
|
if (sync) {
|
|
// Wait for and tally all the expected responses from peers
|
|
_wait_for_pending_responses(self);
|
|
}
|
|
|
|
// Return False if sync and any peers did not respond.
|
|
return mp_obj_new_bool(!(sync && self->tx_failures != saved_failures));
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(espnow_send_obj, 2, espnow_send);
|
|
|
|
//| def recv(self, buffers: List[WriteableBuffer]) -> int:
|
|
//| """Loads mac, message, rssi and timestamp into the provided buffers.
|
|
//|
|
|
//| If buffers is 2 elements long, the mac and message will be
|
|
//| loaded into the 1st and 2nd elements.
|
|
//| If buffers is 4 elements long, the rssi and timestamp values will be
|
|
//| loaded into the 3rd and 4th elements.
|
|
//|
|
|
//| :param List[WriteableBuffer] buffers: List of buffers to be loaded.
|
|
//|
|
|
//| :returns: Length of the message."""
|
|
//| ...
|
|
STATIC mp_obj_t espnow_recv(mp_obj_t self_in, mp_obj_t buffers) {
|
|
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
check_for_deinit(self);
|
|
|
|
mp_obj_list_t *list = MP_OBJ_TO_PTR(buffers);
|
|
if (!mp_obj_is_type(list, &mp_type_list) || list->len < 2) {
|
|
mp_arg_error_invalid(MP_QSTR_buffers);
|
|
}
|
|
|
|
mp_obj_array_t *msg = MP_OBJ_TO_PTR(list->items[1]);
|
|
if (mp_obj_is_type(msg, &mp_type_bytearray)) {
|
|
msg->len += msg->free; // Make all the space in msg array available
|
|
msg->free = 0;
|
|
}
|
|
|
|
uint8_t *peer_buf = _get_bytes_len(list->items[0], ESP_NOW_ETH_ALEN, MP_BUFFER_WRITE);
|
|
uint8_t *msg_buf = _get_bytes_len(msg, ESP_NOW_MAX_DATA_LEN, MP_BUFFER_WRITE);
|
|
|
|
// Read the packet header from the incoming buffer
|
|
espnow_header_t header;
|
|
if (!ringbuf_get_n(self->recv_buffer, (uint8_t *)&header, sizeof(header))) {
|
|
return MP_OBJ_NEW_SMALL_INT(0);
|
|
}
|
|
|
|
uint8_t msg_len = header.msg_len;
|
|
|
|
// Check the message packet header format and read the message data
|
|
if (header.magic != ESPNOW_MAGIC ||
|
|
msg_len > ESP_NOW_MAX_DATA_LEN ||
|
|
!ringbuf_get_n(self->recv_buffer, peer_buf, ESP_NOW_ETH_ALEN) ||
|
|
!ringbuf_get_n(self->recv_buffer, msg_buf, msg_len)) {
|
|
mp_arg_error_invalid(MP_QSTR_buffer);
|
|
}
|
|
if (mp_obj_is_type(msg, &mp_type_bytearray)) {
|
|
// Set the length of the message bytearray.
|
|
size_t size = msg->len + msg->free;
|
|
msg->len = msg_len;
|
|
msg->free = size - msg_len;
|
|
}
|
|
|
|
// Update rssi value in the peer device table
|
|
_update_rssi(self, peer_buf, header.rssi, header.time_ms);
|
|
if (list->len == 4) {
|
|
list->items[2] = MP_OBJ_NEW_SMALL_INT(header.rssi);
|
|
list->items[3] = mp_obj_new_int(header.time_ms);
|
|
}
|
|
|
|
return MP_OBJ_NEW_SMALL_INT(msg_len);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_2(espnow_recv_obj, espnow_recv);
|
|
|
|
// --- Peer Management Functions ---
|
|
|
|
// Common code for add_peer() and mod_peer() to process the args.
|
|
static void _update_peer_info(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args, bool modify) {
|
|
enum { ARG_mac, ARG_lmk, ARG_channel, ARG_interface, ARG_encrypt };
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_mac, MP_ARG_OBJ | MP_ARG_REQUIRED },
|
|
{ MP_QSTR_lmk, MP_ARG_OBJ, { .u_obj = mp_const_none } },
|
|
{ MP_QSTR_channel, MP_ARG_INT, { .u_obj = mp_const_none } },
|
|
{ MP_QSTR_interface,MP_ARG_INT, { .u_obj = mp_const_none } },
|
|
{ MP_QSTR_encrypt, MP_ARG_BOOL,{ .u_obj = mp_const_none } },
|
|
};
|
|
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
esp_now_peer_info_t peer = {0};
|
|
memcpy(peer.peer_addr, _get_peer_addr(args[ARG_mac].u_obj), ESP_NOW_ETH_ALEN);
|
|
|
|
if (modify) {
|
|
check_esp_err(esp_now_get_peer(peer.peer_addr, &peer));
|
|
} else {
|
|
if (esp_now_is_peer_exist(peer.peer_addr)) {
|
|
mp_raise_RuntimeError(translate("peer already exists"));
|
|
}
|
|
peer.channel = 0;
|
|
peer.ifidx = WIFI_IF_STA;
|
|
peer.encrypt = false;
|
|
}
|
|
|
|
const mp_obj_t channel = args[ARG_channel].u_obj;
|
|
if (channel != mp_const_none) {
|
|
peer.channel = mp_arg_validate_int_range(mp_obj_get_int(channel), 1, 14, MP_QSTR_channel);
|
|
}
|
|
|
|
const mp_obj_t interface = args[ARG_interface].u_obj;
|
|
if (interface != mp_const_none) {
|
|
peer.ifidx = (wifi_interface_t)mp_arg_validate_int_range(mp_obj_get_int(interface), 0, 1, MP_QSTR_interface);
|
|
}
|
|
|
|
const mp_obj_t encrypt = args[ARG_encrypt].u_obj;
|
|
if (encrypt != mp_const_none) {
|
|
peer.encrypt = mp_obj_is_true(encrypt);
|
|
}
|
|
|
|
const mp_obj_t lmk = args[ARG_lmk].u_obj;
|
|
if (lmk != mp_const_none) {
|
|
memcpy(peer.lmk, _get_bytes_len(lmk, ESP_NOW_KEY_LEN, MP_BUFFER_READ), ESP_NOW_KEY_LEN);
|
|
} else if (peer.encrypt) {
|
|
mp_raise_ValueError_varg(translate("%q is %q"), MP_QSTR_lmk, MP_QSTR_None);
|
|
}
|
|
|
|
check_esp_err((modify) ? esp_now_mod_peer(&peer) : esp_now_add_peer(&peer));
|
|
}
|
|
|
|
// Update the cached peer count in self->peers_count;
|
|
// The peers_count ignores broadcast and multicast addresses and is used for the
|
|
// send() logic and is updated from add_peer(), mod_peer() and del_peer().
|
|
static void _update_peer_count(espnow_obj_t *self) {
|
|
esp_now_peer_info_t peer = {0};
|
|
bool from_head = true;
|
|
int count = 0;
|
|
|
|
// esp_now_fetch_peer() skips over any broadcast or multicast addresses
|
|
while (esp_now_fetch_peer(from_head, &peer) == ESP_OK) {
|
|
from_head = false;
|
|
if (++count >= ESP_NOW_MAX_TOTAL_PEER_NUM) {
|
|
break; // Should not happen
|
|
}
|
|
}
|
|
|
|
self->peers_count = count;
|
|
}
|
|
|
|
//| def add_peer(
|
|
//| self,
|
|
//| mac: ReadableBuffer,
|
|
//| lmk: Optional[ReadableBuffer],
|
|
//| channel: int = 0,
|
|
//| interface: int = 0,
|
|
//| encrypt: bool = False,
|
|
//| ) -> None:
|
|
//| """Add peer.
|
|
//|
|
|
//| :param ReadableBuffer mac: The mac address of the peer.
|
|
//| :param ReadableBuffer lmk: The Local Master Key (lmk) of the peer.
|
|
//| :param int channel: The peer's channel. Default: 0 ie. use the current channel.
|
|
//| :param int interface: The WiFi interface to use. Default: 0 ie. STA.
|
|
//| :param bool encrypt: Whether or not to use encryption."""
|
|
//| ...
|
|
STATIC mp_obj_t espnow_add_peer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
espnow_obj_t *self = pos_args[0];
|
|
check_for_deinit(self);
|
|
|
|
_update_peer_info(n_args, pos_args, kw_args, false);
|
|
_update_peer_count(self);
|
|
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(espnow_add_peer_obj, 2, espnow_add_peer);
|
|
|
|
//| def mod_peer(
|
|
//| self,
|
|
//| mac: ReadableBuffer,
|
|
//| lmk: Optional[ReadableBuffer],
|
|
//| channel: int = 0,
|
|
//| interface: int = 0,
|
|
//| encrypt: bool = False,
|
|
//| ) -> None:
|
|
//| """Modify peer.
|
|
//|
|
|
//| :param ReadableBuffer mac: The mac address of the peer.
|
|
//| :param ReadableBuffer lmk: The Local Master Key (lmk) of the peer.
|
|
//| :param int channel: The peer's channel. Default: 0 ie. use the current channel.
|
|
//| :param int interface: The WiFi interface to use. Default: 0 ie. STA.
|
|
//| :param bool encrypt: Whether or not to use encryption."""
|
|
//| ...
|
|
STATIC mp_obj_t espnow_mod_peer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
espnow_obj_t *self = pos_args[0];
|
|
check_for_deinit(self);
|
|
|
|
_update_peer_info(n_args, pos_args, kw_args, true);
|
|
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(espnow_mod_peer_obj, 2, espnow_mod_peer);
|
|
|
|
//| def del_peer(self, mac: ReadableBuffer) -> None:
|
|
//| """Delete peer.
|
|
//|
|
|
//| :param ReadableBuffer mac: The mac address of the peer."""
|
|
//| ...
|
|
STATIC mp_obj_t espnow_del_peer(mp_obj_t self_in, mp_obj_t mac) {
|
|
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
check_for_deinit(self);
|
|
|
|
uint8_t peer_addr[ESP_NOW_ETH_ALEN];
|
|
memcpy(peer_addr, _get_peer_addr(mac), ESP_NOW_ETH_ALEN);
|
|
|
|
check_esp_err(esp_now_del_peer(peer_addr));
|
|
_update_peer_count(self);
|
|
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_2(espnow_del_peer_obj, espnow_del_peer);
|
|
|
|
// Convert a peer_info struct to python tuple
|
|
// Used by espnow_get_peer() and espnow_get_peers()
|
|
static mp_obj_t _peer_info_to_tuple(const esp_now_peer_info_t *peer) {
|
|
return MP_OBJ_NEW_TUPLE(
|
|
mp_obj_new_bytes(peer->peer_addr, MP_ARRAY_SIZE(peer->peer_addr)),
|
|
mp_obj_new_bytes(peer->lmk, MP_ARRAY_SIZE(peer->lmk)),
|
|
mp_obj_new_int(peer->channel),
|
|
mp_obj_new_int(peer->ifidx),
|
|
mp_obj_new_bool(peer->encrypt));
|
|
}
|
|
|
|
//| def get_peer(self, mac: ReadableBuffer) -> Tuple[bytes, int, int, bool]:
|
|
//| """Get the peer info for mac as a `tuple`.
|
|
//|
|
|
//| :param ReadableBuffer mac: The mac address of the peer.
|
|
//|
|
|
//| :returns: A `tuple` of (mac, lmk, channel, interface, encrypt)."""
|
|
//| ...
|
|
STATIC mp_obj_t espnow_get_peer(mp_obj_t self_in, mp_obj_t mac) {
|
|
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
check_for_deinit(self);
|
|
|
|
esp_now_peer_info_t peer = {0};
|
|
memcpy(peer.peer_addr, _get_peer_addr(mac), ESP_NOW_ETH_ALEN);
|
|
check_esp_err(esp_now_get_peer(peer.peer_addr, &peer));
|
|
|
|
return _peer_info_to_tuple(&peer);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_2(espnow_get_peer_obj, espnow_get_peer);
|
|
|
|
// --- Peer Related Properties ---
|
|
|
|
//| peers: Tuple[Tuple[bytes, bytes, int, int, bool], ...]
|
|
//| """The peer info records for all registered `ESPNow` peers. (read-only)
|
|
//|
|
|
//| A `tuple` of tuples: ((mac, lmk, channel, interface, encrypt), ...)."""
|
|
//|
|
|
STATIC mp_obj_t espnow_get_peers(mp_obj_t self_in) {
|
|
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
check_for_deinit(self);
|
|
|
|
// Build and initialize the peer info tuple.
|
|
mp_obj_tuple_t *peerinfo_tuple = mp_obj_new_tuple(self->peers_count, NULL);
|
|
esp_now_peer_info_t peer = {0};
|
|
|
|
for (size_t i = 0; i < peerinfo_tuple->len; i++) {
|
|
esp_err_t status = esp_now_fetch_peer((i == 0), &peer);
|
|
peerinfo_tuple->items[i] = (status == ESP_OK ? _peer_info_to_tuple(&peer) : mp_const_none);
|
|
}
|
|
|
|
return peerinfo_tuple;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_peers_obj, espnow_get_peers);
|
|
|
|
MP_PROPERTY_GETTER(espnow_peers_obj,
|
|
(mp_obj_t)&espnow_get_peers_obj);
|
|
|
|
//| peers_count: Tuple[int, int]
|
|
//| """The number of registered peers in a `tuple` of (num_total_peers, num_encrypted_peers). (read-only)"""
|
|
//|
|
|
STATIC mp_obj_t espnow_get_peers_count(mp_obj_t self_in) {
|
|
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
check_for_deinit(self);
|
|
|
|
esp_now_peer_num_t peer_num = {0};
|
|
check_esp_err(esp_now_get_peer_num(&peer_num));
|
|
return MP_OBJ_NEW_TUPLE(
|
|
mp_obj_new_int(peer_num.total_num),
|
|
mp_obj_new_int(peer_num.encrypt_num));
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_peers_count_obj, espnow_get_peers_count);
|
|
|
|
MP_PROPERTY_GETTER(espnow_peers_count_obj,
|
|
(mp_obj_t)&espnow_get_peers_count_obj);
|
|
|
|
//| peers_table: Dict[bytes, List[int]]
|
|
//| """The dictionary of peers we have seen. (read-only)
|
|
//|
|
|
//| A `dict` of {peer: [rssi, time], ...}
|
|
//|
|
|
//| where:
|
|
//| peer is a byte string containing the 6-byte mac address of the peer.
|
|
//| rssi is the wifi signal strength from the last msg received (in dBm from -127 to 0).
|
|
//| time is the time in milliseconds since device last booted."""
|
|
//|
|
|
STATIC mp_obj_t espnow_get_peers_table(mp_obj_t self_in) {
|
|
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
return self->peers_table;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_peers_table_obj, espnow_get_peers_table);
|
|
|
|
MP_PROPERTY_GETTER(espnow_peers_table_obj,
|
|
(mp_obj_t)&espnow_get_peers_table_obj);
|
|
|
|
STATIC const mp_rom_map_elem_t espnow_locals_dict_table[] = {
|
|
// Config parameters
|
|
{ MP_ROM_QSTR(MP_QSTR_set_pmk), MP_ROM_PTR(&espnow_set_pmk_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_active), MP_ROM_PTR(&espnow_active_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_buffer_size), MP_ROM_PTR(&espnow_buffer_size_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_phy_rate), MP_ROM_PTR(&espnow_phy_rate_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_stats), MP_ROM_PTR(&espnow_stats_obj) },
|
|
|
|
// Send and receive messages
|
|
{ MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&espnow_send_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&espnow_recv_obj) },
|
|
|
|
// Peer management functions
|
|
{ MP_ROM_QSTR(MP_QSTR_add_peer), MP_ROM_PTR(&espnow_add_peer_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_mod_peer), MP_ROM_PTR(&espnow_mod_peer_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_del_peer), MP_ROM_PTR(&espnow_del_peer_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_get_peer), MP_ROM_PTR(&espnow_get_peer_obj) },
|
|
|
|
// Peer related properties
|
|
{ MP_ROM_QSTR(MP_QSTR_peers), MP_ROM_PTR(&espnow_peers_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_peers_count), MP_ROM_PTR(&espnow_peers_count_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_peers_table), MP_ROM_PTR(&espnow_peers_table_obj) },
|
|
};
|
|
STATIC MP_DEFINE_CONST_DICT(espnow_locals_dict, espnow_locals_dict_table);
|
|
|
|
// --- Dummy Buffer Protocol support ---
|
|
// ...so asyncio can poll.ipoll() on this device
|
|
|
|
// Support ioctl(MP_STREAM_POLL, ) for asyncio
|
|
STATIC mp_uint_t espnow_stream_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
|
|
if (request != MP_STREAM_POLL) {
|
|
*errcode = MP_EINVAL;
|
|
return MP_STREAM_ERROR;
|
|
}
|
|
|
|
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
return (espnow_deinited(self)) ? 0 : // If not initialized
|
|
arg ^ (
|
|
// If no data in the buffer, unset the Read ready flag
|
|
((!ringbuf_num_filled(self->recv_buffer)) ? MP_STREAM_POLL_RD : 0) |
|
|
// If still waiting for responses, unset the Write ready flag
|
|
((self->tx_responses < self->tx_packets) ? MP_STREAM_POLL_WR : 0));
|
|
}
|
|
|
|
STATIC const mp_stream_p_t espnow_stream_p = {
|
|
.ioctl = espnow_stream_ioctl,
|
|
};
|
|
|
|
//| def __bool__(self) -> bool:
|
|
//| """``True`` if `len()` is greater than zero.
|
|
//| This is an easy way to check if the buffer is empty.
|
|
//| """
|
|
//| ...
|
|
//| def __len__(self) -> int:
|
|
//| """Return the number of `bytes` available to read. Used to implement ``len()``."""
|
|
//| ...
|
|
STATIC mp_obj_t espnow_unary_op(mp_unary_op_t op, mp_obj_t self_in) {
|
|
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
size_t len = ringbuf_num_filled(self->recv_buffer);
|
|
switch (op) {
|
|
case MP_UNARY_OP_BOOL:
|
|
return mp_obj_new_bool(len != 0);
|
|
case MP_UNARY_OP_LEN:
|
|
return mp_obj_new_int_from_uint(len);
|
|
default:
|
|
return MP_OBJ_NULL; // op not supported
|
|
}
|
|
}
|
|
|
|
const mp_obj_type_t espnow_type = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_ESPNow,
|
|
.make_new = espnow_make_new,
|
|
.locals_dict = (mp_obj_t)&espnow_locals_dict,
|
|
.flags = MP_TYPE_FLAG_EXTENDED,
|
|
MP_TYPE_EXTENDED_FIELDS(
|
|
.protocol = &espnow_stream_p,
|
|
.unary_op = &espnow_unary_op
|
|
),
|
|
};
|