circuitpython/ports/nrf/common-hal/busio/UART.c

332 lines
10 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/microcontroller/__init__.h"
#include "shared-bindings/busio/UART.h"
#include "mpconfigport.h"
#include "py/gc.h"
#include "py/mperrno.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "supervisor/shared/translate.h"
#include "tick.h"
#include "nrfx_uart.h"
#include <stdio.h>
static nrfx_uart_t _uart = NRFX_UART_INSTANCE(0);
// expression to examine, and return value in case of failing
#define _VERIFY_ERR(_exp) \
do {\
uint32_t _err = (_exp);\
if (NRFX_SUCCESS != _err ) {\
mp_raise_msg_varg(&mp_type_AssertionError, translate("error = 0x%08lX "), _err);\
}\
}while(0)
static uint32_t get_nrf_baud (uint32_t baudrate);
static uint32_t rd_error = 0;
static void uart_callback_irq (const nrfx_uart_event_t * event, void * context) {
busio_uart_obj_t* self = (busio_uart_obj_t*) context;
switch ( event->type ) {
case NRFX_UART_EVT_TX_DONE:
self->xferred_bytes = event->data.rxtx.bytes;
break;
case NRFX_UART_EVT_RX_DONE:
// mp_raise_msg_varg(&mp_type_AssertionError, translate("error = 0x%08lX "), event->data.rxtx.bytes);
// for ( int i = 0; i < event->data.rxtx.bytes; i++ ) {
// if ( 0 > ringbuf_put(&self->rx_rbuf, self->rx_xact_buf[i]) ) {
// // buffer is full, overwrite old data
// ringbuf_get(&self->rx_rbuf);
// ringbuf_put(&self->rx_rbuf, self->rx_xact_buf[i]);
// }
// }
//
// nrfx_uart_rx(&_uart, self->rx_xact_buf, sizeof(self->rx_xact_buf));
// nrfx_uart_rx_enable(&_uart);
self->rx_count = event->data.rxtx.bytes;
break;
default:
rd_error = event->data.error.error_mask;
self->xferred_bytes = -(event->data.error.rxtx.bytes);
break;
}
}
void common_hal_busio_uart_construct (busio_uart_obj_t *self,
const mcu_pin_obj_t * tx, const mcu_pin_obj_t * rx, uint32_t baudrate,
uint8_t bits, uart_parity_t parity, uint8_t stop, uint32_t timeout,
uint8_t receiver_buffer_size) {
#ifndef NRF52840_XXAA
mp_raise_NotImplementedError(translate("busio.UART not yet implemented"));
#else
if ( parity == PARITY_ODD ) {
mp_raise_ValueError(translate("busio.UART odd parity is not supported"));
}
if ( (tx == mp_const_none) || (rx == mp_const_none) ) {
mp_raise_ValueError(translate("Invalid pins"));
}
if ( receiver_buffer_size == 0 ) {
mp_raise_ValueError(translate("Invalid buffer size"));
}
nrfx_uart_config_t config = {
.pseltxd = tx->number,
.pseltxd = rx->number,
.pselcts = NRF_UART_PSEL_DISCONNECTED,
.pselrts = NRF_UART_PSEL_DISCONNECTED,
.p_context = self,
.hwfc = NRF_UART_HWFC_DISABLED,
.parity = (parity == PARITY_NONE) ? NRF_UART_PARITY_EXCLUDED : NRF_UART_PARITY_INCLUDED,
.baudrate = NRF_UART_BAUDRATE_9600, // get_nrf_baud(baudrate),
.interrupt_priority = 7
};
nrfx_uart_uninit(&_uart);
_VERIFY_ERR(nrfx_uart_init(&_uart, &config, uart_callback_irq));
// Init ring buffer for rx
self->buffer = (uint8_t *) gc_alloc(receiver_buffer_size, false, false);
if ( !self->buffer ) {
nrfx_uart_uninit(&_uart);
mp_raise_msg(&mp_type_MemoryError, translate("Failed to allocate RX buffer"));
}
self->bufsize = receiver_buffer_size;
self->baudrate = baudrate;
self->timeout_ms = timeout;
_VERIFY_ERR(nrfx_uart_rx(&_uart, self->buffer, self->bufsize));
nrfx_uart_rx_enable(&_uart);
#endif
}
bool common_hal_busio_uart_deinited(busio_uart_obj_t *self) {
#ifndef NRF52840_XXAA
mp_raise_NotImplementedError(translate("busio.UART not yet implemented"));
#else
return (nrf_uart_rx_pin_get(_uart.p_reg) == NRF_UART_PSEL_DISCONNECTED) ||
(nrf_uart_tx_pin_get(_uart.p_reg) == NRF_UART_PSEL_DISCONNECTED);
#endif
}
void common_hal_busio_uart_deinit(busio_uart_obj_t *self) {
#ifndef NRF52840_XXAA
mp_raise_NotImplementedError(translate("busio.UART not yet implemented"));
#else
if ( !common_hal_busio_uart_deinited(self) ) {
nrfx_uart_uninit(&_uart);
// gc_free(self->buffer);
}
#endif
}
// Read characters.
size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t len, int *errcode) {
#ifndef NRF52840_XXAA
mp_raise_NotImplementedError(translate("busio.UART not yet implemented"));
return 0;
#else
if ( rd_error ) {
printf("error = 0x%08lX\n", rd_error);
rd_error = 0;
}
size_t remain = len;
// uint64_t start_ticks = ticks_ms;
// while ( remain && (ticks_ms - start_ticks < self->timeout_ms) ) {
// if ( self->rx_count ) {
// size_t cnt = MIN(self->rx_count, remain);
// memcpy(data, self->buffer, cnt);
// data += cnt;
// remain -= cnt;
//
// _VERIFY_ERR(nrfx_uart_rx(&_uart, self->rx_xact_buf, sizeof(self->rx_xact_buf)));
// nrfx_uart_rx_enable(&_uart);
// }
//#if 0
// uint32_t received = common_hal_busio_uart_rx_characters_available(self);
//
// // enough bytes received or ringbuffer is full
// if ( (received >= remain) || (received == self->rx_rbuf.size - 1) ) {
// nrfx_uart_rx_abort(&_uart);
//
// while ( !_ringbuf_is_empty(&self->rx_rbuf) ) {
// *data++ = ringbuf_get(&self->rx_rbuf);
// remain--;
// }
//
// _VERIFY_ERR(nrfx_uart_rx(&_uart, self->rx_xact_buf, sizeof(self->rx_xact_buf)));
// nrfx_uart_rx_enable(&_uart);
// }
//#endif
//
//#ifdef MICROPY_VM_HOOK_LOOP
// MICROPY_VM_HOOK_LOOP
//#endif
// }
printf("rx count = 0x%08lX\n", self->rx_count);
_VERIFY_ERR(nrfx_uart_rx(&_uart, self->buffer, self->bufsize));
nrfx_uart_rx_enable(&_uart);
return len - remain;
#endif
}
// Write characters.
size_t common_hal_busio_uart_write(busio_uart_obj_t *self, const uint8_t *data, size_t len, int *errcode) {
#ifndef NRF52840_XXAA
mp_raise_NotImplementedError(translate("busio.UART not yet implemented"));
return 0;
#else
self->xferred_bytes = 0;
(*errcode) = nrfx_uart_tx(&_uart, data, len);
_VERIFY_ERR(*errcode);
(*errcode) = 0;
uint64_t start_ticks = ticks_ms;
while ( (0 == self->xferred_bytes) && (ticks_ms - start_ticks < self->timeout_ms) ) {
#ifdef MICROPY_VM_HOOK_LOOP
MICROPY_VM_HOOK_LOOP
#endif
}
if ( self->xferred_bytes <= 0 ) {
mp_raise_msg_varg(&mp_type_AssertionError, translate("failed"));
*errcode = MP_EAGAIN;
return MP_STREAM_ERROR;
}
return len;
#endif
}
uint32_t common_hal_busio_uart_get_baudrate(busio_uart_obj_t *self) {
#ifndef NRF52840_XXAA
mp_raise_NotImplementedError(translate("busio.UART not yet implemented"));
#endif
return self->baudrate;
}
void common_hal_busio_uart_set_baudrate(busio_uart_obj_t *self, uint32_t baudrate) {
#ifndef NRF52840_XXAA
mp_raise_NotImplementedError(translate("busio.UART not yet implemented"));
#else
self->baudrate = baudrate;
nrf_uart_baudrate_set(_uart.p_reg, get_nrf_baud(baudrate));
#endif
}
uint32_t common_hal_busio_uart_rx_characters_available(busio_uart_obj_t *self) {
#ifndef NRF52840_XXAA
mp_raise_NotImplementedError(translate("busio.UART not yet implemented"));
#else
// int count = ((volatile uint16_t) self->rx_rbuf.iput) - ((volatile uint16_t) self->rx_rbuf.iget);
// if ( count < 0 ) {
// count += self->rx_rbuf.size;
// }
//
// return count;
return self->rx_count;
#endif
}
bool common_hal_busio_uart_ready_to_tx(busio_uart_obj_t *self) {
#ifndef NRF52840_XXAA
mp_raise_NotImplementedError(translate("busio.UART not yet implemented"));
return false;
#else
return !nrfx_uart_tx_in_progress(&_uart);
#endif
}
static uint32_t get_nrf_baud (uint32_t baudrate)
{
if ( baudrate <= 1200 ) {
return NRF_UART_BAUDRATE_1200;
}
else if ( baudrate <= 2400 ) {
return NRF_UART_BAUDRATE_2400;
}
else if ( baudrate <= 4800 ) {
return NRF_UART_BAUDRATE_4800;
}
else if ( baudrate <= 9600 ) {
return NRF_UART_BAUDRATE_9600;
}
else if ( baudrate <= 14400 ) {
return NRF_UART_BAUDRATE_14400;
}
else if ( baudrate <= 19200 ) {
return NRF_UART_BAUDRATE_19200;
}
else if ( baudrate <= 28800 ) {
return NRF_UART_BAUDRATE_28800;
}
else if ( baudrate <= 38400 ) {
return NRF_UART_BAUDRATE_38400;
}
else if ( baudrate <= 57600 ) {
return NRF_UART_BAUDRATE_57600;
}
else if ( baudrate <= 76800 ) {
return NRF_UART_BAUDRATE_76800;
}
else if ( baudrate <= 115200 ) {
return NRF_UART_BAUDRATE_115200;
}
else if ( baudrate <= 230400 ) {
return NRF_UART_BAUDRATE_230400;
}
else if ( baudrate <= 250000 ) {
return NRF_UART_BAUDRATE_250000;
}
else if ( baudrate <= 460800 ) {
return NRF_UART_BAUDRATE_460800;
}
else if ( baudrate <= 921600 ) {
return NRF_UART_BAUDRATE_921600;
}
else {
return NRF_UART_BAUDRATE_1000000;
}
}