circuitpython/ports/mimxrt10xx/common-hal/busio/UART.c
Scott Shawcroft a9dc31a881
Add additional iMX RT support
This adds a script to generate the peripherals files (except clock).

It adds support for the 1015, 1020, 1040, and 1050 EVKs.

Some work was started on 1176 but it isn't working. So, the board
def is in a separate branch.

Fixes #3521. Fixes #2477.
2023-04-28 11:01:13 -07:00

515 lines
17 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* SPDX-FileCopyrightText: Copyright (c) 2016 Damien P. George
* Copyright (c) 2019 Artur Pacholec
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/microcontroller/Pin.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "shared-bindings/busio/UART.h"
#include "mpconfigport.h"
#include "shared/runtime/interrupt_char.h"
#include "supervisor/shared/tick.h"
#include "py/gc.h"
#include "py/mperrno.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "periph.h"
#include "sdk/drivers/lpuart/fsl_lpuart.h"
#include "sdk/drivers/igpio/fsl_gpio.h"
// ==========================================================
// Debug code
// ==========================================================
#define ENABLE_DEBUG_PRINTING 0
#if ENABLE_DEBUG_PRINTING
#define DBGPrintf mp_printf
#else
#define DBGPrintf(p,...)
#endif
// arrays use 0 based numbering: UART1 is stored at index 0
STATIC bool reserved_uart[MP_ARRAY_SIZE(mcu_uart_banks)];
STATIC bool never_reset_uart[MP_ARRAY_SIZE(mcu_uart_banks)];
#if IMXRT11XX
#define UART_CLOCK_FREQ (24000000)
#else
#define UART_CLOCK_FREQ (CLOCK_GetPllFreq(kCLOCK_PllUsb1) / 6U) / (CLOCK_GetDiv(kCLOCK_UartDiv) + 1U)
#endif
static void config_periph_pin(const mcu_periph_obj_t *periph) {
IOMUXC_SetPinMux(
periph->pin->mux_reg, periph->mux_mode,
periph->input_reg, periph->input_idx,
0,
0);
IOMUXC_SetPinConfig(0, 0, 0, 0,
periph->pin->cfg_reg,
IOMUXC_SW_PAD_CTL_PAD_PUS(1)
#if IMXRT10XX
| IOMUXC_SW_PAD_CTL_PAD_HYS(0)
| IOMUXC_SW_PAD_CTL_PAD_PKE(1)
| IOMUXC_SW_PAD_CTL_PAD_SPEED(1)
#endif
| IOMUXC_SW_PAD_CTL_PAD_PUE(1)
| IOMUXC_SW_PAD_CTL_PAD_ODE(0)
| IOMUXC_SW_PAD_CTL_PAD_DSE(6)
| IOMUXC_SW_PAD_CTL_PAD_SRE(0));
}
STATIC void LPUART_UserCallback(LPUART_Type *base, lpuart_handle_t *handle, status_t status, void *user_data) {
busio_uart_obj_t *self = (busio_uart_obj_t *)user_data;
if (status == kStatus_LPUART_RxIdle) {
self->rx_ongoing = false;
}
}
void uart_reset(void) {
for (uint i = 0; i < MP_ARRAY_SIZE(mcu_uart_banks); i++) {
if (never_reset_uart[i]) {
continue;
}
reserved_uart[i] = false;
LPUART_Deinit(mcu_uart_banks[i]);
}
}
void common_hal_busio_uart_never_reset(busio_uart_obj_t *self) {
never_reset_uart[self->index] = true;
common_hal_never_reset_pin(self->tx);
common_hal_never_reset_pin(self->rx);
common_hal_never_reset_pin(self->rts);
common_hal_never_reset_pin(self->cts);
common_hal_never_reset_pin(self->rs485_dir);
}
void common_hal_busio_uart_construct(busio_uart_obj_t *self,
const mcu_pin_obj_t *tx, const mcu_pin_obj_t *rx,
const mcu_pin_obj_t *rts, const mcu_pin_obj_t *cts,
const mcu_pin_obj_t *rs485_dir, bool rs485_invert,
uint32_t baudrate, uint8_t bits, busio_uart_parity_t parity, uint8_t stop,
mp_float_t timeout, uint16_t receiver_buffer_size, byte *receiver_buffer,
bool sigint_enabled) {
self->baudrate = baudrate;
self->character_bits = (uint8_t)mp_arg_validate_int_range(bits, 7, 8, MP_QSTR_bits);
self->timeout_ms = timeout * 1000;
DBGPrintf(&mp_plat_print, "uart_construct: tx:%p rx:%p rts:%p cts:%p rs485:%p\n", tx, rx, rts, cts, rs485_dir);
// We are transmitting one direction if one pin is NULL and the other isn't.
bool is_onedirection = (rx == NULL) != (tx == NULL);
bool uart_taken = false;
bool use_rts_for_rs485 = false;
const uint32_t rx_count = MP_ARRAY_SIZE(mcu_uart_rx_list);
const uint32_t tx_count = MP_ARRAY_SIZE(mcu_uart_tx_list);
const mcu_periph_obj_t *tx_config = NULL;
const mcu_periph_obj_t *rx_config = NULL;
const mcu_periph_obj_t *rts_config = NULL;
const mcu_periph_obj_t *cts_config = NULL;
// RX loop handles rx only, or both rx and tx
if (rx != NULL) {
for (uint32_t i = 0; i < rx_count; ++i) {
if (mcu_uart_rx_list[i].pin != rx) {
continue;
}
// If TX is on, keep looking, else stop
if (tx != NULL) {
for (uint32_t j = 0; j < tx_count; ++j) {
if (mcu_uart_tx_list[j].pin != tx ||
mcu_uart_tx_list[j].bank_idx != mcu_uart_rx_list[i].bank_idx) {
continue;
}
// If UART is taken, break (pins never have >1 periph)
if (reserved_uart[mcu_uart_rx_list[i].bank_idx - 1]) {
uart_taken = true;
break;
}
rx_config = &mcu_uart_rx_list[i];
tx_config = &mcu_uart_tx_list[j];
break;
}
if (tx_config != NULL || uart_taken) {
break;
}
} else {
if (reserved_uart[mcu_uart_rx_list[i].bank_idx - 1]) {
uart_taken = true;
break;
}
rx_config = &mcu_uart_rx_list[i];
}
}
} else if (tx != NULL) {
// TX only case
for (uint32_t i = 0; i < tx_count; ++i) {
if (mcu_uart_tx_list[i].pin != tx) {
continue;
}
if (reserved_uart[mcu_uart_tx_list[i].bank_idx - 1]) {
uart_taken = true;
break;
}
tx_config = &mcu_uart_tx_list[i];
break;
}
} else {
// TX and RX are both None. But this is already handled in shared-bindings, so
// we won't get here.
}
if (rx && !rx_config) {
raise_ValueError_invalid_pin_name(MP_QSTR_rx);
}
if (tx && !tx_config) {
raise_ValueError_invalid_pin_name(MP_QSTR_tx);
}
if (uart_taken) {
mp_raise_ValueError(translate("Hardware in use, try alternative pins"));
}
if (is_onedirection && ((rts != NULL) || (cts != NULL))) {
mp_raise_ValueError(translate("Both RX and TX required for flow control"));
}
// Filter for sane settings for RS485
if (rs485_dir != NULL) {
DBGPrintf(&mp_plat_print, "\t(485 pin): gpio:%p #:%x Mux: %x %x cfg:%x reset:%x %x\n",
rs485_dir->gpio, rs485_dir->number, rs485_dir->mux_idx, rs485_dir->mux_reg, rs485_dir->cfg_reg,
rs485_dir->mux_reset, rs485_dir->pad_reset);
if ((rts != NULL) || (cts != NULL)) {
mp_raise_ValueError(translate("Cannot specify RTS or CTS in RS485 mode"));
}
// For IMXRT the RTS pin is used for RS485 direction ???? - Can be will try
// it if this is an rts pin.
} else {
if (rs485_invert) {
mp_raise_ValueError(translate("RS485 inversion specified when not in RS485 mode"));
}
}
// Now check for RTS/CTS (or overloaded RS485 direction) pin(s)
const uint32_t rts_count = MP_ARRAY_SIZE(mcu_uart_rts_list);
const uint32_t cts_count = MP_ARRAY_SIZE(mcu_uart_cts_list);
if ((rts != NULL) || (rs485_dir != NULL)) {
for (uint32_t i = 0; i < rts_count; ++i) {
if (mcu_uart_rts_list[i].bank_idx == rx_config->bank_idx) {
if (mcu_uart_rts_list[i].pin == rts) {
rts_config = &mcu_uart_rts_list[i];
break;
} else if (mcu_uart_rts_list[i].pin == rs485_dir) {
rts_config = &mcu_uart_rts_list[i];
use_rts_for_rs485 = true;
rts = rs485_dir;
rs485_dir = NULL;
break;
}
}
}
if ((rts != NULL) && (rts_config == NULL)) {
raise_ValueError_invalid_pin_name(MP_QSTR_rts);
}
}
if (cts != NULL) {
for (uint32_t i = 0; i < cts_count; ++i) {
if (mcu_uart_cts_list[i].bank_idx == tx_config->bank_idx) {
if (mcu_uart_cts_list[i].pin == cts) {
cts_config = &mcu_uart_cts_list[i];
break;
}
}
}
if (cts_config == NULL) {
raise_ValueError_invalid_pin_name(MP_QSTR_cts);
}
}
if (self->rx) {
self->index = rx_config->bank_idx - 1;
} else {
assert(self->tx);
self->index = tx_config->bank_idx - 1;
}
self->uart = mcu_uart_banks[self->index];
assert(self->uart);
if (rx_config) {
config_periph_pin(rx_config);
self->rx = rx;
}
if (tx_config) {
config_periph_pin(tx_config);
self->tx = tx;
}
if (rts_config) {
config_periph_pin(rts_config);
self->rts = rts;
}
if (cts_config) {
config_periph_pin(cts_config);
self->cts = cts;
}
if (rs485_dir) {
DBGPrintf(&mp_plat_print, "\tInit rs485 pin\n");
// lets configure this pin as standard GPIO output pin.
claim_pin(rs485_dir);
#define IOMUXC_SW_MUX_CTL_PAD_MUX_MODE_ALT5 5U
IOMUXC_SetPinMux(rs485_dir->mux_reg, IOMUXC_SW_MUX_CTL_PAD_MUX_MODE_ALT5, 0, 0, 0, 0);
DBGPrintf(&mp_plat_print, "\tAfter IOMUXC_SetPinMux\n");
IOMUXC_SetPinConfig(0, 0, 0, 0, rs485_dir->cfg_reg,
IOMUXC_SW_PAD_CTL_PAD_PUS(0)
#if IMXRT10XX
| IOMUXC_SW_PAD_CTL_PAD_HYS(1)
| IOMUXC_SW_PAD_CTL_PAD_PKE(1)
| IOMUXC_SW_PAD_CTL_PAD_SPEED(2)
#endif
| IOMUXC_SW_PAD_CTL_PAD_PUE(0)
| IOMUXC_SW_PAD_CTL_PAD_ODE(0)
| IOMUXC_SW_PAD_CTL_PAD_DSE(1)
| IOMUXC_SW_PAD_CTL_PAD_SRE(0));
DBGPrintf(&mp_plat_print, "\tAfter IOMUXC_SetPinConfig\n");
const gpio_pin_config_t config = { kGPIO_DigitalOutput, rs485_invert, kGPIO_NoIntmode };
GPIO_PinInit(rs485_dir->gpio, rs485_dir->number, &config);
DBGPrintf(&mp_plat_print, "\tAfter GPIO_PinInit\n");
self->rs485_dir = rs485_dir;
self->rs485_invert = rs485_invert;
}
lpuart_config_t config = { 0 };
LPUART_GetDefaultConfig(&config);
config.dataBitsCount = self->character_bits == 8 ? kLPUART_EightDataBits : kLPUART_SevenDataBits;
config.baudRate_Bps = self->baudrate;
config.enableTx = self->tx != NULL;
config.enableRx = self->rx != NULL;
config.enableRxRTS = self->rts != NULL;
config.enableTxCTS = self->cts != NULL;
if (self->rts != NULL) {
claim_pin(self->rts);
}
if (self->cts != NULL) {
claim_pin(self->cts);
}
LPUART_Init(self->uart, &config, UART_CLOCK_FREQ);
// Before we init, setup RS485 direction pin
// ..unfortunately this isn't done by the driver library
uint32_t modir = (self->uart->MODIR) & ~(LPUART_MODIR_TXRTSPOL_MASK | LPUART_MODIR_TXRTSE_MASK);
if (use_rts_for_rs485) {
modir |= LPUART_MODIR_TXRTSE_MASK;
if (rs485_invert) {
modir |= LPUART_MODIR_TXRTSPOL_MASK;
}
}
self->uart->MODIR = modir;
if (self->tx != NULL) {
claim_pin(self->tx);
}
if (self->rx != NULL) {
if (receiver_buffer == NULL) {
self->ringbuf = gc_alloc(receiver_buffer_size, false, true /*long-lived*/);
} else {
self->ringbuf = receiver_buffer;
}
if (!self->ringbuf) {
LPUART_Deinit(self->uart);
m_malloc_fail(receiver_buffer_size);
}
LPUART_TransferCreateHandle(self->uart, &self->handle, LPUART_UserCallback, self);
// Pass actual allocated size; the LPUART routines are cognizant that
// the capacity is one less than the size.
LPUART_TransferStartRingBuffer(self->uart, &self->handle, self->ringbuf, receiver_buffer_size);
claim_pin(self->rx);
}
DBGPrintf(&mp_plat_print, "\t<< Init completed >>\n");
}
bool common_hal_busio_uart_deinited(busio_uart_obj_t *self) {
return self->rx == NULL && self->tx == NULL;
}
void common_hal_busio_uart_deinit(busio_uart_obj_t *self) {
if (common_hal_busio_uart_deinited(self)) {
return;
}
reserved_uart[self->index] = false;
never_reset_uart[self->index] = false;
LPUART_Deinit(self->uart);
gc_free(self->ringbuf);
common_hal_reset_pin(self->rx);
common_hal_reset_pin(self->tx);
common_hal_reset_pin(self->cts);
common_hal_reset_pin(self->rts);
common_hal_reset_pin(self->rs485_dir);
self->rx = NULL;
self->tx = NULL;
self->cts = NULL;
self->rts = NULL;
self->rs485_dir = NULL;
}
// Read characters.
size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t len, int *errcode) {
if (self->rx == NULL) {
mp_raise_ValueError(translate("No RX pin"));
}
if (len == 0) {
// Nothing to read.
return 0;
}
lpuart_transfer_t xfer = {
.data = data,
.dataSize = len,
};
self->rx_ongoing = true;
LPUART_TransferReceiveNonBlocking(self->uart, &self->handle, &xfer, NULL);
uint64_t start_ticks = supervisor_ticks_ms64();
// Wait for all bytes received or timeout
while (self->rx_ongoing && (supervisor_ticks_ms64() - start_ticks < self->timeout_ms)) {
RUN_BACKGROUND_TASKS;
// Allow user to break out of a timeout with a KeyboardInterrupt.
if (mp_hal_is_interrupted()) {
break;
}
}
// if we timed out, stop the transfer
if (self->rx_ongoing) {
uint32_t recvd = 0;
LPUART_TransferGetReceiveCount(self->uart, &self->handle, &recvd);
LPUART_TransferAbortReceive(self->uart, &self->handle);
if (recvd == 0) {
*errcode = EAGAIN;
return MP_STREAM_ERROR;
}
return recvd;
}
// No data left, we got it all
if (self->handle.rxData == NULL) {
return len;
}
// The only place we can reliably tell how many bytes have been received is from the current
// wp in the handle (because the abort nukes rxDataSize, and reading it before abort is a race.)
if (self->handle.rxData > data) {
return self->handle.rxData - data;
} else {
return len;
}
}
// Write characters.
size_t common_hal_busio_uart_write(busio_uart_obj_t *self, const uint8_t *data, size_t len, int *errcode) {
if (self->tx == NULL) {
mp_raise_ValueError(translate("No TX pin"));
}
if (self->rs485_dir && len) {
GPIO_PinWrite(self->rs485_dir->gpio, self->rs485_dir->number, !self->rs485_invert);
LPUART_WriteBlocking(self->uart, data, len);
// Probably need to verify we have completed output.
uint32_t dont_hang_count = 0xffff;
while (dont_hang_count--) {
if (LPUART_GetStatusFlags(self->uart) & kLPUART_TransmissionCompleteFlag) {
break; // hardware says it completed.
}
}
GPIO_PinWrite(self->rs485_dir->gpio, self->rs485_dir->number, self->rs485_invert);
} else {
// could combine with above but would go through two ifs
LPUART_WriteBlocking(self->uart, data, len);
}
return len;
}
uint32_t common_hal_busio_uart_get_baudrate(busio_uart_obj_t *self) {
return self->baudrate;
}
void common_hal_busio_uart_set_baudrate(busio_uart_obj_t *self, uint32_t baudrate) {
if (LPUART_SetBaudRate(self->uart, baudrate, UART_CLOCK_FREQ) == kStatus_Success) {
self->baudrate = baudrate;
}
}
mp_float_t common_hal_busio_uart_get_timeout(busio_uart_obj_t *self) {
return (mp_float_t)(self->timeout_ms / 1000.0f);
}
void common_hal_busio_uart_set_timeout(busio_uart_obj_t *self, mp_float_t timeout) {
self->timeout_ms = timeout * 1000;
}
uint32_t common_hal_busio_uart_rx_characters_available(busio_uart_obj_t *self) {
return LPUART_TransferGetRxRingBufferLength(self->uart, &self->handle);
}
void common_hal_busio_uart_clear_rx_buffer(busio_uart_obj_t *self) {
self->handle.rxRingBufferHead = self->handle.rxRingBufferTail;
}
bool common_hal_busio_uart_ready_to_tx(busio_uart_obj_t *self) {
if (self->tx == NULL) {
return false;
}
return LPUART_GetStatusFlags(self->uart) & kLPUART_TxDataRegEmptyFlag;
}