circuitpython/py/modmath.c
Damien George 5cbeacebdb py: Make math special functions configurable and disabled by default.
The implementation of these functions is very large (order 4k) and they
are rarely used, so we don't enable them by default.

They are however enabled in stmhal and unix, since we have the room.
2015-02-22 14:48:18 +00:00

233 lines
9.4 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/builtin.h"
#if MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH
#include <math.h>
/// \module math - mathematical functions
///
/// The `math` module provides some basic mathematical funtions for
/// working with floating-point numbers.
//TODO: Change macros to check for overflow and raise OverflowError or RangeError
#define MATH_FUN_1(py_name, c_name) \
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj))); } \
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);
#define MATH_FUN_2(py_name, c_name) \
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj, mp_obj_t y_obj) { return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj), mp_obj_get_float(y_obj))); } \
STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_math_## py_name ## _obj, mp_math_ ## py_name);
#define MATH_FUN_1_TO_BOOL(py_name, c_name) \
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return MP_BOOL(c_name(mp_obj_get_float(x_obj))); } \
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);
#define MATH_FUN_1_TO_INT(py_name, c_name) \
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { mp_int_t x = MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj)); return mp_obj_new_int(x); } \
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);
// These are also used by cmath.c
/// \constant e - base of the natural logarithm
const mp_obj_float_t mp_math_e_obj = {{&mp_type_float}, M_E};
/// \constant pi - the ratio of a circle's circumference to its diameter
const mp_obj_float_t mp_math_pi_obj = {{&mp_type_float}, M_PI};
/// \function sqrt(x)
/// Returns the square root of `x`.
MATH_FUN_1(sqrt, sqrt)
/// \function pow(x, y)
/// Returns `x` to the power of `y`.
MATH_FUN_2(pow, pow)
/// \function exp(x)
MATH_FUN_1(exp, exp)
/// \function expm1(x)
MATH_FUN_1(expm1, expm1)
/// \function log(x)
MATH_FUN_1(log, log)
/// \function log2(x)
MATH_FUN_1(log2, log2)
/// \function log10(x)
MATH_FUN_1(log10, log10)
/// \function cosh(x)
MATH_FUN_1(cosh, cosh)
/// \function sinh(x)
MATH_FUN_1(sinh, sinh)
/// \function tanh(x)
MATH_FUN_1(tanh, tanh)
/// \function acosh(x)
MATH_FUN_1(acosh, acosh)
/// \function asinh(x)
MATH_FUN_1(asinh, asinh)
/// \function atanh(x)
MATH_FUN_1(atanh, atanh)
/// \function cos(x)
MATH_FUN_1(cos, cos)
/// \function sin(x)
MATH_FUN_1(sin, sin)
/// \function tan(x)
MATH_FUN_1(tan, tan)
/// \function acos(x)
MATH_FUN_1(acos, acos)
/// \function asin(x)
MATH_FUN_1(asin, asin)
/// \function atan(x)
MATH_FUN_1(atan, atan)
/// \function atan2(y, x)
MATH_FUN_2(atan2, atan2)
/// \function ceil(x)
MATH_FUN_1_TO_INT(ceil, ceil)
/// \function copysign(x, y)
MATH_FUN_2(copysign, copysign)
/// \function fabs(x)
MATH_FUN_1(fabs, fabs)
/// \function floor(x)
MATH_FUN_1_TO_INT(floor, floor) //TODO: delegate to x.__floor__() if x is not a float
/// \function fmod(x, y)
MATH_FUN_2(fmod, fmod)
/// \function isfinite(x)
MATH_FUN_1_TO_BOOL(isfinite, isfinite)
/// \function isinf(x)
MATH_FUN_1_TO_BOOL(isinf, isinf)
/// \function isnan(x)
MATH_FUN_1_TO_BOOL(isnan, isnan)
/// \function trunc(x)
MATH_FUN_1_TO_INT(trunc, trunc)
/// \function ldexp(x, exp)
MATH_FUN_2(ldexp, ldexp)
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
/// \function erf(x)
/// Return the error function of `x`.
MATH_FUN_1(erf, erf)
/// \function erfc(x)
/// Return the complementary error function of `x`.
MATH_FUN_1(erfc, erfc)
/// \function gamma(x)
/// Return the gamma function of `x`.
MATH_FUN_1(gamma, tgamma)
/// \function lgamma(x)
/// return the natural logarithm of the gamma function of `x`.
MATH_FUN_1(lgamma, lgamma)
#endif
//TODO: factorial, fsum
// Functions that return a tuple
/// \function frexp(x)
/// Converts a floating-point number to fractional and integral components.
STATIC mp_obj_t mp_math_frexp(mp_obj_t x_obj) {
int int_exponent = 0;
mp_float_t significand = MICROPY_FLOAT_C_FUN(frexp)(mp_obj_get_float(x_obj), &int_exponent);
mp_obj_t tuple[2];
tuple[0] = mp_obj_new_float(significand);
tuple[1] = mp_obj_new_int(int_exponent);
return mp_obj_new_tuple(2, tuple);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_frexp_obj, mp_math_frexp);
/// \function modf(x)
STATIC mp_obj_t mp_math_modf(mp_obj_t x_obj) {
mp_float_t int_part = 0.0;
mp_float_t fractional_part = MICROPY_FLOAT_C_FUN(modf)(mp_obj_get_float(x_obj), &int_part);
mp_obj_t tuple[2];
tuple[0] = mp_obj_new_float(fractional_part);
tuple[1] = mp_obj_new_float(int_part);
return mp_obj_new_tuple(2, tuple);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_modf_obj, mp_math_modf);
// Angular conversions
/// \function radians(x)
STATIC mp_obj_t mp_math_radians(mp_obj_t x_obj) {
return mp_obj_new_float(mp_obj_get_float(x_obj) * M_PI / 180.0);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_radians_obj, mp_math_radians);
/// \function degrees(x)
STATIC mp_obj_t mp_math_degrees(mp_obj_t x_obj) {
return mp_obj_new_float(mp_obj_get_float(x_obj) * 180.0 / M_PI);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_degrees_obj, mp_math_degrees);
STATIC const mp_map_elem_t mp_module_math_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_math) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_e), (mp_obj_t)&mp_math_e_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_pi), (mp_obj_t)&mp_math_pi_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_sqrt), (mp_obj_t)&mp_math_sqrt_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_pow), (mp_obj_t)&mp_math_pow_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_exp), (mp_obj_t)&mp_math_exp_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_expm1), (mp_obj_t)&mp_math_expm1_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_log), (mp_obj_t)&mp_math_log_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_log2), (mp_obj_t)&mp_math_log2_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_log10), (mp_obj_t)&mp_math_log10_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_cosh), (mp_obj_t)&mp_math_cosh_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_sinh), (mp_obj_t)&mp_math_sinh_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_tanh), (mp_obj_t)&mp_math_tanh_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_acosh), (mp_obj_t)&mp_math_acosh_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_asinh), (mp_obj_t)&mp_math_asinh_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_atanh), (mp_obj_t)&mp_math_atanh_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_cos), (mp_obj_t)&mp_math_cos_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_sin), (mp_obj_t)&mp_math_sin_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_tan), (mp_obj_t)&mp_math_tan_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_acos), (mp_obj_t)&mp_math_acos_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_asin), (mp_obj_t)&mp_math_asin_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_atan), (mp_obj_t)&mp_math_atan_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_atan2), (mp_obj_t)&mp_math_atan2_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ceil), (mp_obj_t)&mp_math_ceil_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_copysign), (mp_obj_t)&mp_math_copysign_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_fabs), (mp_obj_t)&mp_math_fabs_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_floor), (mp_obj_t)&mp_math_floor_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_fmod), (mp_obj_t)&mp_math_fmod_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_frexp), (mp_obj_t)&mp_math_frexp_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ldexp), (mp_obj_t)&mp_math_ldexp_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_modf), (mp_obj_t)&mp_math_modf_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_isfinite), (mp_obj_t)&mp_math_isfinite_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_isinf), (mp_obj_t)&mp_math_isinf_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_isnan), (mp_obj_t)&mp_math_isnan_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_trunc), (mp_obj_t)&mp_math_trunc_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_radians), (mp_obj_t)&mp_math_radians_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_degrees), (mp_obj_t)&mp_math_degrees_obj },
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
{ MP_OBJ_NEW_QSTR(MP_QSTR_erf), (mp_obj_t)&mp_math_erf_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_erfc), (mp_obj_t)&mp_math_erfc_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_gamma), (mp_obj_t)&mp_math_gamma_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_lgamma), (mp_obj_t)&mp_math_lgamma_obj },
#endif
};
STATIC MP_DEFINE_CONST_DICT(mp_module_math_globals, mp_module_math_globals_table);
const mp_obj_module_t mp_module_math = {
.base = { &mp_type_module },
.name = MP_QSTR_math,
.globals = (mp_obj_dict_t*)&mp_module_math_globals,
};
#endif // MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH