816e4537f2
This uses MP_REGISTER_ROOT_POINTER() to register all port-specific root pointers in the stm32 port. Signed-off-by: David Lechner <david@pybricks.com>
1131 lines
41 KiB
C
1131 lines
41 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2015 Bryan Morrissey
|
|
* Copyright (c) 2021 Mike Teachman
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <stdbool.h>
|
|
|
|
#include "py/obj.h"
|
|
#include "py/runtime.h"
|
|
#include "py/mphal.h"
|
|
#include "py/misc.h"
|
|
#include "py/stream.h"
|
|
#include "py/objstr.h"
|
|
#include "modmachine.h"
|
|
#include "pin.h"
|
|
#include "dma.h"
|
|
|
|
#if MICROPY_HW_ENABLE_I2S
|
|
// The I2S module has 3 modes of operation:
|
|
//
|
|
// Mode1: Blocking
|
|
// - readinto() and write() methods block until the supplied buffer is filled (read) or emptied (write)
|
|
// - this is the default mode of operation
|
|
//
|
|
// Mode2: Non-Blocking
|
|
// - readinto() and write() methods return immediately
|
|
// - buffer filling and emptying happens asynchronously to the main MicroPython task
|
|
// - a callback function is called when the supplied buffer has been filled (read) or emptied (write)
|
|
// - non-blocking mode is enabled when a callback is set with the irq() method
|
|
// - the DMA callbacks (1/2 complete and complete) are used to implement the asynchronous background operations
|
|
//
|
|
// Mode3: Uasyncio
|
|
// - implements the stream protocol
|
|
// - uasyncio mode is enabled when the ioctl() function is called
|
|
// - the state of the internal ring buffer is used to detect that I2S samples can be read or written
|
|
//
|
|
// The samples contained in the app buffer supplied for the readinto() and write() methods have the following convention:
|
|
// Mono: little endian format
|
|
// Stereo: little endian format, left channel first
|
|
//
|
|
// I2S terms:
|
|
// "frame": consists of two audio samples (Left audio sample + Right audio sample)
|
|
//
|
|
// Misc:
|
|
// - for Mono configuration:
|
|
// - readinto method: samples are gathered from the L channel only
|
|
// - write method: every sample is output to both the L and R channels
|
|
// - for readinto method the I2S hardware is read using 8-byte frames
|
|
// (this is standard for almost all I2S hardware, such as MEMS microphones)
|
|
// - all 3 Modes of operation are implemented using the HAL I2S Generic Driver
|
|
// - all sample data transfers use DMA
|
|
// - the DMA controller is configured in Circular mode to fulfil continuous and gapless sample flows
|
|
// - the DMA ping-pong buffer needs to be aligned to a cache line size of 32 bytes. 32 byte
|
|
// alignment is needed to use the routines that clean and invalidate D-Cache which work on a
|
|
// 32 byte address boundary. Not all STM32 devices have a D-Cache. Buffer alignment
|
|
// will still happen on these devices to keep this code simple.
|
|
|
|
// DMA ping-pong buffer size was empirically determined. It is a tradeoff between:
|
|
// 1. memory use (smaller buffer size desirable to reduce memory footprint)
|
|
// 2. interrupt frequency (larger buffer size desirable to reduce interrupt frequency)
|
|
// The sizeof 1/2 of the DMA buffer must be evenly divisible by the cache line size of 32 bytes.
|
|
#define SIZEOF_DMA_BUFFER_IN_BYTES (256)
|
|
#define SIZEOF_HALF_DMA_BUFFER_IN_BYTES (SIZEOF_DMA_BUFFER_IN_BYTES / 2)
|
|
|
|
// For non-blocking mode, to avoid underflow/overflow, sample data is written/read to/from the ring buffer at a rate faster
|
|
// than the DMA transfer rate
|
|
#define NON_BLOCKING_RATE_MULTIPLIER (4)
|
|
#define SIZEOF_NON_BLOCKING_COPY_IN_BYTES (SIZEOF_HALF_DMA_BUFFER_IN_BYTES * NON_BLOCKING_RATE_MULTIPLIER)
|
|
|
|
#define NUM_I2S_USER_FORMATS (4)
|
|
#define I2S_RX_FRAME_SIZE_IN_BYTES (8)
|
|
|
|
typedef enum {
|
|
MONO,
|
|
STEREO
|
|
} format_t;
|
|
|
|
typedef enum {
|
|
BLOCKING,
|
|
NON_BLOCKING,
|
|
UASYNCIO
|
|
} io_mode_t;
|
|
|
|
typedef enum {
|
|
TOP_HALF,
|
|
BOTTOM_HALF
|
|
} ping_pong_t;
|
|
|
|
typedef struct _ring_buf_t {
|
|
uint8_t *buffer;
|
|
size_t head;
|
|
size_t tail;
|
|
size_t size;
|
|
} ring_buf_t;
|
|
|
|
typedef struct _non_blocking_descriptor_t {
|
|
mp_buffer_info_t appbuf;
|
|
uint32_t index;
|
|
bool copy_in_progress;
|
|
} non_blocking_descriptor_t;
|
|
|
|
typedef struct _machine_i2s_obj_t {
|
|
mp_obj_base_t base;
|
|
uint8_t i2s_id;
|
|
mp_hal_pin_obj_t sck;
|
|
mp_hal_pin_obj_t ws;
|
|
mp_hal_pin_obj_t sd;
|
|
uint16_t mode;
|
|
int8_t bits;
|
|
format_t format;
|
|
int32_t rate;
|
|
int32_t ibuf;
|
|
mp_obj_t callback_for_non_blocking;
|
|
uint8_t dma_buffer[SIZEOF_DMA_BUFFER_IN_BYTES + 0x1f]; // 0x1f related to D-Cache alignment
|
|
uint8_t *dma_buffer_dcache_aligned;
|
|
ring_buf_t ring_buffer;
|
|
uint8_t *ring_buffer_storage;
|
|
non_blocking_descriptor_t non_blocking_descriptor;
|
|
io_mode_t io_mode;
|
|
I2S_HandleTypeDef hi2s;
|
|
DMA_HandleTypeDef hdma_tx;
|
|
DMA_HandleTypeDef hdma_rx;
|
|
const dma_descr_t *dma_descr_tx;
|
|
const dma_descr_t *dma_descr_rx;
|
|
} machine_i2s_obj_t;
|
|
|
|
STATIC mp_obj_t machine_i2s_deinit(mp_obj_t self_in);
|
|
|
|
// The frame map is used with the readinto() method to transform the audio sample data coming
|
|
// from DMA memory (32-bit stereo) to the format specified
|
|
// in the I2S constructor. e.g. 16-bit mono
|
|
STATIC const int8_t i2s_frame_map[NUM_I2S_USER_FORMATS][I2S_RX_FRAME_SIZE_IN_BYTES] = {
|
|
{ 0, 1, -1, -1, -1, -1, -1, -1 }, // Mono, 16-bits
|
|
{ 2, 3, 0, 1, -1, -1, -1, -1 }, // Mono, 32-bits
|
|
{ 0, 1, -1, -1, 2, 3, -1, -1 }, // Stereo, 16-bits
|
|
{ 2, 3, 0, 1, 6, 7, 4, 5 }, // Stereo, 32-bits
|
|
};
|
|
|
|
void machine_i2s_init0() {
|
|
for (uint8_t i = 0; i < MICROPY_HW_MAX_I2S; i++) {
|
|
MP_STATE_PORT(machine_i2s_obj)[i] = NULL;
|
|
}
|
|
}
|
|
|
|
// Ring Buffer
|
|
// Thread safe when used with these constraints:
|
|
// - Single Producer, Single Consumer
|
|
// - Sequential atomic operations
|
|
// One byte of capacity is used to detect buffer empty/full
|
|
|
|
STATIC void ringbuf_init(ring_buf_t *rbuf, uint8_t *buffer, size_t size) {
|
|
rbuf->buffer = buffer;
|
|
rbuf->size = size;
|
|
rbuf->head = 0;
|
|
rbuf->tail = 0;
|
|
}
|
|
|
|
STATIC bool ringbuf_push(ring_buf_t *rbuf, uint8_t data) {
|
|
size_t next_tail = (rbuf->tail + 1) % rbuf->size;
|
|
|
|
if (next_tail != rbuf->head) {
|
|
rbuf->buffer[rbuf->tail] = data;
|
|
rbuf->tail = next_tail;
|
|
return true;
|
|
}
|
|
|
|
// full
|
|
return false;
|
|
}
|
|
|
|
STATIC bool ringbuf_pop(ring_buf_t *rbuf, uint8_t *data) {
|
|
if (rbuf->head == rbuf->tail) {
|
|
// empty
|
|
return false;
|
|
}
|
|
|
|
*data = rbuf->buffer[rbuf->head];
|
|
rbuf->head = (rbuf->head + 1) % rbuf->size;
|
|
return true;
|
|
}
|
|
|
|
STATIC bool ringbuf_is_empty(ring_buf_t *rbuf) {
|
|
return rbuf->head == rbuf->tail;
|
|
}
|
|
|
|
STATIC bool ringbuf_is_full(ring_buf_t *rbuf) {
|
|
return ((rbuf->tail + 1) % rbuf->size) == rbuf->head;
|
|
}
|
|
|
|
STATIC size_t ringbuf_available_data(ring_buf_t *rbuf) {
|
|
return (rbuf->tail - rbuf->head + rbuf->size) % rbuf->size;
|
|
}
|
|
|
|
STATIC size_t ringbuf_available_space(ring_buf_t *rbuf) {
|
|
return rbuf->size - ringbuf_available_data(rbuf) - 1;
|
|
}
|
|
|
|
// For 32-bit audio samples, the STM32 HAL API expects each 32-bit sample to be encoded
|
|
// in an unusual byte ordering: Byte_2, Byte_3, Byte_0, Byte_1
|
|
// where: Byte_0 is the least significant byte of the 32-bit sample
|
|
//
|
|
// The following function takes a buffer containing 32-bits sample values formatted as little endian
|
|
// and performs an in-place modification into the STM32 HAL API convention
|
|
//
|
|
// Example:
|
|
//
|
|
// wav_samples[] = [L_0-7, L_8-15, L_16-23, L_24-31, R_0-7, R_8-15, R_16-23, R_24-31] = [Left channel, Right channel]
|
|
// stm_api[] = [L_16-23, L_24-31, L_0-7, L_8-15, R_16-23, R_24-31, R_0-7, R_8-15] = [Left channel, Right channel]
|
|
//
|
|
// where:
|
|
// L_0-7 is the least significant byte of the 32 bit sample in the Left channel
|
|
// L_24-31 is the most significant byte of the 32 bit sample in the Left channel
|
|
//
|
|
// wav_samples[] = [0x99, 0xBB, 0x11, 0x22, 0x44, 0x55, 0xAB, 0x77] = [Left channel, Right channel]
|
|
// stm_api[] = [0x11, 0x22, 0x99, 0xBB, 0xAB, 0x77, 0x44, 0x55] = [Left channel, Right channel]
|
|
//
|
|
// where:
|
|
// LEFT Channel = 0x99, 0xBB, 0x11, 0x22
|
|
// RIGHT Channel = 0x44, 0x55, 0xAB, 0x77
|
|
STATIC void reformat_32_bit_samples(int32_t *sample, uint32_t num_samples) {
|
|
int16_t sample_ms;
|
|
int16_t sample_ls;
|
|
for (uint32_t i = 0; i < num_samples; i++) {
|
|
sample_ls = sample[i] & 0xFFFF;
|
|
sample_ms = sample[i] >> 16;
|
|
sample[i] = (sample_ls << 16) + sample_ms;
|
|
}
|
|
}
|
|
|
|
STATIC int8_t get_frame_mapping_index(int8_t bits, format_t format) {
|
|
if (format == MONO) {
|
|
if (bits == 16) {
|
|
return 0;
|
|
} else { // 32 bits
|
|
return 1;
|
|
}
|
|
} else { // STEREO
|
|
if (bits == 16) {
|
|
return 2;
|
|
} else { // 32 bits
|
|
return 3;
|
|
}
|
|
}
|
|
}
|
|
|
|
STATIC int8_t get_dma_bits(uint16_t mode, int8_t bits) {
|
|
if (mode == I2S_MODE_MASTER_TX) {
|
|
if (bits == 16) {
|
|
return I2S_DATAFORMAT_16B;
|
|
} else {
|
|
return I2S_DATAFORMAT_32B;
|
|
}
|
|
return bits;
|
|
} else { // Master Rx
|
|
// always read 32 bit words for I2S e.g. I2S MEMS microphones
|
|
return I2S_DATAFORMAT_32B;
|
|
}
|
|
}
|
|
|
|
STATIC uint32_t fill_appbuf_from_ringbuf(machine_i2s_obj_t *self, mp_buffer_info_t *appbuf) {
|
|
|
|
// copy audio samples from the ring buffer to the app buffer
|
|
// loop, copying samples until the app buffer is filled
|
|
// For uasyncio mode, the loop will make an early exit if the ring buffer becomes empty
|
|
// Example:
|
|
// a MicroPython I2S object is configured for 16-bit mono (2 bytes per audio sample).
|
|
// For every frame coming from the ring buffer (8 bytes), 2 bytes are "cherry picked" and
|
|
// copied to the supplied app buffer.
|
|
// Thus, for every 1 byte copied to the app buffer, 4 bytes are read from the ring buffer.
|
|
// If a 8kB app buffer is supplied, 32kB of audio samples is read from the ring buffer.
|
|
|
|
uint32_t num_bytes_copied_to_appbuf = 0;
|
|
uint8_t *app_p = (uint8_t *)appbuf->buf;
|
|
uint8_t appbuf_sample_size_in_bytes = (self->bits == 16? 2 : 4) * (self->format == STEREO ? 2: 1);
|
|
uint32_t num_bytes_needed_from_ringbuf = appbuf->len * (I2S_RX_FRAME_SIZE_IN_BYTES / appbuf_sample_size_in_bytes);
|
|
uint8_t discard_byte;
|
|
while (num_bytes_needed_from_ringbuf) {
|
|
|
|
uint8_t f_index = get_frame_mapping_index(self->bits, self->format);
|
|
|
|
for (uint8_t i = 0; i < I2S_RX_FRAME_SIZE_IN_BYTES; i++) {
|
|
int8_t r_to_a_mapping = i2s_frame_map[f_index][i];
|
|
if (r_to_a_mapping != -1) {
|
|
if (self->io_mode == BLOCKING) {
|
|
// poll the ringbuf until a sample becomes available, copy into appbuf using the mapping transform
|
|
while (ringbuf_pop(&self->ring_buffer, app_p + r_to_a_mapping) == false) {
|
|
;
|
|
}
|
|
num_bytes_copied_to_appbuf++;
|
|
} else if (self->io_mode == UASYNCIO) {
|
|
if (ringbuf_pop(&self->ring_buffer, app_p + r_to_a_mapping) == false) {
|
|
// ring buffer is empty, exit
|
|
goto exit;
|
|
} else {
|
|
num_bytes_copied_to_appbuf++;
|
|
}
|
|
} else {
|
|
return 0; // should never get here (non-blocking mode does not use this function)
|
|
}
|
|
} else { // r_a_mapping == -1
|
|
// discard unused byte from ring buffer
|
|
if (self->io_mode == BLOCKING) {
|
|
// poll the ringbuf until a sample becomes available
|
|
while (ringbuf_pop(&self->ring_buffer, &discard_byte) == false) {
|
|
;
|
|
}
|
|
} else if (self->io_mode == UASYNCIO) {
|
|
if (ringbuf_pop(&self->ring_buffer, &discard_byte) == false) {
|
|
// ring buffer is empty, exit
|
|
goto exit;
|
|
}
|
|
} else {
|
|
return 0; // should never get here (non-blocking mode does not use this function)
|
|
}
|
|
}
|
|
num_bytes_needed_from_ringbuf--;
|
|
}
|
|
app_p += appbuf_sample_size_in_bytes;
|
|
}
|
|
exit:
|
|
return num_bytes_copied_to_appbuf;
|
|
}
|
|
|
|
// function is used in IRQ context
|
|
STATIC void fill_appbuf_from_ringbuf_non_blocking(machine_i2s_obj_t *self) {
|
|
|
|
// attempt to copy a block of audio samples from the ring buffer to the supplied app buffer.
|
|
// audio samples will be formatted as part of the copy operation
|
|
|
|
uint32_t num_bytes_copied_to_appbuf = 0;
|
|
uint8_t *app_p = &(((uint8_t *)self->non_blocking_descriptor.appbuf.buf)[self->non_blocking_descriptor.index]);
|
|
|
|
uint8_t appbuf_sample_size_in_bytes = (self->bits == 16? 2 : 4) * (self->format == STEREO ? 2: 1);
|
|
uint32_t num_bytes_remaining_to_copy_to_appbuf = self->non_blocking_descriptor.appbuf.len - self->non_blocking_descriptor.index;
|
|
uint32_t num_bytes_remaining_to_copy_from_ring_buffer = num_bytes_remaining_to_copy_to_appbuf *
|
|
(I2S_RX_FRAME_SIZE_IN_BYTES / appbuf_sample_size_in_bytes);
|
|
uint32_t num_bytes_needed_from_ringbuf = MIN(SIZEOF_NON_BLOCKING_COPY_IN_BYTES, num_bytes_remaining_to_copy_from_ring_buffer);
|
|
uint8_t discard_byte;
|
|
if (ringbuf_available_data(&self->ring_buffer) >= num_bytes_needed_from_ringbuf) {
|
|
while (num_bytes_needed_from_ringbuf) {
|
|
|
|
uint8_t f_index = get_frame_mapping_index(self->bits, self->format);
|
|
|
|
for (uint8_t i = 0; i < I2S_RX_FRAME_SIZE_IN_BYTES; i++) {
|
|
int8_t r_to_a_mapping = i2s_frame_map[f_index][i];
|
|
if (r_to_a_mapping != -1) {
|
|
ringbuf_pop(&self->ring_buffer, app_p + r_to_a_mapping);
|
|
num_bytes_copied_to_appbuf++;
|
|
} else { // r_a_mapping == -1
|
|
// discard unused byte from ring buffer
|
|
ringbuf_pop(&self->ring_buffer, &discard_byte);
|
|
}
|
|
num_bytes_needed_from_ringbuf--;
|
|
}
|
|
app_p += appbuf_sample_size_in_bytes;
|
|
}
|
|
self->non_blocking_descriptor.index += num_bytes_copied_to_appbuf;
|
|
|
|
if (self->non_blocking_descriptor.index >= self->non_blocking_descriptor.appbuf.len) {
|
|
self->non_blocking_descriptor.copy_in_progress = false;
|
|
mp_sched_schedule(self->callback_for_non_blocking, MP_OBJ_FROM_PTR(self));
|
|
}
|
|
}
|
|
}
|
|
|
|
STATIC uint32_t copy_appbuf_to_ringbuf(machine_i2s_obj_t *self, mp_buffer_info_t *appbuf) {
|
|
|
|
// copy audio samples from the app buffer to the ring buffer
|
|
// loop, reading samples until the app buffer is emptied
|
|
// for uasyncio mode, the loop will make an early exit if the ring buffer becomes full
|
|
|
|
uint32_t a_index = 0;
|
|
|
|
while (a_index < appbuf->len) {
|
|
if (self->io_mode == BLOCKING) {
|
|
// copy a byte to the ringbuf when space becomes available
|
|
while (ringbuf_push(&self->ring_buffer, ((uint8_t *)appbuf->buf)[a_index]) == false) {
|
|
;
|
|
}
|
|
a_index++;
|
|
} else if (self->io_mode == UASYNCIO) {
|
|
if (ringbuf_push(&self->ring_buffer, ((uint8_t *)appbuf->buf)[a_index]) == false) {
|
|
// ring buffer is full, exit
|
|
break;
|
|
} else {
|
|
a_index++;
|
|
}
|
|
} else {
|
|
return 0; // should never get here (non-blocking mode does not use this function)
|
|
}
|
|
}
|
|
|
|
return a_index;
|
|
}
|
|
|
|
// function is used in IRQ context
|
|
STATIC void copy_appbuf_to_ringbuf_non_blocking(machine_i2s_obj_t *self) {
|
|
|
|
// copy audio samples from app buffer into ring buffer
|
|
uint32_t num_bytes_remaining_to_copy = self->non_blocking_descriptor.appbuf.len - self->non_blocking_descriptor.index;
|
|
uint32_t num_bytes_to_copy = MIN(SIZEOF_NON_BLOCKING_COPY_IN_BYTES, num_bytes_remaining_to_copy);
|
|
|
|
if (ringbuf_available_space(&self->ring_buffer) >= num_bytes_to_copy) {
|
|
for (uint32_t i = 0; i < num_bytes_to_copy; i++) {
|
|
ringbuf_push(&self->ring_buffer,
|
|
((uint8_t *)self->non_blocking_descriptor.appbuf.buf)[self->non_blocking_descriptor.index + i]);
|
|
}
|
|
|
|
self->non_blocking_descriptor.index += num_bytes_to_copy;
|
|
if (self->non_blocking_descriptor.index >= self->non_blocking_descriptor.appbuf.len) {
|
|
self->non_blocking_descriptor.copy_in_progress = false;
|
|
mp_sched_schedule(self->callback_for_non_blocking, MP_OBJ_FROM_PTR(self));
|
|
}
|
|
}
|
|
}
|
|
|
|
// function is used in IRQ context
|
|
STATIC void empty_dma(machine_i2s_obj_t *self, ping_pong_t dma_ping_pong) {
|
|
uint16_t dma_buffer_offset = 0;
|
|
|
|
if (dma_ping_pong == TOP_HALF) {
|
|
dma_buffer_offset = 0;
|
|
} else { // BOTTOM_HALF
|
|
dma_buffer_offset = SIZEOF_HALF_DMA_BUFFER_IN_BYTES;
|
|
}
|
|
|
|
uint8_t *dma_buffer_p = &self->dma_buffer_dcache_aligned[dma_buffer_offset];
|
|
|
|
// flush and invalidate cache so the CPU reads data placed into RAM by DMA
|
|
MP_HAL_CLEANINVALIDATE_DCACHE(dma_buffer_p, SIZEOF_HALF_DMA_BUFFER_IN_BYTES);
|
|
|
|
// when space exists, copy samples into ring buffer
|
|
if (ringbuf_available_space(&self->ring_buffer) >= SIZEOF_HALF_DMA_BUFFER_IN_BYTES) {
|
|
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES; i++) {
|
|
ringbuf_push(&self->ring_buffer, dma_buffer_p[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// function is used in IRQ context
|
|
STATIC void feed_dma(machine_i2s_obj_t *self, ping_pong_t dma_ping_pong) {
|
|
uint16_t dma_buffer_offset = 0;
|
|
|
|
if (dma_ping_pong == TOP_HALF) {
|
|
dma_buffer_offset = 0;
|
|
} else { // BOTTOM_HALF
|
|
dma_buffer_offset = SIZEOF_HALF_DMA_BUFFER_IN_BYTES;
|
|
}
|
|
|
|
uint8_t *dma_buffer_p = &self->dma_buffer_dcache_aligned[dma_buffer_offset];
|
|
|
|
// when data exists, copy samples from ring buffer
|
|
if (ringbuf_available_data(&self->ring_buffer) >= SIZEOF_HALF_DMA_BUFFER_IN_BYTES) {
|
|
|
|
// copy a block of samples from the ring buffer to the dma buffer.
|
|
// STM32 HAL API has a stereo I2S implementation, but not mono
|
|
// mono format is implemented by duplicating each sample into both L and R channels.
|
|
if ((self->format == MONO) && (self->bits == 16)) {
|
|
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES / 4; i++) {
|
|
for (uint8_t b = 0; b < sizeof(uint16_t); b++) {
|
|
ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i * 4 + b]);
|
|
dma_buffer_p[i * 4 + b + 2] = dma_buffer_p[i * 4 + b]; // duplicated mono sample
|
|
}
|
|
}
|
|
} else if ((self->format == MONO) && (self->bits == 32)) {
|
|
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES / 8; i++) {
|
|
for (uint8_t b = 0; b < sizeof(uint32_t); b++) {
|
|
ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i * 8 + b]);
|
|
dma_buffer_p[i * 8 + b + 4] = dma_buffer_p[i * 8 + b]; // duplicated mono sample
|
|
}
|
|
}
|
|
} else { // STEREO, both 16-bit and 32-bit
|
|
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES; i++) {
|
|
ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i]);
|
|
}
|
|
}
|
|
|
|
// reformat 32 bit samples to match STM32 HAL API format
|
|
if (self->bits == 32) {
|
|
reformat_32_bit_samples((int32_t *)dma_buffer_p, SIZEOF_HALF_DMA_BUFFER_IN_BYTES / (sizeof(uint32_t)));
|
|
}
|
|
} else {
|
|
// underflow. clear buffer to transmit "silence" on the I2S bus
|
|
memset(dma_buffer_p, 0, SIZEOF_HALF_DMA_BUFFER_IN_BYTES);
|
|
}
|
|
|
|
// flush cache to RAM so DMA can read the sample data
|
|
MP_HAL_CLEAN_DCACHE(dma_buffer_p, SIZEOF_HALF_DMA_BUFFER_IN_BYTES);
|
|
}
|
|
|
|
STATIC bool i2s_init(machine_i2s_obj_t *self) {
|
|
|
|
// init the GPIO lines
|
|
GPIO_InitTypeDef GPIO_InitStructure;
|
|
GPIO_InitStructure.Mode = GPIO_MODE_AF_PP;
|
|
GPIO_InitStructure.Speed = GPIO_SPEED_FAST;
|
|
GPIO_InitStructure.Pull = GPIO_PULLUP;
|
|
|
|
if (self->i2s_id == 1) {
|
|
self->hi2s.Instance = I2S1;
|
|
__SPI1_CLK_ENABLE();
|
|
// configure DMA streams
|
|
if (self->mode == I2S_MODE_MASTER_RX) {
|
|
self->dma_descr_rx = &dma_I2S_1_RX;
|
|
} else {
|
|
self->dma_descr_tx = &dma_I2S_1_TX;
|
|
}
|
|
} else if (self->i2s_id == 2) {
|
|
self->hi2s.Instance = I2S2;
|
|
__SPI2_CLK_ENABLE();
|
|
// configure DMA streams
|
|
if (self->mode == I2S_MODE_MASTER_RX) {
|
|
self->dma_descr_rx = &dma_I2S_2_RX;
|
|
} else {
|
|
self->dma_descr_tx = &dma_I2S_2_TX;
|
|
}
|
|
} else {
|
|
// invalid id number; should not get here as i2s object should not
|
|
// have been created without setting a valid i2s instance number
|
|
return false;
|
|
}
|
|
|
|
// GPIO Pin initialization
|
|
if (self->sck != MP_OBJ_TO_PTR(MP_OBJ_NULL)) {
|
|
GPIO_InitStructure.Pin = self->sck->pin_mask;
|
|
const pin_af_obj_t *af = pin_find_af(self->sck, AF_FN_I2S, self->i2s_id);
|
|
GPIO_InitStructure.Alternate = (uint8_t)af->idx;
|
|
HAL_GPIO_Init(self->sck->gpio, &GPIO_InitStructure);
|
|
}
|
|
|
|
if (self->ws != MP_OBJ_TO_PTR(MP_OBJ_NULL)) {
|
|
GPIO_InitStructure.Pin = self->ws->pin_mask;
|
|
const pin_af_obj_t *af = pin_find_af(self->ws, AF_FN_I2S, self->i2s_id);
|
|
GPIO_InitStructure.Alternate = (uint8_t)af->idx;
|
|
HAL_GPIO_Init(self->ws->gpio, &GPIO_InitStructure);
|
|
}
|
|
|
|
if (self->sd != MP_OBJ_TO_PTR(MP_OBJ_NULL)) {
|
|
GPIO_InitStructure.Pin = self->sd->pin_mask;
|
|
const pin_af_obj_t *af = pin_find_af(self->sd, AF_FN_I2S, self->i2s_id);
|
|
GPIO_InitStructure.Alternate = (uint8_t)af->idx;
|
|
HAL_GPIO_Init(self->sd->gpio, &GPIO_InitStructure);
|
|
}
|
|
|
|
if (HAL_I2S_Init(&self->hi2s) == HAL_OK) {
|
|
// Reset and initialize Tx and Rx DMA channels
|
|
if (self->mode == I2S_MODE_MASTER_RX) {
|
|
dma_invalidate_channel(self->dma_descr_rx);
|
|
dma_init(&self->hdma_rx, self->dma_descr_rx, DMA_PERIPH_TO_MEMORY, &self->hi2s);
|
|
self->hi2s.hdmarx = &self->hdma_rx;
|
|
} else { // I2S_MODE_MASTER_TX
|
|
dma_invalidate_channel(self->dma_descr_tx);
|
|
dma_init(&self->hdma_tx, self->dma_descr_tx, DMA_MEMORY_TO_PERIPH, &self->hi2s);
|
|
self->hi2s.hdmatx = &self->hdma_tx;
|
|
}
|
|
|
|
__HAL_RCC_PLLI2S_ENABLE(); // start I2S clock
|
|
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
}
|
|
|
|
void HAL_I2S_ErrorCallback(I2S_HandleTypeDef *hi2s) {
|
|
uint32_t errorCode = HAL_I2S_GetError(hi2s);
|
|
printf("I2S Error = %ld\n", errorCode);
|
|
}
|
|
|
|
void HAL_I2S_RxCpltCallback(I2S_HandleTypeDef *hi2s) {
|
|
machine_i2s_obj_t *self;
|
|
if (hi2s->Instance == I2S1) {
|
|
self = MP_STATE_PORT(machine_i2s_obj)[0];
|
|
} else {
|
|
self = MP_STATE_PORT(machine_i2s_obj)[1];
|
|
}
|
|
|
|
// bottom half of buffer now filled,
|
|
// safe to empty the bottom half while the top half of buffer is being filled
|
|
empty_dma(self, BOTTOM_HALF);
|
|
|
|
// for non-blocking operation, this IRQ-based callback handles
|
|
// the readinto() method requests.
|
|
if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) {
|
|
fill_appbuf_from_ringbuf_non_blocking(self);
|
|
}
|
|
}
|
|
|
|
void HAL_I2S_RxHalfCpltCallback(I2S_HandleTypeDef *hi2s) {
|
|
machine_i2s_obj_t *self;
|
|
if (hi2s->Instance == I2S1) {
|
|
self = MP_STATE_PORT(machine_i2s_obj)[0];
|
|
} else {
|
|
self = MP_STATE_PORT(machine_i2s_obj)[1];
|
|
}
|
|
|
|
// top half of buffer now filled,
|
|
// safe to empty the top half while the bottom half of buffer is being filled
|
|
empty_dma(self, TOP_HALF);
|
|
|
|
// for non-blocking operation, this IRQ-based callback handles
|
|
// the readinto() method requests.
|
|
if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) {
|
|
fill_appbuf_from_ringbuf_non_blocking(self);
|
|
}
|
|
}
|
|
|
|
void HAL_I2S_TxCpltCallback(I2S_HandleTypeDef *hi2s) {
|
|
machine_i2s_obj_t *self;
|
|
|
|
if (hi2s->Instance == I2S1) {
|
|
self = MP_STATE_PORT(machine_i2s_obj)[0];
|
|
} else {
|
|
self = MP_STATE_PORT(machine_i2s_obj)[1];
|
|
}
|
|
|
|
// for non-blocking operation, this IRQ-based callback handles
|
|
// the write() method requests.
|
|
if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) {
|
|
copy_appbuf_to_ringbuf_non_blocking(self);
|
|
}
|
|
|
|
// bottom half of buffer now emptied,
|
|
// safe to fill the bottom half while the top half of buffer is being emptied
|
|
feed_dma(self, BOTTOM_HALF);
|
|
}
|
|
|
|
void HAL_I2S_TxHalfCpltCallback(I2S_HandleTypeDef *hi2s) {
|
|
machine_i2s_obj_t *self;
|
|
if (hi2s->Instance == I2S1) {
|
|
self = MP_STATE_PORT(machine_i2s_obj)[0];
|
|
} else {
|
|
self = MP_STATE_PORT(machine_i2s_obj)[1];
|
|
}
|
|
|
|
// for non-blocking operation, this IRQ-based callback handles
|
|
// the write() method requests.
|
|
if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) {
|
|
copy_appbuf_to_ringbuf_non_blocking(self);
|
|
}
|
|
|
|
// top half of buffer now emptied,
|
|
// safe to fill the top half while the bottom half of buffer is being emptied
|
|
feed_dma(self, TOP_HALF);
|
|
}
|
|
|
|
STATIC void machine_i2s_init_helper(machine_i2s_obj_t *self, size_t n_pos_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
|
|
enum {
|
|
ARG_sck,
|
|
ARG_ws,
|
|
ARG_sd,
|
|
ARG_mode,
|
|
ARG_bits,
|
|
ARG_format,
|
|
ARG_rate,
|
|
ARG_ibuf,
|
|
};
|
|
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_sck, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
|
|
{ MP_QSTR_ws, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
|
|
{ MP_QSTR_sd, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
|
|
{ MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
|
|
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
|
|
{ MP_QSTR_format, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
|
|
{ MP_QSTR_rate, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
|
|
{ MP_QSTR_ibuf, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
|
|
};
|
|
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_pos_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
memset(&self->hi2s, 0, sizeof(self->hi2s));
|
|
|
|
//
|
|
// ---- Check validity of arguments ----
|
|
//
|
|
|
|
// are I2S pin assignments valid?
|
|
const pin_af_obj_t *pin_af;
|
|
|
|
// is SCK valid?
|
|
if (mp_obj_is_type(args[ARG_sck].u_obj, &pin_type)) {
|
|
pin_af = pin_find_af(MP_OBJ_TO_PTR(args[ARG_sck].u_obj), AF_FN_I2S, self->i2s_id);
|
|
if (pin_af->type != AF_PIN_TYPE_I2S_CK) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid SCK pin"));
|
|
}
|
|
} else {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("SCK not a Pin type"));
|
|
}
|
|
|
|
// is WS valid?
|
|
if (mp_obj_is_type(args[ARG_ws].u_obj, &pin_type)) {
|
|
pin_af = pin_find_af(MP_OBJ_TO_PTR(args[ARG_ws].u_obj), AF_FN_I2S, self->i2s_id);
|
|
if (pin_af->type != AF_PIN_TYPE_I2S_WS) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid WS pin"));
|
|
}
|
|
} else {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("WS not a Pin type"));
|
|
}
|
|
|
|
// is SD valid?
|
|
if (mp_obj_is_type(args[ARG_sd].u_obj, &pin_type)) {
|
|
pin_af = pin_find_af(MP_OBJ_TO_PTR(args[ARG_sd].u_obj), AF_FN_I2S, self->i2s_id);
|
|
if (pin_af->type != AF_PIN_TYPE_I2S_SD) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid SD pin"));
|
|
}
|
|
} else {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("SD not a Pin type"));
|
|
}
|
|
|
|
// is Mode valid?
|
|
uint16_t i2s_mode = args[ARG_mode].u_int;
|
|
if ((i2s_mode != (I2S_MODE_MASTER_RX)) &&
|
|
(i2s_mode != (I2S_MODE_MASTER_TX))) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid mode"));
|
|
}
|
|
|
|
// is Bits valid?
|
|
int8_t i2s_bits = args[ARG_bits].u_int;
|
|
if ((i2s_bits != 16) &&
|
|
(i2s_bits != 32)) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid bits"));
|
|
}
|
|
|
|
// is Format valid?
|
|
format_t i2s_format = args[ARG_format].u_int;
|
|
if ((i2s_format != MONO) &&
|
|
(i2s_format != STEREO)) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid format"));
|
|
}
|
|
|
|
// is Rate valid?
|
|
// Not checked
|
|
|
|
// is Ibuf valid?
|
|
int32_t ring_buffer_len = args[ARG_ibuf].u_int;
|
|
if (ring_buffer_len > 0) {
|
|
uint8_t *buffer = m_new(uint8_t, ring_buffer_len);
|
|
self->ring_buffer_storage = buffer;
|
|
ringbuf_init(&self->ring_buffer, buffer, ring_buffer_len);
|
|
} else {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid ibuf"));
|
|
}
|
|
|
|
self->sck = MP_OBJ_TO_PTR(args[ARG_sck].u_obj);
|
|
self->ws = MP_OBJ_TO_PTR(args[ARG_ws].u_obj);
|
|
self->sd = MP_OBJ_TO_PTR(args[ARG_sd].u_obj);
|
|
self->mode = i2s_mode;
|
|
self->bits = i2s_bits;
|
|
self->format = i2s_format;
|
|
self->rate = args[ARG_rate].u_int;
|
|
self->ibuf = ring_buffer_len;
|
|
self->callback_for_non_blocking = MP_OBJ_NULL;
|
|
self->non_blocking_descriptor.copy_in_progress = false;
|
|
self->io_mode = BLOCKING;
|
|
|
|
I2S_InitTypeDef *init = &self->hi2s.Init;
|
|
init->Mode = i2s_mode;
|
|
init->Standard = I2S_STANDARD_PHILIPS;
|
|
init->DataFormat = get_dma_bits(self->mode, self->bits);
|
|
init->MCLKOutput = I2S_MCLKOUTPUT_DISABLE;
|
|
init->AudioFreq = args[ARG_rate].u_int;
|
|
init->CPOL = I2S_CPOL_LOW;
|
|
init->ClockSource = I2S_CLOCK_PLL;
|
|
#if defined(STM32F4)
|
|
init->FullDuplexMode = I2S_FULLDUPLEXMODE_DISABLE;
|
|
#endif
|
|
|
|
// init the I2S bus
|
|
if (!i2s_init(self)) {
|
|
mp_raise_msg_varg(&mp_type_OSError, MP_ERROR_TEXT("I2S init failed"));
|
|
}
|
|
|
|
// start DMA. DMA is configured to run continuously, using a circular buffer configuration
|
|
uint32_t number_of_samples = 0;
|
|
if (init->DataFormat == I2S_DATAFORMAT_16B) {
|
|
number_of_samples = SIZEOF_DMA_BUFFER_IN_BYTES / sizeof(uint16_t);
|
|
} else { // 32 bits
|
|
number_of_samples = SIZEOF_DMA_BUFFER_IN_BYTES / sizeof(uint32_t);
|
|
}
|
|
|
|
HAL_StatusTypeDef status;
|
|
if (self->mode == I2S_MODE_MASTER_TX) {
|
|
status = HAL_I2S_Transmit_DMA(&self->hi2s, (void *)self->dma_buffer_dcache_aligned, number_of_samples);
|
|
} else { // RX
|
|
status = HAL_I2S_Receive_DMA(&self->hi2s, (void *)self->dma_buffer_dcache_aligned, number_of_samples);
|
|
}
|
|
|
|
if (status != HAL_OK) {
|
|
mp_raise_msg_varg(&mp_type_OSError, MP_ERROR_TEXT("DMA init failed"));
|
|
}
|
|
}
|
|
|
|
STATIC void machine_i2s_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
|
|
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
mp_printf(print, "I2S(id=%u,\n"
|
|
"sck="MP_HAL_PIN_FMT ",\n"
|
|
"ws="MP_HAL_PIN_FMT ",\n"
|
|
"sd="MP_HAL_PIN_FMT ",\n"
|
|
"mode=%u,\n"
|
|
"bits=%u, format=%u,\n"
|
|
"rate=%d, ibuf=%d)",
|
|
self->i2s_id,
|
|
mp_hal_pin_name(self->sck),
|
|
mp_hal_pin_name(self->ws),
|
|
mp_hal_pin_name(self->sd),
|
|
self->mode,
|
|
self->bits, self->format,
|
|
self->rate, self->ibuf
|
|
);
|
|
}
|
|
|
|
STATIC mp_obj_t machine_i2s_make_new(const mp_obj_type_t *type, size_t n_pos_args, size_t n_kw_args, const mp_obj_t *args) {
|
|
mp_arg_check_num(n_pos_args, n_kw_args, 1, MP_OBJ_FUN_ARGS_MAX, true);
|
|
uint8_t i2s_id = mp_obj_get_int(args[0]);
|
|
uint8_t i2s_id_zero_base = 0;
|
|
|
|
if (0) {
|
|
#ifdef MICROPY_HW_I2S1
|
|
} else if (i2s_id == 1) {
|
|
i2s_id_zero_base = 0;
|
|
#endif
|
|
#ifdef MICROPY_HW_I2S2
|
|
} else if (i2s_id == 2) {
|
|
i2s_id_zero_base = 1;
|
|
#endif
|
|
} else {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid id"));
|
|
}
|
|
|
|
machine_i2s_obj_t *self;
|
|
if (MP_STATE_PORT(machine_i2s_obj)[i2s_id_zero_base] == NULL) {
|
|
self = mp_obj_malloc(machine_i2s_obj_t, &machine_i2s_type);
|
|
MP_STATE_PORT(machine_i2s_obj)[i2s_id_zero_base] = self;
|
|
self->i2s_id = i2s_id;
|
|
} else {
|
|
self = MP_STATE_PORT(machine_i2s_obj)[i2s_id_zero_base];
|
|
machine_i2s_deinit(MP_OBJ_FROM_PTR(self));
|
|
}
|
|
|
|
// align DMA buffer start to the cache line size (32 bytes)
|
|
self->dma_buffer_dcache_aligned = (uint8_t *)((uint32_t)(self->dma_buffer + 0x1f) & ~0x1f);
|
|
|
|
mp_map_t kw_args;
|
|
mp_map_init_fixed_table(&kw_args, n_kw_args, args + n_pos_args);
|
|
machine_i2s_init_helper(self, n_pos_args - 1, args + 1, &kw_args);
|
|
|
|
return MP_OBJ_FROM_PTR(self);
|
|
}
|
|
|
|
STATIC mp_obj_t machine_i2s_init(size_t n_pos_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
|
|
machine_i2s_deinit(MP_OBJ_FROM_PTR(self));
|
|
machine_i2s_init_helper(self, n_pos_args - 1, pos_args + 1, kw_args);
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2s_init_obj, 1, machine_i2s_init);
|
|
|
|
STATIC mp_obj_t machine_i2s_deinit(mp_obj_t self_in) {
|
|
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
|
|
if (self->ring_buffer_storage != NULL) {
|
|
dma_deinit(self->dma_descr_tx);
|
|
dma_deinit(self->dma_descr_rx);
|
|
HAL_I2S_DeInit(&self->hi2s);
|
|
|
|
if (self->hi2s.Instance == I2S1) {
|
|
__SPI1_FORCE_RESET();
|
|
__SPI1_RELEASE_RESET();
|
|
__SPI1_CLK_DISABLE();
|
|
} else if (self->hi2s.Instance == I2S2) {
|
|
__SPI2_FORCE_RESET();
|
|
__SPI2_RELEASE_RESET();
|
|
__SPI2_CLK_DISABLE();
|
|
}
|
|
|
|
m_free(self->ring_buffer_storage);
|
|
self->ring_buffer_storage = NULL;
|
|
}
|
|
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_i2s_deinit_obj, machine_i2s_deinit);
|
|
|
|
STATIC mp_obj_t machine_i2s_irq(mp_obj_t self_in, mp_obj_t handler) {
|
|
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
if (handler != mp_const_none && !mp_obj_is_callable(handler)) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid callback"));
|
|
}
|
|
|
|
if (handler != mp_const_none) {
|
|
self->io_mode = NON_BLOCKING;
|
|
} else {
|
|
self->io_mode = BLOCKING;
|
|
}
|
|
|
|
self->callback_for_non_blocking = handler;
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_2(machine_i2s_irq_obj, machine_i2s_irq);
|
|
|
|
// Shift() is typically used as a volume control.
|
|
// shift=1 increases volume by 6dB, shift=-1 decreases volume by 6dB
|
|
STATIC mp_obj_t machine_i2s_shift(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
enum { ARG_buf, ARG_bits, ARG_shift};
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_buf, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
|
|
{ MP_QSTR_bits, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
|
|
{ MP_QSTR_shift, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
|
|
};
|
|
|
|
// parse args
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
mp_buffer_info_t bufinfo;
|
|
mp_get_buffer_raise(args[ARG_buf].u_obj, &bufinfo, MP_BUFFER_RW);
|
|
|
|
int16_t *buf_16 = bufinfo.buf;
|
|
int32_t *buf_32 = bufinfo.buf;
|
|
|
|
uint8_t bits = args[ARG_bits].u_int;
|
|
int8_t shift = args[ARG_shift].u_int;
|
|
|
|
uint32_t num_audio_samples;
|
|
switch (bits) {
|
|
case 16:
|
|
num_audio_samples = bufinfo.len / sizeof(uint16_t);
|
|
break;
|
|
|
|
case 32:
|
|
num_audio_samples = bufinfo.len / sizeof(uint32_t);
|
|
break;
|
|
|
|
default:
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid bits"));
|
|
break;
|
|
}
|
|
|
|
for (uint32_t i = 0; i < num_audio_samples; i++) {
|
|
switch (bits) {
|
|
case 16:
|
|
if (shift >= 0) {
|
|
buf_16[i] = buf_16[i] << shift;
|
|
} else {
|
|
buf_16[i] = buf_16[i] >> abs(shift);
|
|
}
|
|
break;
|
|
case 32:
|
|
if (shift >= 0) {
|
|
buf_32[i] = buf_32[i] << shift;
|
|
} else {
|
|
buf_32[i] = buf_32[i] >> abs(shift);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2s_shift_fun_obj, 0, machine_i2s_shift);
|
|
STATIC MP_DEFINE_CONST_STATICMETHOD_OBJ(machine_i2s_shift_obj, MP_ROM_PTR(&machine_i2s_shift_fun_obj));
|
|
|
|
STATIC const mp_rom_map_elem_t machine_i2s_locals_dict_table[] = {
|
|
// Methods
|
|
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_i2s_init_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&machine_i2s_deinit_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&machine_i2s_irq_obj) },
|
|
|
|
// Static method
|
|
{ MP_ROM_QSTR(MP_QSTR_shift), MP_ROM_PTR(&machine_i2s_shift_obj) },
|
|
|
|
// Constants
|
|
{ MP_ROM_QSTR(MP_QSTR_RX), MP_ROM_INT(I2S_MODE_MASTER_RX) },
|
|
{ MP_ROM_QSTR(MP_QSTR_TX), MP_ROM_INT(I2S_MODE_MASTER_TX) },
|
|
{ MP_ROM_QSTR(MP_QSTR_STEREO), MP_ROM_INT(STEREO) },
|
|
{ MP_ROM_QSTR(MP_QSTR_MONO), MP_ROM_INT(MONO) },
|
|
};
|
|
MP_DEFINE_CONST_DICT(machine_i2s_locals_dict, machine_i2s_locals_dict_table);
|
|
|
|
STATIC mp_uint_t machine_i2s_stream_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
|
|
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
|
|
if (self->mode != I2S_MODE_MASTER_RX) {
|
|
*errcode = MP_EPERM;
|
|
return MP_STREAM_ERROR;
|
|
}
|
|
|
|
uint8_t appbuf_sample_size_in_bytes = (self->bits / 8) * (self->format == STEREO ? 2: 1);
|
|
if (size % appbuf_sample_size_in_bytes != 0) {
|
|
*errcode = MP_EINVAL;
|
|
return MP_STREAM_ERROR;
|
|
}
|
|
|
|
if (size == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (self->io_mode == NON_BLOCKING) {
|
|
self->non_blocking_descriptor.appbuf.buf = (void *)buf_in;
|
|
self->non_blocking_descriptor.appbuf.len = size;
|
|
self->non_blocking_descriptor.index = 0;
|
|
self->non_blocking_descriptor.copy_in_progress = true;
|
|
return size;
|
|
} else { // blocking or uasyncio mode
|
|
mp_buffer_info_t appbuf;
|
|
appbuf.buf = (void *)buf_in;
|
|
appbuf.len = size;
|
|
uint32_t num_bytes_read = fill_appbuf_from_ringbuf(self, &appbuf);
|
|
return num_bytes_read;
|
|
}
|
|
}
|
|
|
|
STATIC mp_uint_t machine_i2s_stream_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
|
|
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
|
|
if (self->mode != I2S_MODE_MASTER_TX) {
|
|
*errcode = MP_EPERM;
|
|
return MP_STREAM_ERROR;
|
|
}
|
|
|
|
if (size == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (self->io_mode == NON_BLOCKING) {
|
|
self->non_blocking_descriptor.appbuf.buf = (void *)buf_in;
|
|
self->non_blocking_descriptor.appbuf.len = size;
|
|
self->non_blocking_descriptor.index = 0;
|
|
self->non_blocking_descriptor.copy_in_progress = true;
|
|
return size;
|
|
} else { // blocking or uasyncio mode
|
|
mp_buffer_info_t appbuf;
|
|
appbuf.buf = (void *)buf_in;
|
|
appbuf.len = size;
|
|
uint32_t num_bytes_written = copy_appbuf_to_ringbuf(self, &appbuf);
|
|
return num_bytes_written;
|
|
}
|
|
}
|
|
|
|
STATIC mp_uint_t machine_i2s_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
|
|
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
mp_uint_t ret;
|
|
uintptr_t flags = arg;
|
|
self->io_mode = UASYNCIO; // a call to ioctl() is an indication that uasyncio is being used
|
|
|
|
if (request == MP_STREAM_POLL) {
|
|
ret = 0;
|
|
|
|
if (flags & MP_STREAM_POLL_RD) {
|
|
if (self->mode != I2S_MODE_MASTER_RX) {
|
|
*errcode = MP_EPERM;
|
|
return MP_STREAM_ERROR;
|
|
}
|
|
|
|
if (!ringbuf_is_empty(&self->ring_buffer)) {
|
|
ret |= MP_STREAM_POLL_RD;
|
|
}
|
|
}
|
|
|
|
if (flags & MP_STREAM_POLL_WR) {
|
|
if (self->mode != I2S_MODE_MASTER_TX) {
|
|
*errcode = MP_EPERM;
|
|
return MP_STREAM_ERROR;
|
|
}
|
|
|
|
if (!ringbuf_is_full(&self->ring_buffer)) {
|
|
ret |= MP_STREAM_POLL_WR;
|
|
}
|
|
}
|
|
} else {
|
|
*errcode = MP_EINVAL;
|
|
ret = MP_STREAM_ERROR;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
STATIC const mp_stream_p_t i2s_stream_p = {
|
|
.read = machine_i2s_stream_read,
|
|
.write = machine_i2s_stream_write,
|
|
.ioctl = machine_i2s_ioctl,
|
|
.is_text = false,
|
|
};
|
|
|
|
const mp_obj_type_t machine_i2s_type = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_I2S,
|
|
.print = machine_i2s_print,
|
|
.getiter = mp_identity_getiter,
|
|
.iternext = mp_stream_unbuffered_iter,
|
|
.protocol = &i2s_stream_p,
|
|
.make_new = machine_i2s_make_new,
|
|
.locals_dict = (mp_obj_dict_t *)&machine_i2s_locals_dict,
|
|
};
|
|
|
|
MP_REGISTER_ROOT_POINTER(struct _machine_i2s_obj_t *machine_i2s_obj[MICROPY_HW_MAX_I2S]);
|
|
|
|
#endif // MICROPY_HW_ENABLE_I2S
|