86aa16bea6
If RTC is already running at boot then it's left alone. Otherwise, RTC is started at boot but startup function returns straight away. RTC startup is then finished the first time it is used. Fallback to LSI if LSE fails to start in a certain time. Also included: MICROPY_HW_CLK_LAST_FREQ hold pyb.freq() parameters in RTC backup reg MICROPY_HW_RTC_USE_US option to present datetime sub-seconds in microseconds MICROPY_HW_RTC_USE_CALOUT option to enable RTC calibration output CLK_LAST_FREQ and RTC_USE_CALOUT are enabled for PYBv1.0.
703 lines
23 KiB
C
703 lines
23 KiB
C
/*
|
|
* This file is part of the Micro Python project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013, 2014 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
|
|
#include STM32_HAL_H
|
|
|
|
#include "py/runtime.h"
|
|
#include "rtc.h"
|
|
#include "irq.h"
|
|
#include "mphalport.h"
|
|
|
|
/// \moduleref pyb
|
|
/// \class RTC - real time clock
|
|
///
|
|
/// The RTC is and independent clock that keeps track of the date
|
|
/// and time.
|
|
///
|
|
/// Example usage:
|
|
///
|
|
/// rtc = pyb.RTC()
|
|
/// rtc.datetime((2014, 5, 1, 4, 13, 0, 0, 0))
|
|
/// print(rtc.datetime())
|
|
|
|
RTC_HandleTypeDef RTCHandle;
|
|
|
|
// rtc_info indicates various things about RTC startup
|
|
// it's a bit of a hack at the moment
|
|
static mp_uint_t rtc_info;
|
|
|
|
// Note: LSI is around (32KHz), these dividers should work either way
|
|
// ck_spre(1Hz) = RTCCLK(LSE) /(uwAsynchPrediv + 1)*(uwSynchPrediv + 1)
|
|
// modify RTC_ASYNCH_PREDIV & RTC_SYNCH_PREDIV in board/<BN>/mpconfigport.h to change sub-second ticks
|
|
// default is 3906.25 µs, min is ~30.52 µs (will increas Ivbat by ~500nA)
|
|
#ifndef RTC_ASYNCH_PREDIV
|
|
#define RTC_ASYNCH_PREDIV (0x7f)
|
|
#endif
|
|
#ifndef RTC_SYNCH_PREDIV
|
|
#define RTC_SYNCH_PREDIV (0x00ff)
|
|
#endif
|
|
|
|
STATIC HAL_StatusTypeDef PYB_RTC_Init(RTC_HandleTypeDef *hrtc);
|
|
STATIC void PYB_RTC_MspInit_Kick(RTC_HandleTypeDef *hrtc, bool rtc_use_lse);
|
|
STATIC HAL_StatusTypeDef PYB_RTC_MspInit_Finalise(RTC_HandleTypeDef *hrtc);
|
|
STATIC void RTC_CalendarConfig(void);
|
|
|
|
#if defined(MICROPY_HW_RTC_USE_LSE) && MICROPY_HW_RTC_USE_LSE
|
|
STATIC bool rtc_use_lse = true;
|
|
#else
|
|
STATIC bool rtc_use_lse = false;
|
|
#endif
|
|
STATIC uint32_t rtc_startup_tick;
|
|
STATIC bool rtc_need_init_finalise = false;
|
|
|
|
// check if LSE exists
|
|
// not well tested, should probably be removed
|
|
STATIC bool lse_magic(void) {
|
|
#if 0
|
|
uint32_t mode_in = GPIOC->MODER & 0x3fffffff;
|
|
uint32_t mode_out = mode_in | 0x40000000;
|
|
GPIOC->MODER = mode_out;
|
|
GPIOC->OTYPER &= 0x7fff;
|
|
GPIOC->BSRRH = 0x8000;
|
|
GPIOC->OSPEEDR &= 0x3fffffff;
|
|
GPIOC->PUPDR &= 0x3fffffff;
|
|
int i = 0xff0;
|
|
__IO int d = 0;
|
|
uint32_t tc = 0;
|
|
__IO uint32_t j;
|
|
while (i) {
|
|
GPIOC->MODER = mode_out;
|
|
GPIOC->MODER = mode_in;
|
|
for (j = 0; j < d; j++) ;
|
|
i--;
|
|
if ((GPIOC->IDR & 0x8000) == 0) {
|
|
tc++;
|
|
}
|
|
}
|
|
return (tc < 0xff0)?true:false;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
void rtc_init_start(void) {
|
|
RTCHandle.Instance = RTC;
|
|
|
|
/* Configure RTC prescaler and RTC data registers */
|
|
/* RTC configured as follow:
|
|
- Hour Format = Format 24
|
|
- Asynch Prediv = Value according to source clock
|
|
- Synch Prediv = Value according to source clock
|
|
- OutPut = Output Disable
|
|
- OutPutPolarity = High Polarity
|
|
- OutPutType = Open Drain */
|
|
RTCHandle.Init.HourFormat = RTC_HOURFORMAT_24;
|
|
RTCHandle.Init.AsynchPrediv = RTC_ASYNCH_PREDIV;
|
|
RTCHandle.Init.SynchPrediv = RTC_SYNCH_PREDIV;
|
|
RTCHandle.Init.OutPut = RTC_OUTPUT_DISABLE;
|
|
RTCHandle.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
|
|
RTCHandle.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
|
|
|
|
rtc_need_init_finalise = false;
|
|
if ((RCC->BDCR & (RCC_BDCR_LSEON | RCC_BDCR_LSERDY)) == (RCC_BDCR_LSEON | RCC_BDCR_LSERDY)) {
|
|
// LSE is enabled & ready --> no need to (re-)init RTC
|
|
// remove Backup Domain write protection
|
|
HAL_PWR_EnableBkUpAccess();
|
|
// Clear source Reset Flag
|
|
__HAL_RCC_CLEAR_RESET_FLAGS();
|
|
// provide some status information
|
|
rtc_info |= 0x40000 | (RCC->BDCR & 7) | (RCC->CSR & 3) << 8;
|
|
return;
|
|
} else if (((RCC->BDCR & RCC_BDCR_RTCSEL) == RCC_BDCR_RTCSEL_1) && ((RCC->CSR & 3) == 3)) {
|
|
// LSI configured & enabled & ready --> no need to (re-)init RTC
|
|
// remove Backup Domain write protection
|
|
HAL_PWR_EnableBkUpAccess();
|
|
// Clear source Reset Flag
|
|
__HAL_RCC_CLEAR_RESET_FLAGS();
|
|
RCC->CSR |= 1;
|
|
// provide some status information
|
|
rtc_info |= 0x80000 | (RCC->BDCR & 7) | (RCC->CSR & 3) << 8;
|
|
return;
|
|
}
|
|
rtc_startup_tick = HAL_GetTick();
|
|
rtc_info = 0x3f000000 | (rtc_startup_tick & 0xffffff);
|
|
if (rtc_use_lse) {
|
|
if (lse_magic()) {
|
|
// don't even try LSE
|
|
rtc_use_lse = false;
|
|
rtc_info &= ~0x01000000;
|
|
}
|
|
}
|
|
PYB_RTC_MspInit_Kick(&RTCHandle, rtc_use_lse);
|
|
}
|
|
|
|
void rtc_init_finalise() {
|
|
if (!rtc_need_init_finalise) {
|
|
return;
|
|
}
|
|
|
|
rtc_info = 0x20000000 | (rtc_use_lse << 28);
|
|
if (PYB_RTC_Init(&RTCHandle) != HAL_OK) {
|
|
if (rtc_use_lse) {
|
|
// fall back to LSI...
|
|
rtc_use_lse = false;
|
|
rtc_startup_tick = HAL_GetTick();
|
|
PYB_RTC_MspInit_Kick(&RTCHandle, rtc_use_lse);
|
|
HAL_PWR_EnableBkUpAccess();
|
|
RTCHandle.State = HAL_RTC_STATE_RESET;
|
|
if (PYB_RTC_Init(&RTCHandle) != HAL_OK) {
|
|
rtc_info = 0x0100ffff; // indicate error
|
|
return;
|
|
}
|
|
} else {
|
|
// init error
|
|
rtc_info = 0xffff; // indicate error
|
|
return;
|
|
}
|
|
}
|
|
|
|
// record how long it took for the RTC to start up
|
|
rtc_info |= (HAL_GetTick() - rtc_startup_tick) & 0xffff;
|
|
|
|
// fresh reset; configure RTC Calendar
|
|
RTC_CalendarConfig();
|
|
if(__HAL_RCC_GET_FLAG(RCC_FLAG_PORRST) != RESET) {
|
|
// power on reset occurred
|
|
rtc_info |= 0x10000;
|
|
}
|
|
if(__HAL_RCC_GET_FLAG(RCC_FLAG_PINRST) != RESET) {
|
|
// external reset occurred
|
|
rtc_info |= 0x20000;
|
|
}
|
|
// Clear source Reset Flag
|
|
__HAL_RCC_CLEAR_RESET_FLAGS();
|
|
rtc_need_init_finalise = false;
|
|
}
|
|
|
|
STATIC HAL_StatusTypeDef PYB_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) {
|
|
/*------------------------------ LSI Configuration -------------------------*/
|
|
if ((RCC_OscInitStruct->OscillatorType & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) {
|
|
// Check the LSI State
|
|
if (RCC_OscInitStruct->LSIState != RCC_LSI_OFF) {
|
|
// Enable the Internal Low Speed oscillator (LSI).
|
|
__HAL_RCC_LSI_ENABLE();
|
|
} else {
|
|
// Disable the Internal Low Speed oscillator (LSI).
|
|
__HAL_RCC_LSI_DISABLE();
|
|
}
|
|
}
|
|
|
|
/*------------------------------ LSE Configuration -------------------------*/
|
|
if ((RCC_OscInitStruct->OscillatorType & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE) {
|
|
// Enable Power Clock
|
|
__PWR_CLK_ENABLE();
|
|
HAL_PWR_EnableBkUpAccess();
|
|
uint32_t tickstart = HAL_GetTick();
|
|
|
|
#if defined(MCU_SERIES_F7)
|
|
//__HAL_RCC_PWR_CLK_ENABLE();
|
|
// Enable write access to Backup domain
|
|
//PWR->CR1 |= PWR_CR1_DBP;
|
|
// Wait for Backup domain Write protection disable
|
|
while ((PWR->CR1 & PWR_CR1_DBP) == RESET) {
|
|
if (HAL_GetTick() - tickstart > RCC_DBP_TIMEOUT_VALUE) {
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
#else
|
|
// Enable write access to Backup domain
|
|
//PWR->CR |= PWR_CR_DBP;
|
|
// Wait for Backup domain Write protection disable
|
|
while ((PWR->CR & PWR_CR_DBP) == RESET) {
|
|
if (HAL_GetTick() - tickstart > DBP_TIMEOUT_VALUE) {
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Set the new LSE configuration
|
|
__HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
|
|
}
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
STATIC HAL_StatusTypeDef PYB_RTC_Init(RTC_HandleTypeDef *hrtc) {
|
|
// Check the RTC peripheral state
|
|
if (hrtc == NULL) {
|
|
return HAL_ERROR;
|
|
}
|
|
if (hrtc->State == HAL_RTC_STATE_RESET) {
|
|
// Allocate lock resource and initialize it
|
|
hrtc->Lock = HAL_UNLOCKED;
|
|
// Initialize RTC MSP
|
|
if (PYB_RTC_MspInit_Finalise(hrtc) != HAL_OK) {
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
// Set RTC state
|
|
hrtc->State = HAL_RTC_STATE_BUSY;
|
|
|
|
// Disable the write protection for RTC registers
|
|
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
|
|
|
// Set Initialization mode
|
|
if (RTC_EnterInitMode(hrtc) != HAL_OK) {
|
|
// Enable the write protection for RTC registers
|
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
|
|
// Set RTC state
|
|
hrtc->State = HAL_RTC_STATE_ERROR;
|
|
|
|
return HAL_ERROR;
|
|
} else {
|
|
// Clear RTC_CR FMT, OSEL and POL Bits
|
|
hrtc->Instance->CR &= ((uint32_t)~(RTC_CR_FMT | RTC_CR_OSEL | RTC_CR_POL));
|
|
// Set RTC_CR register
|
|
hrtc->Instance->CR |= (uint32_t)(hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity);
|
|
|
|
// Configure the RTC PRER
|
|
hrtc->Instance->PRER = (uint32_t)(hrtc->Init.SynchPrediv);
|
|
hrtc->Instance->PRER |= (uint32_t)(hrtc->Init.AsynchPrediv << 16);
|
|
|
|
// Exit Initialization mode
|
|
hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT;
|
|
|
|
#if defined(MCU_SERIES_F7)
|
|
hrtc->Instance->OR &= (uint32_t)~RTC_OR_ALARMTYPE;
|
|
hrtc->Instance->OR |= (uint32_t)(hrtc->Init.OutPutType);
|
|
#else
|
|
hrtc->Instance->TAFCR &= (uint32_t)~RTC_TAFCR_ALARMOUTTYPE;
|
|
hrtc->Instance->TAFCR |= (uint32_t)(hrtc->Init.OutPutType);
|
|
#endif
|
|
|
|
// Enable the write protection for RTC registers
|
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
|
|
// Set RTC state
|
|
hrtc->State = HAL_RTC_STATE_READY;
|
|
|
|
return HAL_OK;
|
|
}
|
|
}
|
|
|
|
STATIC void PYB_RTC_MspInit_Kick(RTC_HandleTypeDef *hrtc, bool rtc_use_lse) {
|
|
/* To change the source clock of the RTC feature (LSE, LSI), You have to:
|
|
- Enable the power clock using __PWR_CLK_ENABLE()
|
|
- Enable write access using HAL_PWR_EnableBkUpAccess() function before to
|
|
configure the RTC clock source (to be done once after reset).
|
|
- Reset the Back up Domain using __HAL_RCC_BACKUPRESET_FORCE() and
|
|
__HAL_RCC_BACKUPRESET_RELEASE().
|
|
- Configure the needed RTc clock source */
|
|
|
|
// RTC clock source uses LSE (external crystal) only if relevant
|
|
// configuration variable is set. Otherwise it uses LSI (internal osc).
|
|
|
|
RCC_OscInitTypeDef RCC_OscInitStruct;
|
|
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_LSE;
|
|
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
|
|
if (rtc_use_lse) {
|
|
RCC_OscInitStruct.LSEState = RCC_LSE_ON;
|
|
RCC_OscInitStruct.LSIState = RCC_LSI_OFF;
|
|
} else {
|
|
RCC_OscInitStruct.LSEState = RCC_LSE_OFF;
|
|
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
|
|
}
|
|
PYB_RCC_OscConfig(&RCC_OscInitStruct);
|
|
|
|
// now ramp up osc. in background and flag calendear init needed
|
|
rtc_need_init_finalise = true;
|
|
}
|
|
|
|
#define PYB_LSE_TIMEOUT_VALUE 1000 // ST docs spec 2000 ms LSE startup, seems to be too pessimistic
|
|
#define PYB_LSI_TIMEOUT_VALUE 500 // this is way too pessimistic, typ. < 1ms
|
|
|
|
STATIC HAL_StatusTypeDef PYB_RTC_MspInit_Finalise(RTC_HandleTypeDef *hrtc) {
|
|
// we already had a kick so now wait for the corresponding ready state...
|
|
if (rtc_use_lse) {
|
|
// we now have to wait for LSE ready or timeout
|
|
uint32_t tickstart = rtc_startup_tick;
|
|
while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET) {
|
|
if ((HAL_GetTick() - tickstart ) > PYB_LSE_TIMEOUT_VALUE) {
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
} else {
|
|
// we now have to wait for LSI ready or timeout
|
|
uint32_t tickstart = rtc_startup_tick;
|
|
while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET) {
|
|
if ((HAL_GetTick() - tickstart ) > PYB_LSI_TIMEOUT_VALUE) {
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct;
|
|
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC;
|
|
if (rtc_use_lse) {
|
|
PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSE;
|
|
} else {
|
|
PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;
|
|
}
|
|
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) {
|
|
//Error_Handler();
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
// enable RTC peripheral clock
|
|
__HAL_RCC_RTC_ENABLE();
|
|
return HAL_OK;
|
|
}
|
|
|
|
STATIC void RTC_CalendarConfig(void) {
|
|
// set the date to 1st Jan 2015
|
|
RTC_DateTypeDef date;
|
|
date.Year = 15;
|
|
date.Month = 1;
|
|
date.Date = 1;
|
|
date.WeekDay = RTC_WEEKDAY_THURSDAY;
|
|
|
|
if(HAL_RTC_SetDate(&RTCHandle, &date, FORMAT_BIN) != HAL_OK) {
|
|
// init error
|
|
return;
|
|
}
|
|
|
|
// set the time to 00:00:00
|
|
RTC_TimeTypeDef time;
|
|
time.Hours = 0;
|
|
time.Minutes = 0;
|
|
time.Seconds = 0;
|
|
time.TimeFormat = RTC_HOURFORMAT12_AM;
|
|
time.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
|
|
time.StoreOperation = RTC_STOREOPERATION_RESET;
|
|
|
|
if (HAL_RTC_SetTime(&RTCHandle, &time, FORMAT_BIN) != HAL_OK) {
|
|
// init error
|
|
return;
|
|
}
|
|
}
|
|
|
|
/******************************************************************************/
|
|
// Micro Python bindings
|
|
|
|
typedef struct _pyb_rtc_obj_t {
|
|
mp_obj_base_t base;
|
|
} pyb_rtc_obj_t;
|
|
|
|
STATIC const pyb_rtc_obj_t pyb_rtc_obj = {{&pyb_rtc_type}};
|
|
|
|
/// \classmethod \constructor()
|
|
/// Create an RTC object.
|
|
STATIC mp_obj_t pyb_rtc_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
|
|
// check arguments
|
|
mp_arg_check_num(n_args, n_kw, 0, 0, false);
|
|
|
|
// return constant object
|
|
return (mp_obj_t)&pyb_rtc_obj;
|
|
}
|
|
|
|
/// \method info()
|
|
/// Get information about the startup time and reset source.
|
|
///
|
|
/// - The lower 0xffff are the number of milliseconds the RTC took to
|
|
/// start up.
|
|
/// - Bit 0x10000 is set if a power-on reset occurred.
|
|
/// - Bit 0x20000 is set if an external reset occurred
|
|
mp_obj_t pyb_rtc_info(mp_obj_t self_in) {
|
|
return mp_obj_new_int(rtc_info);
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_1(pyb_rtc_info_obj, pyb_rtc_info);
|
|
|
|
/// \method datetime([datetimetuple])
|
|
/// Get or set the date and time of the RTC.
|
|
///
|
|
/// With no arguments, this method returns an 8-tuple with the current
|
|
/// date and time. With 1 argument (being an 8-tuple) it sets the date
|
|
/// and time.
|
|
///
|
|
/// The 8-tuple has the following format:
|
|
///
|
|
/// (year, month, day, weekday, hours, minutes, seconds, subseconds)
|
|
///
|
|
/// `weekday` is 1-7 for Monday through Sunday.
|
|
///
|
|
/// `subseconds` counts down from 255 to 0
|
|
|
|
#define MEG_DIV_64 (1000000 / 64)
|
|
#define MEG_DIV_SCALE ((RTC_SYNCH_PREDIV + 1) / 64)
|
|
|
|
#if defined(MICROPY_HW_RTC_USE_US) && MICROPY_HW_RTC_USE_US
|
|
uint32_t rtc_subsec_to_us(uint32_t ss) {
|
|
return ((RTC_SYNCH_PREDIV - ss) * MEG_DIV_64) / MEG_DIV_SCALE;
|
|
}
|
|
|
|
uint32_t rtc_us_to_subsec(uint32_t us) {
|
|
return RTC_SYNCH_PREDIV - (us * MEG_DIV_SCALE / MEG_DIV_64);
|
|
}
|
|
#else
|
|
#define rtc_us_to_subsec
|
|
#define rtc_subsec_to_us
|
|
#endif
|
|
|
|
mp_obj_t pyb_rtc_datetime(mp_uint_t n_args, const mp_obj_t *args) {
|
|
rtc_init_finalise();
|
|
if (n_args == 1) {
|
|
// get date and time
|
|
// note: need to call get time then get date to correctly access the registers
|
|
RTC_DateTypeDef date;
|
|
RTC_TimeTypeDef time;
|
|
HAL_RTC_GetTime(&RTCHandle, &time, FORMAT_BIN);
|
|
HAL_RTC_GetDate(&RTCHandle, &date, FORMAT_BIN);
|
|
mp_obj_t tuple[8] = {
|
|
mp_obj_new_int(2000 + date.Year),
|
|
mp_obj_new_int(date.Month),
|
|
mp_obj_new_int(date.Date),
|
|
mp_obj_new_int(date.WeekDay),
|
|
mp_obj_new_int(time.Hours),
|
|
mp_obj_new_int(time.Minutes),
|
|
mp_obj_new_int(time.Seconds),
|
|
mp_obj_new_int(rtc_subsec_to_us(time.SubSeconds)),
|
|
};
|
|
return mp_obj_new_tuple(8, tuple);
|
|
} else {
|
|
// set date and time
|
|
mp_obj_t *items;
|
|
mp_obj_get_array_fixed_n(args[1], 8, &items);
|
|
|
|
RTC_DateTypeDef date;
|
|
date.Year = mp_obj_get_int(items[0]) - 2000;
|
|
date.Month = mp_obj_get_int(items[1]);
|
|
date.Date = mp_obj_get_int(items[2]);
|
|
date.WeekDay = mp_obj_get_int(items[3]);
|
|
HAL_RTC_SetDate(&RTCHandle, &date, FORMAT_BIN);
|
|
|
|
RTC_TimeTypeDef time;
|
|
time.Hours = mp_obj_get_int(items[4]);
|
|
time.Minutes = mp_obj_get_int(items[5]);
|
|
time.Seconds = mp_obj_get_int(items[6]);
|
|
time.SubSeconds = rtc_us_to_subsec(mp_obj_get_int(items[7]));
|
|
time.TimeFormat = RTC_HOURFORMAT12_AM;
|
|
time.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
|
|
time.StoreOperation = RTC_STOREOPERATION_SET;
|
|
HAL_RTC_SetTime(&RTCHandle, &time, FORMAT_BIN);
|
|
|
|
return mp_const_none;
|
|
}
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_datetime_obj, 1, 2, pyb_rtc_datetime);
|
|
|
|
// wakeup(None)
|
|
// wakeup(ms, callback=None)
|
|
// wakeup(wucksel, wut, callback)
|
|
mp_obj_t pyb_rtc_wakeup(mp_uint_t n_args, const mp_obj_t *args) {
|
|
// wut is wakeup counter start value, wucksel is clock source
|
|
// counter is decremented at wucksel rate, and wakes the MCU when it gets to 0
|
|
// wucksel=0b000 is RTC/16 (RTC runs at 32768Hz)
|
|
// wucksel=0b001 is RTC/8
|
|
// wucksel=0b010 is RTC/4
|
|
// wucksel=0b011 is RTC/2
|
|
// wucksel=0b100 is 1Hz clock
|
|
// wucksel=0b110 is 1Hz clock with 0x10000 added to wut
|
|
// so a 1 second wakeup could be wut=2047, wucksel=0b000, or wut=4095, wucksel=0b001, etc
|
|
|
|
rtc_init_finalise();
|
|
|
|
// disable wakeup IRQ while we configure it
|
|
HAL_NVIC_DisableIRQ(RTC_WKUP_IRQn);
|
|
|
|
bool enable = false;
|
|
mp_int_t wucksel;
|
|
mp_int_t wut;
|
|
mp_obj_t callback = mp_const_none;
|
|
if (n_args <= 3) {
|
|
if (args[1] == mp_const_none) {
|
|
// disable wakeup
|
|
} else {
|
|
// time given in ms
|
|
mp_int_t ms = mp_obj_get_int(args[1]);
|
|
mp_int_t div = 2;
|
|
wucksel = 3;
|
|
while (div <= 16 && ms > 2000 * div) {
|
|
div *= 2;
|
|
wucksel -= 1;
|
|
}
|
|
if (div <= 16) {
|
|
wut = 32768 / div * ms / 1000;
|
|
} else {
|
|
// use 1Hz clock
|
|
wucksel = 4;
|
|
wut = ms / 1000;
|
|
if (wut > 0x10000) {
|
|
// wut too large for 16-bit register, try to offset by 0x10000
|
|
wucksel = 6;
|
|
wut -= 0x10000;
|
|
if (wut > 0x10000) {
|
|
// wut still too large
|
|
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "wakeup value too large"));
|
|
}
|
|
}
|
|
}
|
|
// wut register should be 1 less than desired value, but guard against wut=0
|
|
if (wut > 0) {
|
|
wut -= 1;
|
|
}
|
|
enable = true;
|
|
}
|
|
if (n_args == 3) {
|
|
callback = args[2];
|
|
}
|
|
} else {
|
|
// config values given directly
|
|
wucksel = mp_obj_get_int(args[1]);
|
|
wut = mp_obj_get_int(args[2]);
|
|
callback = args[3];
|
|
enable = true;
|
|
}
|
|
|
|
// set the callback
|
|
MP_STATE_PORT(pyb_extint_callback)[22] = callback;
|
|
|
|
// disable register write protection
|
|
RTC->WPR = 0xca;
|
|
RTC->WPR = 0x53;
|
|
|
|
// clear WUTE
|
|
RTC->CR &= ~(1 << 10);
|
|
|
|
// wait until WUTWF is set
|
|
while (!(RTC->ISR & (1 << 2))) {
|
|
}
|
|
|
|
if (enable) {
|
|
// program WUT
|
|
RTC->WUTR = wut;
|
|
|
|
// set WUTIE to enable wakeup interrupts
|
|
// set WUTE to enable wakeup
|
|
// program WUCKSEL
|
|
RTC->CR = (RTC->CR & ~7) | (1 << 14) | (1 << 10) | (wucksel & 7);
|
|
|
|
// enable register write protection
|
|
RTC->WPR = 0xff;
|
|
|
|
// enable external interrupts on line 22
|
|
EXTI->IMR |= 1 << 22;
|
|
EXTI->RTSR |= 1 << 22;
|
|
|
|
// clear interrupt flags
|
|
RTC->ISR &= ~(1 << 10);
|
|
EXTI->PR = 1 << 22;
|
|
|
|
HAL_NVIC_SetPriority(RTC_WKUP_IRQn, IRQ_PRI_RTC_WKUP, IRQ_SUBPRI_RTC_WKUP);
|
|
HAL_NVIC_EnableIRQ(RTC_WKUP_IRQn);
|
|
|
|
//printf("wut=%d wucksel=%d\n", wut, wucksel);
|
|
} else {
|
|
// clear WUTIE to disable interrupts
|
|
RTC->CR &= ~(1 << 14);
|
|
|
|
// enable register write protection
|
|
RTC->WPR = 0xff;
|
|
|
|
// disable external interrupts on line 22
|
|
EXTI->IMR &= ~(1 << 22);
|
|
}
|
|
|
|
return mp_const_none;
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_wakeup_obj, 2, 4, pyb_rtc_wakeup);
|
|
|
|
// calibration(None)
|
|
// calibration(cal)
|
|
// When an integer argument is provided, check that it falls in the range [-511 to 512]
|
|
// and set the calibration value; otherwise return calibration value
|
|
mp_obj_t pyb_rtc_calibration(mp_uint_t n_args, const mp_obj_t *args) {
|
|
rtc_init_finalise();
|
|
mp_int_t cal;
|
|
if (n_args == 2) {
|
|
cal = mp_obj_get_int(args[1]);
|
|
mp_uint_t cal_p, cal_m;
|
|
if (cal < -511 || cal > 512) {
|
|
#if defined(MICROPY_HW_RTC_USE_CALOUT) && MICROPY_HW_RTC_USE_CALOUT
|
|
if ((cal & 0xfffe) == 0x0ffe) {
|
|
// turn on/off X18 (PC13) 512Hz output
|
|
// Note:
|
|
// Output will stay active even in VBAT mode (and inrease current)
|
|
if (cal & 1) {
|
|
HAL_RTCEx_SetCalibrationOutPut(&RTCHandle, RTC_CALIBOUTPUT_512HZ);
|
|
} else {
|
|
HAL_RTCEx_DeactivateCalibrationOutPut(&RTCHandle);
|
|
}
|
|
return mp_obj_new_int(cal & 1);
|
|
} else {
|
|
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError,
|
|
"calibration value out of range"));
|
|
}
|
|
#else
|
|
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError,
|
|
"calibration value out of range"));
|
|
#endif
|
|
}
|
|
if (cal > 0) {
|
|
cal_p = RTC_SMOOTHCALIB_PLUSPULSES_SET;
|
|
cal_m = 512 - cal;
|
|
} else {
|
|
cal_p = RTC_SMOOTHCALIB_PLUSPULSES_RESET;
|
|
cal_m = -cal;
|
|
}
|
|
HAL_RTCEx_SetSmoothCalib(&RTCHandle, RTC_SMOOTHCALIB_PERIOD_32SEC, cal_p, cal_m);
|
|
return mp_const_none;
|
|
} else {
|
|
// printf("CALR = 0x%x\n", (mp_uint_t) RTCHandle.Instance->CALR); // DEBUG
|
|
// Test if CALP bit is set in CALR:
|
|
if (RTCHandle.Instance->CALR & 0x8000) {
|
|
cal = 512 - (RTCHandle.Instance->CALR & 0x1ff);
|
|
} else {
|
|
cal = -(RTCHandle.Instance->CALR & 0x1ff);
|
|
}
|
|
return mp_obj_new_int(cal);
|
|
}
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_calibration_obj, 1, 2, pyb_rtc_calibration);
|
|
|
|
STATIC const mp_map_elem_t pyb_rtc_locals_dict_table[] = {
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&pyb_rtc_info_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_datetime), (mp_obj_t)&pyb_rtc_datetime_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_wakeup), (mp_obj_t)&pyb_rtc_wakeup_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_calibration), (mp_obj_t)&pyb_rtc_calibration_obj },
|
|
};
|
|
STATIC MP_DEFINE_CONST_DICT(pyb_rtc_locals_dict, pyb_rtc_locals_dict_table);
|
|
|
|
const mp_obj_type_t pyb_rtc_type = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_RTC,
|
|
.make_new = pyb_rtc_make_new,
|
|
.locals_dict = (mp_obj_t)&pyb_rtc_locals_dict,
|
|
};
|