circuitpython/stmhal/rtc.c
T S 86aa16bea6 stmhal: Implement delayed RTC initialization with LSI fallback.
If RTC is already running at boot then it's left alone.  Otherwise, RTC is
started at boot but startup function returns straight away.  RTC startup
is then finished the first time it is used.  Fallback to LSI if LSE fails
to start in a certain time.

Also included:
 MICROPY_HW_CLK_LAST_FREQ
        hold pyb.freq() parameters in RTC backup reg
 MICROPY_HW_RTC_USE_US
        option to present datetime sub-seconds in microseconds
 MICROPY_HW_RTC_USE_CALOUT
        option to enable RTC calibration output

CLK_LAST_FREQ and RTC_USE_CALOUT are enabled for PYBv1.0.
2015-11-23 23:23:07 +00:00

703 lines
23 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include STM32_HAL_H
#include "py/runtime.h"
#include "rtc.h"
#include "irq.h"
#include "mphalport.h"
/// \moduleref pyb
/// \class RTC - real time clock
///
/// The RTC is and independent clock that keeps track of the date
/// and time.
///
/// Example usage:
///
/// rtc = pyb.RTC()
/// rtc.datetime((2014, 5, 1, 4, 13, 0, 0, 0))
/// print(rtc.datetime())
RTC_HandleTypeDef RTCHandle;
// rtc_info indicates various things about RTC startup
// it's a bit of a hack at the moment
static mp_uint_t rtc_info;
// Note: LSI is around (32KHz), these dividers should work either way
// ck_spre(1Hz) = RTCCLK(LSE) /(uwAsynchPrediv + 1)*(uwSynchPrediv + 1)
// modify RTC_ASYNCH_PREDIV & RTC_SYNCH_PREDIV in board/<BN>/mpconfigport.h to change sub-second ticks
// default is 3906.25 µs, min is ~30.52 µs (will increas Ivbat by ~500nA)
#ifndef RTC_ASYNCH_PREDIV
#define RTC_ASYNCH_PREDIV (0x7f)
#endif
#ifndef RTC_SYNCH_PREDIV
#define RTC_SYNCH_PREDIV (0x00ff)
#endif
STATIC HAL_StatusTypeDef PYB_RTC_Init(RTC_HandleTypeDef *hrtc);
STATIC void PYB_RTC_MspInit_Kick(RTC_HandleTypeDef *hrtc, bool rtc_use_lse);
STATIC HAL_StatusTypeDef PYB_RTC_MspInit_Finalise(RTC_HandleTypeDef *hrtc);
STATIC void RTC_CalendarConfig(void);
#if defined(MICROPY_HW_RTC_USE_LSE) && MICROPY_HW_RTC_USE_LSE
STATIC bool rtc_use_lse = true;
#else
STATIC bool rtc_use_lse = false;
#endif
STATIC uint32_t rtc_startup_tick;
STATIC bool rtc_need_init_finalise = false;
// check if LSE exists
// not well tested, should probably be removed
STATIC bool lse_magic(void) {
#if 0
uint32_t mode_in = GPIOC->MODER & 0x3fffffff;
uint32_t mode_out = mode_in | 0x40000000;
GPIOC->MODER = mode_out;
GPIOC->OTYPER &= 0x7fff;
GPIOC->BSRRH = 0x8000;
GPIOC->OSPEEDR &= 0x3fffffff;
GPIOC->PUPDR &= 0x3fffffff;
int i = 0xff0;
__IO int d = 0;
uint32_t tc = 0;
__IO uint32_t j;
while (i) {
GPIOC->MODER = mode_out;
GPIOC->MODER = mode_in;
for (j = 0; j < d; j++) ;
i--;
if ((GPIOC->IDR & 0x8000) == 0) {
tc++;
}
}
return (tc < 0xff0)?true:false;
#else
return false;
#endif
}
void rtc_init_start(void) {
RTCHandle.Instance = RTC;
/* Configure RTC prescaler and RTC data registers */
/* RTC configured as follow:
- Hour Format = Format 24
- Asynch Prediv = Value according to source clock
- Synch Prediv = Value according to source clock
- OutPut = Output Disable
- OutPutPolarity = High Polarity
- OutPutType = Open Drain */
RTCHandle.Init.HourFormat = RTC_HOURFORMAT_24;
RTCHandle.Init.AsynchPrediv = RTC_ASYNCH_PREDIV;
RTCHandle.Init.SynchPrediv = RTC_SYNCH_PREDIV;
RTCHandle.Init.OutPut = RTC_OUTPUT_DISABLE;
RTCHandle.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
RTCHandle.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
rtc_need_init_finalise = false;
if ((RCC->BDCR & (RCC_BDCR_LSEON | RCC_BDCR_LSERDY)) == (RCC_BDCR_LSEON | RCC_BDCR_LSERDY)) {
// LSE is enabled & ready --> no need to (re-)init RTC
// remove Backup Domain write protection
HAL_PWR_EnableBkUpAccess();
// Clear source Reset Flag
__HAL_RCC_CLEAR_RESET_FLAGS();
// provide some status information
rtc_info |= 0x40000 | (RCC->BDCR & 7) | (RCC->CSR & 3) << 8;
return;
} else if (((RCC->BDCR & RCC_BDCR_RTCSEL) == RCC_BDCR_RTCSEL_1) && ((RCC->CSR & 3) == 3)) {
// LSI configured & enabled & ready --> no need to (re-)init RTC
// remove Backup Domain write protection
HAL_PWR_EnableBkUpAccess();
// Clear source Reset Flag
__HAL_RCC_CLEAR_RESET_FLAGS();
RCC->CSR |= 1;
// provide some status information
rtc_info |= 0x80000 | (RCC->BDCR & 7) | (RCC->CSR & 3) << 8;
return;
}
rtc_startup_tick = HAL_GetTick();
rtc_info = 0x3f000000 | (rtc_startup_tick & 0xffffff);
if (rtc_use_lse) {
if (lse_magic()) {
// don't even try LSE
rtc_use_lse = false;
rtc_info &= ~0x01000000;
}
}
PYB_RTC_MspInit_Kick(&RTCHandle, rtc_use_lse);
}
void rtc_init_finalise() {
if (!rtc_need_init_finalise) {
return;
}
rtc_info = 0x20000000 | (rtc_use_lse << 28);
if (PYB_RTC_Init(&RTCHandle) != HAL_OK) {
if (rtc_use_lse) {
// fall back to LSI...
rtc_use_lse = false;
rtc_startup_tick = HAL_GetTick();
PYB_RTC_MspInit_Kick(&RTCHandle, rtc_use_lse);
HAL_PWR_EnableBkUpAccess();
RTCHandle.State = HAL_RTC_STATE_RESET;
if (PYB_RTC_Init(&RTCHandle) != HAL_OK) {
rtc_info = 0x0100ffff; // indicate error
return;
}
} else {
// init error
rtc_info = 0xffff; // indicate error
return;
}
}
// record how long it took for the RTC to start up
rtc_info |= (HAL_GetTick() - rtc_startup_tick) & 0xffff;
// fresh reset; configure RTC Calendar
RTC_CalendarConfig();
if(__HAL_RCC_GET_FLAG(RCC_FLAG_PORRST) != RESET) {
// power on reset occurred
rtc_info |= 0x10000;
}
if(__HAL_RCC_GET_FLAG(RCC_FLAG_PINRST) != RESET) {
// external reset occurred
rtc_info |= 0x20000;
}
// Clear source Reset Flag
__HAL_RCC_CLEAR_RESET_FLAGS();
rtc_need_init_finalise = false;
}
STATIC HAL_StatusTypeDef PYB_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) {
/*------------------------------ LSI Configuration -------------------------*/
if ((RCC_OscInitStruct->OscillatorType & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) {
// Check the LSI State
if (RCC_OscInitStruct->LSIState != RCC_LSI_OFF) {
// Enable the Internal Low Speed oscillator (LSI).
__HAL_RCC_LSI_ENABLE();
} else {
// Disable the Internal Low Speed oscillator (LSI).
__HAL_RCC_LSI_DISABLE();
}
}
/*------------------------------ LSE Configuration -------------------------*/
if ((RCC_OscInitStruct->OscillatorType & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE) {
// Enable Power Clock
__PWR_CLK_ENABLE();
HAL_PWR_EnableBkUpAccess();
uint32_t tickstart = HAL_GetTick();
#if defined(MCU_SERIES_F7)
//__HAL_RCC_PWR_CLK_ENABLE();
// Enable write access to Backup domain
//PWR->CR1 |= PWR_CR1_DBP;
// Wait for Backup domain Write protection disable
while ((PWR->CR1 & PWR_CR1_DBP) == RESET) {
if (HAL_GetTick() - tickstart > RCC_DBP_TIMEOUT_VALUE) {
return HAL_TIMEOUT;
}
}
#else
// Enable write access to Backup domain
//PWR->CR |= PWR_CR_DBP;
// Wait for Backup domain Write protection disable
while ((PWR->CR & PWR_CR_DBP) == RESET) {
if (HAL_GetTick() - tickstart > DBP_TIMEOUT_VALUE) {
return HAL_TIMEOUT;
}
}
#endif
// Set the new LSE configuration
__HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
}
return HAL_OK;
}
STATIC HAL_StatusTypeDef PYB_RTC_Init(RTC_HandleTypeDef *hrtc) {
// Check the RTC peripheral state
if (hrtc == NULL) {
return HAL_ERROR;
}
if (hrtc->State == HAL_RTC_STATE_RESET) {
// Allocate lock resource and initialize it
hrtc->Lock = HAL_UNLOCKED;
// Initialize RTC MSP
if (PYB_RTC_MspInit_Finalise(hrtc) != HAL_OK) {
return HAL_ERROR;
}
}
// Set RTC state
hrtc->State = HAL_RTC_STATE_BUSY;
// Disable the write protection for RTC registers
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
// Set Initialization mode
if (RTC_EnterInitMode(hrtc) != HAL_OK) {
// Enable the write protection for RTC registers
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
// Set RTC state
hrtc->State = HAL_RTC_STATE_ERROR;
return HAL_ERROR;
} else {
// Clear RTC_CR FMT, OSEL and POL Bits
hrtc->Instance->CR &= ((uint32_t)~(RTC_CR_FMT | RTC_CR_OSEL | RTC_CR_POL));
// Set RTC_CR register
hrtc->Instance->CR |= (uint32_t)(hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity);
// Configure the RTC PRER
hrtc->Instance->PRER = (uint32_t)(hrtc->Init.SynchPrediv);
hrtc->Instance->PRER |= (uint32_t)(hrtc->Init.AsynchPrediv << 16);
// Exit Initialization mode
hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT;
#if defined(MCU_SERIES_F7)
hrtc->Instance->OR &= (uint32_t)~RTC_OR_ALARMTYPE;
hrtc->Instance->OR |= (uint32_t)(hrtc->Init.OutPutType);
#else
hrtc->Instance->TAFCR &= (uint32_t)~RTC_TAFCR_ALARMOUTTYPE;
hrtc->Instance->TAFCR |= (uint32_t)(hrtc->Init.OutPutType);
#endif
// Enable the write protection for RTC registers
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
// Set RTC state
hrtc->State = HAL_RTC_STATE_READY;
return HAL_OK;
}
}
STATIC void PYB_RTC_MspInit_Kick(RTC_HandleTypeDef *hrtc, bool rtc_use_lse) {
/* To change the source clock of the RTC feature (LSE, LSI), You have to:
- Enable the power clock using __PWR_CLK_ENABLE()
- Enable write access using HAL_PWR_EnableBkUpAccess() function before to
configure the RTC clock source (to be done once after reset).
- Reset the Back up Domain using __HAL_RCC_BACKUPRESET_FORCE() and
__HAL_RCC_BACKUPRESET_RELEASE().
- Configure the needed RTc clock source */
// RTC clock source uses LSE (external crystal) only if relevant
// configuration variable is set. Otherwise it uses LSI (internal osc).
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_LSE;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (rtc_use_lse) {
RCC_OscInitStruct.LSEState = RCC_LSE_ON;
RCC_OscInitStruct.LSIState = RCC_LSI_OFF;
} else {
RCC_OscInitStruct.LSEState = RCC_LSE_OFF;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
}
PYB_RCC_OscConfig(&RCC_OscInitStruct);
// now ramp up osc. in background and flag calendear init needed
rtc_need_init_finalise = true;
}
#define PYB_LSE_TIMEOUT_VALUE 1000 // ST docs spec 2000 ms LSE startup, seems to be too pessimistic
#define PYB_LSI_TIMEOUT_VALUE 500 // this is way too pessimistic, typ. < 1ms
STATIC HAL_StatusTypeDef PYB_RTC_MspInit_Finalise(RTC_HandleTypeDef *hrtc) {
// we already had a kick so now wait for the corresponding ready state...
if (rtc_use_lse) {
// we now have to wait for LSE ready or timeout
uint32_t tickstart = rtc_startup_tick;
while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET) {
if ((HAL_GetTick() - tickstart ) > PYB_LSE_TIMEOUT_VALUE) {
return HAL_TIMEOUT;
}
}
} else {
// we now have to wait for LSI ready or timeout
uint32_t tickstart = rtc_startup_tick;
while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET) {
if ((HAL_GetTick() - tickstart ) > PYB_LSI_TIMEOUT_VALUE) {
return HAL_TIMEOUT;
}
}
}
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct;
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC;
if (rtc_use_lse) {
PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSE;
} else {
PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;
}
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) {
//Error_Handler();
return HAL_ERROR;
}
// enable RTC peripheral clock
__HAL_RCC_RTC_ENABLE();
return HAL_OK;
}
STATIC void RTC_CalendarConfig(void) {
// set the date to 1st Jan 2015
RTC_DateTypeDef date;
date.Year = 15;
date.Month = 1;
date.Date = 1;
date.WeekDay = RTC_WEEKDAY_THURSDAY;
if(HAL_RTC_SetDate(&RTCHandle, &date, FORMAT_BIN) != HAL_OK) {
// init error
return;
}
// set the time to 00:00:00
RTC_TimeTypeDef time;
time.Hours = 0;
time.Minutes = 0;
time.Seconds = 0;
time.TimeFormat = RTC_HOURFORMAT12_AM;
time.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
time.StoreOperation = RTC_STOREOPERATION_RESET;
if (HAL_RTC_SetTime(&RTCHandle, &time, FORMAT_BIN) != HAL_OK) {
// init error
return;
}
}
/******************************************************************************/
// Micro Python bindings
typedef struct _pyb_rtc_obj_t {
mp_obj_base_t base;
} pyb_rtc_obj_t;
STATIC const pyb_rtc_obj_t pyb_rtc_obj = {{&pyb_rtc_type}};
/// \classmethod \constructor()
/// Create an RTC object.
STATIC mp_obj_t pyb_rtc_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 0, 0, false);
// return constant object
return (mp_obj_t)&pyb_rtc_obj;
}
/// \method info()
/// Get information about the startup time and reset source.
///
/// - The lower 0xffff are the number of milliseconds the RTC took to
/// start up.
/// - Bit 0x10000 is set if a power-on reset occurred.
/// - Bit 0x20000 is set if an external reset occurred
mp_obj_t pyb_rtc_info(mp_obj_t self_in) {
return mp_obj_new_int(rtc_info);
}
MP_DEFINE_CONST_FUN_OBJ_1(pyb_rtc_info_obj, pyb_rtc_info);
/// \method datetime([datetimetuple])
/// Get or set the date and time of the RTC.
///
/// With no arguments, this method returns an 8-tuple with the current
/// date and time. With 1 argument (being an 8-tuple) it sets the date
/// and time.
///
/// The 8-tuple has the following format:
///
/// (year, month, day, weekday, hours, minutes, seconds, subseconds)
///
/// `weekday` is 1-7 for Monday through Sunday.
///
/// `subseconds` counts down from 255 to 0
#define MEG_DIV_64 (1000000 / 64)
#define MEG_DIV_SCALE ((RTC_SYNCH_PREDIV + 1) / 64)
#if defined(MICROPY_HW_RTC_USE_US) && MICROPY_HW_RTC_USE_US
uint32_t rtc_subsec_to_us(uint32_t ss) {
return ((RTC_SYNCH_PREDIV - ss) * MEG_DIV_64) / MEG_DIV_SCALE;
}
uint32_t rtc_us_to_subsec(uint32_t us) {
return RTC_SYNCH_PREDIV - (us * MEG_DIV_SCALE / MEG_DIV_64);
}
#else
#define rtc_us_to_subsec
#define rtc_subsec_to_us
#endif
mp_obj_t pyb_rtc_datetime(mp_uint_t n_args, const mp_obj_t *args) {
rtc_init_finalise();
if (n_args == 1) {
// get date and time
// note: need to call get time then get date to correctly access the registers
RTC_DateTypeDef date;
RTC_TimeTypeDef time;
HAL_RTC_GetTime(&RTCHandle, &time, FORMAT_BIN);
HAL_RTC_GetDate(&RTCHandle, &date, FORMAT_BIN);
mp_obj_t tuple[8] = {
mp_obj_new_int(2000 + date.Year),
mp_obj_new_int(date.Month),
mp_obj_new_int(date.Date),
mp_obj_new_int(date.WeekDay),
mp_obj_new_int(time.Hours),
mp_obj_new_int(time.Minutes),
mp_obj_new_int(time.Seconds),
mp_obj_new_int(rtc_subsec_to_us(time.SubSeconds)),
};
return mp_obj_new_tuple(8, tuple);
} else {
// set date and time
mp_obj_t *items;
mp_obj_get_array_fixed_n(args[1], 8, &items);
RTC_DateTypeDef date;
date.Year = mp_obj_get_int(items[0]) - 2000;
date.Month = mp_obj_get_int(items[1]);
date.Date = mp_obj_get_int(items[2]);
date.WeekDay = mp_obj_get_int(items[3]);
HAL_RTC_SetDate(&RTCHandle, &date, FORMAT_BIN);
RTC_TimeTypeDef time;
time.Hours = mp_obj_get_int(items[4]);
time.Minutes = mp_obj_get_int(items[5]);
time.Seconds = mp_obj_get_int(items[6]);
time.SubSeconds = rtc_us_to_subsec(mp_obj_get_int(items[7]));
time.TimeFormat = RTC_HOURFORMAT12_AM;
time.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
time.StoreOperation = RTC_STOREOPERATION_SET;
HAL_RTC_SetTime(&RTCHandle, &time, FORMAT_BIN);
return mp_const_none;
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_datetime_obj, 1, 2, pyb_rtc_datetime);
// wakeup(None)
// wakeup(ms, callback=None)
// wakeup(wucksel, wut, callback)
mp_obj_t pyb_rtc_wakeup(mp_uint_t n_args, const mp_obj_t *args) {
// wut is wakeup counter start value, wucksel is clock source
// counter is decremented at wucksel rate, and wakes the MCU when it gets to 0
// wucksel=0b000 is RTC/16 (RTC runs at 32768Hz)
// wucksel=0b001 is RTC/8
// wucksel=0b010 is RTC/4
// wucksel=0b011 is RTC/2
// wucksel=0b100 is 1Hz clock
// wucksel=0b110 is 1Hz clock with 0x10000 added to wut
// so a 1 second wakeup could be wut=2047, wucksel=0b000, or wut=4095, wucksel=0b001, etc
rtc_init_finalise();
// disable wakeup IRQ while we configure it
HAL_NVIC_DisableIRQ(RTC_WKUP_IRQn);
bool enable = false;
mp_int_t wucksel;
mp_int_t wut;
mp_obj_t callback = mp_const_none;
if (n_args <= 3) {
if (args[1] == mp_const_none) {
// disable wakeup
} else {
// time given in ms
mp_int_t ms = mp_obj_get_int(args[1]);
mp_int_t div = 2;
wucksel = 3;
while (div <= 16 && ms > 2000 * div) {
div *= 2;
wucksel -= 1;
}
if (div <= 16) {
wut = 32768 / div * ms / 1000;
} else {
// use 1Hz clock
wucksel = 4;
wut = ms / 1000;
if (wut > 0x10000) {
// wut too large for 16-bit register, try to offset by 0x10000
wucksel = 6;
wut -= 0x10000;
if (wut > 0x10000) {
// wut still too large
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "wakeup value too large"));
}
}
}
// wut register should be 1 less than desired value, but guard against wut=0
if (wut > 0) {
wut -= 1;
}
enable = true;
}
if (n_args == 3) {
callback = args[2];
}
} else {
// config values given directly
wucksel = mp_obj_get_int(args[1]);
wut = mp_obj_get_int(args[2]);
callback = args[3];
enable = true;
}
// set the callback
MP_STATE_PORT(pyb_extint_callback)[22] = callback;
// disable register write protection
RTC->WPR = 0xca;
RTC->WPR = 0x53;
// clear WUTE
RTC->CR &= ~(1 << 10);
// wait until WUTWF is set
while (!(RTC->ISR & (1 << 2))) {
}
if (enable) {
// program WUT
RTC->WUTR = wut;
// set WUTIE to enable wakeup interrupts
// set WUTE to enable wakeup
// program WUCKSEL
RTC->CR = (RTC->CR & ~7) | (1 << 14) | (1 << 10) | (wucksel & 7);
// enable register write protection
RTC->WPR = 0xff;
// enable external interrupts on line 22
EXTI->IMR |= 1 << 22;
EXTI->RTSR |= 1 << 22;
// clear interrupt flags
RTC->ISR &= ~(1 << 10);
EXTI->PR = 1 << 22;
HAL_NVIC_SetPriority(RTC_WKUP_IRQn, IRQ_PRI_RTC_WKUP, IRQ_SUBPRI_RTC_WKUP);
HAL_NVIC_EnableIRQ(RTC_WKUP_IRQn);
//printf("wut=%d wucksel=%d\n", wut, wucksel);
} else {
// clear WUTIE to disable interrupts
RTC->CR &= ~(1 << 14);
// enable register write protection
RTC->WPR = 0xff;
// disable external interrupts on line 22
EXTI->IMR &= ~(1 << 22);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_wakeup_obj, 2, 4, pyb_rtc_wakeup);
// calibration(None)
// calibration(cal)
// When an integer argument is provided, check that it falls in the range [-511 to 512]
// and set the calibration value; otherwise return calibration value
mp_obj_t pyb_rtc_calibration(mp_uint_t n_args, const mp_obj_t *args) {
rtc_init_finalise();
mp_int_t cal;
if (n_args == 2) {
cal = mp_obj_get_int(args[1]);
mp_uint_t cal_p, cal_m;
if (cal < -511 || cal > 512) {
#if defined(MICROPY_HW_RTC_USE_CALOUT) && MICROPY_HW_RTC_USE_CALOUT
if ((cal & 0xfffe) == 0x0ffe) {
// turn on/off X18 (PC13) 512Hz output
// Note:
// Output will stay active even in VBAT mode (and inrease current)
if (cal & 1) {
HAL_RTCEx_SetCalibrationOutPut(&RTCHandle, RTC_CALIBOUTPUT_512HZ);
} else {
HAL_RTCEx_DeactivateCalibrationOutPut(&RTCHandle);
}
return mp_obj_new_int(cal & 1);
} else {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError,
"calibration value out of range"));
}
#else
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError,
"calibration value out of range"));
#endif
}
if (cal > 0) {
cal_p = RTC_SMOOTHCALIB_PLUSPULSES_SET;
cal_m = 512 - cal;
} else {
cal_p = RTC_SMOOTHCALIB_PLUSPULSES_RESET;
cal_m = -cal;
}
HAL_RTCEx_SetSmoothCalib(&RTCHandle, RTC_SMOOTHCALIB_PERIOD_32SEC, cal_p, cal_m);
return mp_const_none;
} else {
// printf("CALR = 0x%x\n", (mp_uint_t) RTCHandle.Instance->CALR); // DEBUG
// Test if CALP bit is set in CALR:
if (RTCHandle.Instance->CALR & 0x8000) {
cal = 512 - (RTCHandle.Instance->CALR & 0x1ff);
} else {
cal = -(RTCHandle.Instance->CALR & 0x1ff);
}
return mp_obj_new_int(cal);
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_calibration_obj, 1, 2, pyb_rtc_calibration);
STATIC const mp_map_elem_t pyb_rtc_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&pyb_rtc_info_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_datetime), (mp_obj_t)&pyb_rtc_datetime_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_wakeup), (mp_obj_t)&pyb_rtc_wakeup_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_calibration), (mp_obj_t)&pyb_rtc_calibration_obj },
};
STATIC MP_DEFINE_CONST_DICT(pyb_rtc_locals_dict, pyb_rtc_locals_dict_table);
const mp_obj_type_t pyb_rtc_type = {
{ &mp_type_type },
.name = MP_QSTR_RTC,
.make_new = pyb_rtc_make_new,
.locals_dict = (mp_obj_t)&pyb_rtc_locals_dict,
};