1808 lines
50 KiB
C

/**
* \file
*
* \brief SAM Serial Peripheral Interface Driver
*
* Copyright (C) 2012-2016 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef SPI_H_INCLUDED
#define SPI_H_INCLUDED
/**
* \defgroup asfdoc_sam0_sercom_spi_group SAM Serial Peripheral Interface (SERCOM SPI) Driver
*
* This driver for Atmel&reg; | SMART ARM&reg;-based microcontrollers provides
* an interface for the configuration and management of the SERCOM module in
* its SPI mode to transfer SPI data frames. The following driver API modes
* are covered by this manual:
*
* - Polled APIs
* \if SPI_CALLBACK_MODE
* - Callback APIs
* \endif
*
* The following peripheral is used by this module:
* - SERCOM (Serial Communication Interface)
*
* The following devices can use this module:
* - Atmel | SMART SAM D20/D21
* - Atmel | SMART SAM R21
* - Atmel | SMART SAM D09/D10/D11
* - Atmel | SMART SAM L21/L22
* - Atmel | SMART SAM DA1
* - Atmel | SMART SAM C20/C21
* - Atmel | SMART SAM R30
*
* The outline of this documentation is as follows:
* - \ref asfdoc_sam0_sercom_spi_prerequisites
* - \ref asfdoc_sam0_sercom_spi_module_overview
* - \ref asfdoc_sam0_sercom_spi_special_considerations
* - \ref asfdoc_sam0_sercom_spi_extra_info
* - \ref asfdoc_sam0_sercom_spi_examples
* - \ref asfdoc_sam0_sercom_spi_api_overview
*
* \section asfdoc_sam0_sercom_spi_prerequisites Prerequisites
* There are no prerequisites.
*
*
* \section asfdoc_sam0_sercom_spi_module_overview Module Overview
* The Serial Peripheral Interface (SPI) is a high-speed synchronous data
* transfer interface using three or four pins. It allows fast communication
* between a master device and one or more peripheral devices.
*
* A device connected to the bus must act as a master or a slave. The master
* initiates and controls all data transactions.
* The SPI master initiates a communication cycle by pulling low the Slave
* Select (SS) pin of the desired slave. The Slave Select pin is active low.
* Master and slave prepare data to be sent in their respective shift
* registers, and the master generates the required clock pulses on the SCK
* line to interchange data. Data is always shifted from master to slave on
* the Master Out - Slave In (MOSI) line, and from slave to master on the
* Master In - Slave Out (MISO) line. After each data transfer, the master can
* synchronize to the slave by pulling the SS line high.
*
* \subsection asfdoc_sam0_sercom_spi_module_features Driver Feature Macro Definition
* <table>
* <tr>
* <th>Driver feature macro</th>
* <th>Supported devices</th>
* </tr>
* <tr>
* <td>FEATURE_SPI_SLAVE_SELECT_LOW_DETECT</td>
* <td>SAM D21/R21/D10/D11/L21/L22/DA1/C20/C21/R30</td>
* </tr>
* <tr>
* <td>FEATURE_SPI_HARDWARE_SLAVE_SELECT</td>
* <td>SAM D21/R21/D10/D11/L21/L22/DA1/C20/C21/R30</td>
* </tr>
* <tr>
* <td>FEATURE_SPI_ERROR_INTERRUPT</td>
* <td>SAM D21/R21/D10/D11/L21/L22/DA1/C20/C21/R30</td>
* </tr>
* <tr>
* <td>FEATURE_SPI_SYNC_SCHEME_VERSION_2</td>
* <td>SAM D21/R21/D10/D11/L21/L22/DA1/C20/C21/R30</td>
* </tr>
* </table>
* \note The specific features are only available in the driver when the
* selected device supports those features.
*
* \subsection asfdoc_sam0_sercom_spi_bus SPI Bus Connection
* In \ref asfdoc_sam0_spi_connection_example "the figure below", the
* connection between one master and one slave is shown.
*
* \anchor asfdoc_sam0_spi_connection_example
* \dot
* digraph spi_slaves_par {
* subgraph cluster_spi_master {
* shift_reg [label="Shift register", shape=box];
* mosi_m [label="MOSI", shape=none];
* miso_m [label="MISO", shape=none];
* sck_m [label="SCK", shape=none];
* ss_m [label="GPIO pin", shape=none];
* {rank=same; mosi_m miso_m sck_m ss_m}
* label="SPI Master";
* }
* subgraph cluster_spi_slave {
* mosi_s [label="MOSI", shape=none];
* miso_s [label="MISO", shape=none];
* sck_s [label="SCK", shape=none];
* ss_s [label="SS", shape=none];
* shift_reg_s [label="Shift register", shape=box];
* {rank=same; mosi_s miso_s sck_s ss_s}
* label="SPI Slave";
* rankdir=LR;
* }
* shift_reg:e -> mosi_m:w [label=""];
* mosi_m:e -> mosi_s:w [label=""];
* mosi_s:e -> shift_reg_s:w [label=""];
* miso_s:w -> miso_m:e [label=""];
* sck_m -> sck_s;
* ss_m -> ss_s;
* shift_reg_s:se -> miso_s:e [label=""];
* miso_m:w -> shift_reg:sw [label=""];
* rankdir=LR;
* }
* \enddot
*
* The different lines are as follows:
* - \b MISO Master Input Slave Output. The line where the data is shifted
* out from the slave and into the master.
* - \b MOSI Master Output Slave Input. The line where the data is shifted
* out from the master and into the slave.
* - \b SCK Serial Clock. Generated by the master device.
* - \b SS Slave Select. To initiate a transaction, the master must pull this
* line low.
*
* If the bus consists of several SPI slaves, they can be connected in parallel
* and the SPI master can use general I/O pins to control separate SS lines to
* each slave on the bus.
*
* It is also possible to connect all slaves in series. In this configuration,
* a common SS is provided to \c N slaves, enabling them simultaneously. The
* MISO from the \c N-1 slaves is connected to the MOSI on the next slave. The
* \c N<SUP>th</SUP> slave connects its MISO back to the master. For a
* complete transaction, the master must shift \c N+1 characters.
*
* \subsection asfdoc_sam0_sercom_spi_chsize SPI Character Size
* The SPI character size is configurable to eight or nine bits.
*
* \subsection asfdoc_sam0_sercom_spi_master_mode Master Mode
* When configured as a master, the SS pin will be configured as an output.
*
* \subsubsection asfdoc_sam0_sercom_spi_master_mode_data_transfer Data Transfer
* Writing a character will start the SPI clock generator, and
* the character is transferred to the shift register when the shift
* register is empty.
* Once this is done, a new character can be written.
* As each character is shifted out from the master, a character is shifted in
* from the slave. If the receiver is enabled, the data is moved to the receive
* buffer at the completion of the frame and can be read.
*
* \subsection asfdoc_sam0_sercom_spi_slave_mode Slave Mode
* When configured as a slave, the SPI interface will remain inactive with MISO
* tri-stated as long as the SS pin is driven high.
*
* \subsubsection asfdoc_sam0_sercom_spi_slave_mode_data_transfer_slave Data Transfer
* The data register can be updated at any time.
* As the SPI slave shift register is clocked by SCK, a minimum of three SCK
* cycles are needed from the time new data is written, until the character is
* ready to be shifted out. If the shift register has not been loaded with
* data, the current contents will be transmitted.
*
* If constant transmission of data is needed in SPI slave mode, the system
* clock should be faster than SCK.
* If the receiver is enabled, the received character can be read from the
* receive buffer. When SS line is driven high, the slave will not receive any
* additional data.
*
* \subsubsection asfdoc_sam0_sercom_spi_slave_mode_addr_recognition Address Recognition
* When the SPI slave is configured with address recognition, the first
* character in a transaction is checked for an address match. If there is a
* match, the MISO output is enabled and the transaction is processed.
* If the address does not match, the complete transaction is ignored.
*
* If the device is asleep, it can be woken up by an address match in order
* to process the transaction.
*
* \note In master mode, an address packet is written by the
* \ref spi_select_slave function if the address_enabled configuration is
* set in the \ref spi_slave_inst_config struct.
*
* \subsection asfdoc_sam0_sercom_spi_data_modes Data Modes
* There are four combinations of SCK phase and polarity with respect to
* serial data. \ref asfdoc_sam0_spi_mode_table "The table below" shows the
* clock polarity (CPOL) and clock phase (CPHA) in the different modes.
* <i>Leading edge</i> is the first clock edge in a clock cycle and
* <i>trailing edge</i> is the last clock edge in a clock cycle.
*
* \anchor asfdoc_sam0_spi_mode_table
* <table>
* <caption>SPI Data Modes</caption>
* <tr>
* <th>Mode</th>
* <th>CPOL</th>
* <th>CPHA</th>
* <th>Leading Edge</th>
* <th>Trailing Edge</th>
* </tr>
* <tr>
* <td> 0 </td>
* <td> 0 </td>
* <td> 0 </td>
* <td> Rising, Sample </td>
* <td> Falling, Setup </td>
* </tr>
* <tr>
* <td> 1 </td>
* <td> 0 </td>
* <td> 1 </td>
* <td> Rising, Setup </td>
* <td> Falling, Sample </td>
* </tr>
* <tr>
* <td> 2 </td>
* <td> 1 </td>
* <td> 0 </td>
* <td> Falling, Sample </td>
* <td> Rising, Setup </td>
* </tr>
* <tr>
* <td> 3 </td>
* <td> 1 </td>
* <td> 1 </td>
* <td> Falling, Setup </td>
* <td> Rising, Sample </td>
* </tr>
* </table>
*
*
* \subsection asfdoc_sam0_sercom_spi_pads SERCOM Pads
* The SERCOM pads are automatically configured as seen in
* \ref asfdoc_sam0_spi_sercom_pad_table "the table below". If the receiver
* is disabled, the data input (MISO for master, MOSI for slave) can be used
* for other purposes.
*
* In master mode, the SS pin(s) must be configured using the \ref spi_slave_inst
* struct.
*
* \anchor asfdoc_sam0_spi_sercom_pad_table
* <table>
* <caption>SERCOM SPI Pad Usages</caption>
* <tr>
* <th> Pin </th>
* <th> Master SPI </th>
* <th> Slave SPI </th>
* </tr>
* <tr>
* <td> MOSI </td>
* <td> Output </td>
* <td> Input </td>
* </tr>
* <tr>
* <td> MISO </td>
* <td> Input </td>
* <td> Output </td>
* </tr>
* <tr>
* <td> SCK </td>
* <td> Output </td>
* <td> Input </td>
* </tr>
* <tr>
* <td> SS </td>
* <td> User defined output enable </td>
* <td> Input </td>
* </tr>
* </table>
*
* \subsection asfdoc_sam0_sercom_spi_sleep_modes Operation in Sleep Modes
* The SPI module can operate in all sleep modes by setting the run_in_standby
* option in the \ref spi_config struct. The operation in slave and master mode
* is shown in the table below.
* <table>
* <tr>
* <th> run_in_standby </th>
* <th> Slave </th>
* <th> Master </th>
* </tr>
* <tr>
* <td> false </td>
* <td> Disabled, all reception is dropped </td>
* <td> GCLK is disabled when master is idle, wake on transmit complete </td>
* </tr>
* <tr>
* <td> true </td>
* <td> Wake on reception </td>
* <td> GCLK is enabled while in sleep modes, wake on all interrupts </td>
* </tr>
* </table>
*
* \subsection asfdoc_sam0_sercom_spi_clock_generation Clock Generation
* In SPI master mode, the clock (SCK) is generated internally using the
* SERCOM baudrate generator. In SPI slave mode, the clock is provided by
* an external master on the SCK pin. This clock is used to directly clock
* the SPI shift register.
*
* \section asfdoc_sam0_sercom_spi_special_considerations Special Considerations
* \subsection pin_mux pinmux Settings
* The pin MUX settings must be configured properly, as not all settings
* can be used in different modes of operation.
*
* \section asfdoc_sam0_sercom_spi_extra_info Extra Information
* For extra information, see \ref asfdoc_sam0_sercom_spi_extra. This includes:
* - \ref asfdoc_sam0_sercom_spi_extra_acronyms
* - \ref asfdoc_sam0_sercom_spi_extra_dependencies
* - \ref asfdoc_sam0_sercom_spi_extra_workarounds
* - \ref asfdoc_sam0_sercom_spi_extra_history
*
* \section asfdoc_sam0_sercom_spi_examples Examples
*
* For a list of examples related to this driver, see
* \ref asfdoc_sam0_sercom_spi_exqsg.
*
* \section asfdoc_sam0_sercom_spi_api_overview API Overview
* @{
*/
#include <compiler.h>
#include <port.h>
#include <sercom.h>
#include <pinmux.h>
#include <string.h>
#include <conf_spi.h>
# if SPI_CALLBACK_MODE == true
# include <sercom_interrupt.h>
# endif
#ifdef __cplusplus
extern "C" {
#endif
#if (CONF_SPI_MASTER_ENABLE == false) && (CONF_SPI_SLAVE_ENABLE == false)
#error "Not possible compile SPI driver, invalid driver configuration. Make sure that either/both CONF_SPI_MASTER_ENABLE/CONF_SPI_SLAVE_ENABLE is set to true."
#endif
/**
* \name Driver Feature Definition
* Define SERCOM SPI features set according to different device family.
* @{
*/
# if (SAMD21) || (SAMR21) || (SAMD11) || (SAMD10) || (SAML21) || (SAMDA1) || \
(SAML22) || (SAMC20) || (SAMC21) || (SAMD09) || (SAMR30) || defined(__DOXYGEN__)
/** SPI slave select low detection. */
# define FEATURE_SPI_SLAVE_SELECT_LOW_DETECT
/** Slave select can be controlled by hardware. */
# define FEATURE_SPI_HARDWARE_SLAVE_SELECT
/** SPI with error detect feature. */
# define FEATURE_SPI_ERROR_INTERRUPT
/** SPI sync scheme version 2. */
# define FEATURE_SPI_SYNC_SCHEME_VERSION_2
# endif
/*@}*/
# ifndef PINMUX_DEFAULT
/** Default pinmux. */
# define PINMUX_DEFAULT 0
# endif
# ifndef PINMUX_UNUSED
/** Unused pinmux. */
# define PINMUX_UNUSED 0xFFFFFFFF
# endif
# ifndef SPI_TIMEOUT
/** SPI timeout value. */
# define SPI_TIMEOUT 10000
# endif
# if SPI_CALLBACK_MODE == true
/**
* \brief SPI Callback enum
*
* Callbacks for SPI callback driver.
*
* \note For slave mode, these callbacks will be called when a transaction
* is ended by the master pulling Slave Select high.
*
*/
enum spi_callback {
/** Callback for buffer transmitted */
SPI_CALLBACK_BUFFER_TRANSMITTED,
/** Callback for buffer received */
SPI_CALLBACK_BUFFER_RECEIVED,
/** Callback for buffers transceived */
SPI_CALLBACK_BUFFER_TRANSCEIVED,
/** Callback for error */
SPI_CALLBACK_ERROR,
/**
* Callback for transmission ended by master before the entire buffer was
* read or written from slave
*/
SPI_CALLBACK_SLAVE_TRANSMISSION_COMPLETE,
# ifdef FEATURE_SPI_SLAVE_SELECT_LOW_DETECT
/** Callback for slave select low */
SPI_CALLBACK_SLAVE_SELECT_LOW,
# endif
# ifdef FEATURE_SPI_ERROR_INTERRUPT
/** Callback for combined error happen */
SPI_CALLBACK_COMBINED_ERROR,
# endif
# if !defined(__DOXYGEN__)
/** Number of available callbacks */
SPI_CALLBACK_N,
# endif
};
# endif
#if SPI_CALLBACK_MODE == true
# if !defined(__DOXYGEN__)
/**
* \internal SPI transfer directions
*/
enum _spi_direction {
/** Transfer direction is read */
SPI_DIRECTION_READ,
/** Transfer direction is write */
SPI_DIRECTION_WRITE,
/** Transfer direction is read and write */
SPI_DIRECTION_BOTH,
/** No transfer */
SPI_DIRECTION_IDLE,
};
# endif
#endif
/**
* \brief SPI Interrupt Flags
*
* Interrupt flags for the SPI module.
*
*/
enum spi_interrupt_flag {
/**
* This flag is set when the contents of the data register has been moved
* to the shift register and the data register is ready for new data
*/
SPI_INTERRUPT_FLAG_DATA_REGISTER_EMPTY = SERCOM_SPI_INTFLAG_DRE,
/**
* This flag is set when the contents of the shift register has been
* shifted out
*/
SPI_INTERRUPT_FLAG_TX_COMPLETE = SERCOM_SPI_INTFLAG_TXC,
/** This flag is set when data has been shifted into the data register */
SPI_INTERRUPT_FLAG_RX_COMPLETE = SERCOM_SPI_INTFLAG_RXC,
# ifdef FEATURE_SPI_SLAVE_SELECT_LOW_DETECT
/** This flag is set when slave select low */
SPI_INTERRUPT_FLAG_SLAVE_SELECT_LOW = SERCOM_SPI_INTFLAG_SSL,
# endif
# ifdef FEATURE_SPI_ERROR_INTERRUPT
/** This flag is set when combined error happen */
SPI_INTERRUPT_FLAG_COMBINED_ERROR = SERCOM_SPI_INTFLAG_ERROR,
# endif
};
/**
* \brief SPI transfer modes enum
*
* SPI transfer mode.
*/
enum spi_transfer_mode {
/** Mode 0. Leading edge: rising, sample. Trailing edge: falling, setup */
SPI_TRANSFER_MODE_0 = 0,
/** Mode 1. Leading edge: rising, setup. Trailing edge: falling, sample */
SPI_TRANSFER_MODE_1 = SERCOM_SPI_CTRLA_CPHA,
/** Mode 2. Leading edge: falling, sample. Trailing edge: rising, setup */
SPI_TRANSFER_MODE_2 = SERCOM_SPI_CTRLA_CPOL,
/** Mode 3. Leading edge: falling, setup. Trailing edge: rising, sample */
SPI_TRANSFER_MODE_3 = SERCOM_SPI_CTRLA_CPHA | SERCOM_SPI_CTRLA_CPOL,
};
/**
* \brief SPI frame format enum
*
* Frame format for slave mode.
*/
enum spi_frame_format {
/** SPI frame */
SPI_FRAME_FORMAT_SPI_FRAME = SERCOM_SPI_CTRLA_FORM(0),
/** SPI frame with address */
SPI_FRAME_FORMAT_SPI_FRAME_ADDR = SERCOM_SPI_CTRLA_FORM(2),
};
/**
* \brief SPI signal MUX settings
*
* Set the functionality of the SERCOM pins. As not all combinations can be used
* in different modes of operation, proper combinations must be chosen according
* to the rest of the configuration.
*
* \note In master operation: DI is MISO, DO is MOSI.
* In slave operation: DI is MOSI, DO is MISO.
*
* See \ref asfdoc_sam0_sercom_spi_mux_settings for a description of the
* various MUX setting options.
*/
enum spi_signal_mux_setting {
/** SPI MUX combination A. DOPO: 0x0, DIPO: 0x0 */
SPI_SIGNAL_MUX_SETTING_A =
(0x0 << SERCOM_SPI_CTRLA_DOPO_Pos) |
(0x0 << SERCOM_SPI_CTRLA_DIPO_Pos),
/** SPI MUX combination B. DOPO: 0x0, DIPO: 0x1 */
SPI_SIGNAL_MUX_SETTING_B =
(0x0 << SERCOM_SPI_CTRLA_DOPO_Pos) |
(0x1 << SERCOM_SPI_CTRLA_DIPO_Pos),
/** SPI MUX combination C. DOPO: 0x0, DIPO: 0x2 */
SPI_SIGNAL_MUX_SETTING_C =
(0x0 << SERCOM_SPI_CTRLA_DOPO_Pos) |
(0x2 << SERCOM_SPI_CTRLA_DIPO_Pos),
/** SPI MUX combination D. DOPO: 0x0, DIPO: 0x3 */
SPI_SIGNAL_MUX_SETTING_D =
(0x0 << SERCOM_SPI_CTRLA_DOPO_Pos) |
(0x3 << SERCOM_SPI_CTRLA_DIPO_Pos),
/** SPI MUX combination E. DOPO: 0x1, DIPO: 0x0 */
SPI_SIGNAL_MUX_SETTING_E =
(0x1 << SERCOM_SPI_CTRLA_DOPO_Pos) |
(0x0 << SERCOM_SPI_CTRLA_DIPO_Pos),
/** SPI MUX combination F. DOPO: 0x1, DIPO: 0x1 */
SPI_SIGNAL_MUX_SETTING_F =
(0x1 << SERCOM_SPI_CTRLA_DOPO_Pos) |
(0x1 << SERCOM_SPI_CTRLA_DIPO_Pos),
/** SPI MUX combination G. DOPO: 0x1, DIPO: 0x2 */
SPI_SIGNAL_MUX_SETTING_G =
(0x1 << SERCOM_SPI_CTRLA_DOPO_Pos) |
(0x2 << SERCOM_SPI_CTRLA_DIPO_Pos),
/** SPI MUX combination H. DOPO: 0x1, DIPO: 0x3 */
SPI_SIGNAL_MUX_SETTING_H =
(0x1 << SERCOM_SPI_CTRLA_DOPO_Pos) |
(0x3 << SERCOM_SPI_CTRLA_DIPO_Pos),
/** SPI MUX combination I. DOPO: 0x2, DIPO: 0x0 */
SPI_SIGNAL_MUX_SETTING_I =
(0x2 << SERCOM_SPI_CTRLA_DOPO_Pos) |
(0x0 << SERCOM_SPI_CTRLA_DIPO_Pos),
/** SPI MUX combination J. DOPO: 0x2, DIPO: 0x1 */
SPI_SIGNAL_MUX_SETTING_J =
(0x2 << SERCOM_SPI_CTRLA_DOPO_Pos) |
(0x1 << SERCOM_SPI_CTRLA_DIPO_Pos),
/** SPI MUX combination K. DOPO: 0x2, DIPO: 0x2 */
SPI_SIGNAL_MUX_SETTING_K =
(0x2 << SERCOM_SPI_CTRLA_DOPO_Pos) |
(0x2 << SERCOM_SPI_CTRLA_DIPO_Pos),
/** SPI MUX combination L. DOPO: 0x2, DIPO: 0x3 */
SPI_SIGNAL_MUX_SETTING_L =
(0x2 << SERCOM_SPI_CTRLA_DOPO_Pos) |
(0x3 << SERCOM_SPI_CTRLA_DIPO_Pos),
/** SPI MUX combination M. DOPO: 0x3, DIPO: 0x0 */
SPI_SIGNAL_MUX_SETTING_M =
(0x3 << SERCOM_SPI_CTRLA_DOPO_Pos) |
(0x0 << SERCOM_SPI_CTRLA_DIPO_Pos),
/** SPI MUX combination N. DOPO: 0x3, DIPO: 0x1 */
SPI_SIGNAL_MUX_SETTING_N =
(0x3 << SERCOM_SPI_CTRLA_DOPO_Pos) |
(0x1 << SERCOM_SPI_CTRLA_DIPO_Pos),
/** SPI MUX combination O. DOPO: 0x3, DIPO: 0x2 */
SPI_SIGNAL_MUX_SETTING_O =
(0x3 << SERCOM_SPI_CTRLA_DOPO_Pos) |
(0x2 << SERCOM_SPI_CTRLA_DIPO_Pos),
/** SPI MUX combination P. DOPO: 0x3, DIPO: 0x3 */
SPI_SIGNAL_MUX_SETTING_P =
(0x3 << SERCOM_SPI_CTRLA_DOPO_Pos) |
(0x3 << SERCOM_SPI_CTRLA_DIPO_Pos),
};
/**
* \brief SPI address modes enum
*
* For slave mode when using the SPI frame with address format.
*
*/
enum spi_addr_mode {
/**
* \c address_mask in the \ref spi_config struct is used as a mask to the register
*/
SPI_ADDR_MODE_MASK = SERCOM_SPI_CTRLB_AMODE(0),
/**
* The slave responds to the two unique addresses in \c address and
* \c address_mask in the \ref spi_config struct
*/
SPI_ADDR_MODE_UNIQUE = SERCOM_SPI_CTRLB_AMODE(1),
/**
* The slave responds to the range of addresses between and including \c address
* and \c address_mask in the \ref spi_config struct
*/
SPI_ADDR_MODE_RANGE = SERCOM_SPI_CTRLB_AMODE(2),
};
/**
* \brief SPI modes enum
*
* SPI mode selection.
*/
enum spi_mode {
/** Master mode */
SPI_MODE_MASTER = 1,
/** Slave mode */
SPI_MODE_SLAVE = 0,
};
/**
* \brief SPI data order enum
*
* SPI data order.
*
*/
enum spi_data_order {
/** The LSB of the data is transmitted first */
SPI_DATA_ORDER_LSB = SERCOM_SPI_CTRLA_DORD,
/** The MSB of the data is transmitted first */
SPI_DATA_ORDER_MSB = 0,
};
/**
* \brief SPI character size enum
*
* SPI character size.
*
*/
enum spi_character_size {
/** 8-bit character */
SPI_CHARACTER_SIZE_8BIT = SERCOM_SPI_CTRLB_CHSIZE(0),
/** 9-bit character */
SPI_CHARACTER_SIZE_9BIT = SERCOM_SPI_CTRLB_CHSIZE(1),
};
# if SPI_CALLBACK_MODE == true
/** Prototype for the device instance */
struct spi_module;
/** Type of the callback functions */
typedef void (*spi_callback_t)(struct spi_module *const module);
# if !defined(__DOXYGEN__)
/** Prototype for the interrupt handler */
extern void _spi_interrupt_handler(uint8_t instance);
# endif
# endif
/**
* \brief SERCOM SPI driver software device instance structure.
*
* SERCOM SPI driver software instance structure, used to retain software state
* information of an associated hardware module instance.
*
* \note The fields of this structure should not be altered by the user
* application; they are reserved for module-internal use only.
*/
struct spi_module {
# if !defined(__DOXYGEN__)
/** SERCOM hardware module */
Sercom *hw;
/** Module lock */
volatile bool locked;
/** SPI mode */
enum spi_mode mode;
/** SPI character size */
enum spi_character_size character_size;
/** Receiver enabled */
bool receiver_enabled;
# ifdef FEATURE_SPI_HARDWARE_SLAVE_SELECT
/** Enable Hardware Slave Select */
bool master_slave_select_enable;
# endif
# if SPI_CALLBACK_MODE == true
/** Direction of transaction */
volatile enum _spi_direction dir;
/** Array to store callback function pointers in */
spi_callback_t callback[SPI_CALLBACK_N];
/** Buffer pointer to where the next received character will be put */
volatile uint8_t *rx_buffer_ptr;
/** Buffer pointer to where the next character will be transmitted from
**/
volatile uint8_t *tx_buffer_ptr;
/** Remaining characters to receive */
volatile uint16_t remaining_rx_buffer_length;
/** Remaining dummy characters to send when reading */
volatile uint16_t remaining_dummy_buffer_length;
/** Remaining characters to transmit */
volatile uint16_t remaining_tx_buffer_length;
/** Bit mask for callbacks registered */
uint8_t registered_callback;
/** Bit mask for callbacks enabled */
uint8_t enabled_callback;
/** Holds the status of the ongoing or last operation */
volatile enum status_code status;
# endif
# endif
};
/**
* \brief SPI peripheral slave instance structure
*
* SPI peripheral slave software instance structure, used to configure the
* correct SPI transfer mode settings for an attached slave. See
* \ref spi_select_slave.
*/
struct spi_slave_inst {
/** Pin to use as slave select */
uint8_t ss_pin;
/** Address recognition enabled in slave device */
bool address_enabled;
/** Address of slave device */
uint8_t address;
};
/**
* \brief SPI peripheral slave configuration structure
*
* SPI Peripheral slave configuration structure.
*/
struct spi_slave_inst_config {
/** Pin to use as slave select */
uint8_t ss_pin;
/** Enable address */
bool address_enabled;
/** Address of slave */
uint8_t address;
};
/**
* \brief SPI Master configuration structure
*
* SPI Master configuration structure.
*/
struct spi_master_config {
/** Baud rate */
uint32_t baudrate;
};
/**
* \brief SPI slave configuration structure
*
* SPI slave configuration structure.
*/
struct spi_slave_config {
/** Frame format */
enum spi_frame_format frame_format;
/** Address mode */
enum spi_addr_mode address_mode;
/** Address */
uint8_t address;
/** Address mask */
uint8_t address_mask;
/** Preload data to the shift register while SS is high */
bool preload_enable;
};
/**
* \brief SPI configuration structure
*
* Configuration structure for an SPI instance. This structure should be
* initialized by the \ref spi_get_config_defaults function before being
* modified by the user application.
*/
struct spi_config {
/** SPI mode */
enum spi_mode mode;
/** Data order */
enum spi_data_order data_order;
/** Transfer mode */
enum spi_transfer_mode transfer_mode;
/** MUX setting */
enum spi_signal_mux_setting mux_setting;
/** SPI character size */
enum spi_character_size character_size;
/** Enabled in sleep modes */
bool run_in_standby;
/** Enable receiver */
bool receiver_enable;
# ifdef FEATURE_SPI_SLAVE_SELECT_LOW_DETECT
/** Enable Slave Select Low Detect */
bool select_slave_low_detect_enable;
# endif
# ifdef FEATURE_SPI_HARDWARE_SLAVE_SELECT
/** Enable Master Slave Select */
bool master_slave_select_enable;
# endif
/** Union for slave or master specific configuration */
union {
/** Slave specific configuration */
struct spi_slave_config slave;
/** Master specific configuration */
struct spi_master_config master;
} mode_specific;
/** GCLK generator to use as clock source */
enum gclk_generator generator_source;
/** PAD0 pinmux */
uint32_t pinmux_pad0;
/** PAD1 pinmux */
uint32_t pinmux_pad1;
/** PAD2 pinmux */
uint32_t pinmux_pad2;
/** PAD3 pinmux */
uint32_t pinmux_pad3;
};
/**
* \brief Determines if the SPI module is currently synchronizing to the bus.
*
* This function will check if the underlying hardware peripheral module is
* currently synchronizing across multiple clock domains to the hardware bus.
* This function can be used to delay further operations on the module until it
* is ready.
*
* \param[in] module SPI hardware module
*
* \return Synchronization status of the underlying hardware module.
* \retval true Module synchronization is ongoing
* \retval false Module synchronization is not ongoing
*
*/
static inline bool spi_is_syncing(
struct spi_module *const module)
{
/* Sanity check arguments */
Assert(module);
Assert(module->hw);
SercomSpi *const spi_module = &(module->hw->SPI);
# ifdef FEATURE_SPI_SYNC_SCHEME_VERSION_2
/* Return synchronization status */
return (spi_module->SYNCBUSY.reg);
# else
/* Return synchronization status */
return (spi_module->STATUS.reg & SERCOM_SPI_STATUS_SYNCBUSY);
# endif
}
/**
* \name Driver Initialization and Configuration
* @{
*/
/**
* \brief Initializes an SPI configuration structure to default values
*
* This function will initialize a given SPI configuration structure to a set
* of known default values. This function should be called on any new
* instance of the configuration structures before being modified by the
* user application.
*
* The default configuration is as follows:
* \li Master mode enabled
* \li MSB of the data is transmitted first
* \li Transfer mode 0
* \li MUX Setting D
* \li Character size eight bits
* \li Not enabled in sleep mode
* \li Receiver enabled
* \li Baudrate 100000
* \li Default pinmux settings for all pads
* \li GCLK generator 0
*
* \param[out] config Configuration structure to initialize to default values
*/
static inline void spi_get_config_defaults(
struct spi_config *const config)
{
/* Sanity check arguments */
Assert(config);
/* Default configuration values */
config->mode = SPI_MODE_MASTER;
config->data_order = SPI_DATA_ORDER_MSB;
config->transfer_mode = SPI_TRANSFER_MODE_0;
config->mux_setting = SPI_SIGNAL_MUX_SETTING_D;
config->character_size = SPI_CHARACTER_SIZE_8BIT;
config->run_in_standby = false;
config->receiver_enable = true;
# ifdef FEATURE_SPI_SLAVE_SELECT_LOW_DETECT
config->select_slave_low_detect_enable= true;
# endif
# ifdef FEATURE_SPI_HARDWARE_SLAVE_SELECT
config->master_slave_select_enable= false;
# endif
config->generator_source = GCLK_GENERATOR_0;
/* Clear mode specific config */
memset(&(config->mode_specific), 0, sizeof(config->mode_specific));
/* Master config defaults */
config->mode_specific.master.baudrate = 100000;
/* pinmux config defaults */
config->pinmux_pad0 = PINMUX_DEFAULT;
config->pinmux_pad1 = PINMUX_DEFAULT;
config->pinmux_pad2 = PINMUX_DEFAULT;
config->pinmux_pad3 = PINMUX_DEFAULT;
};
/**
* \brief Initializes an SPI peripheral slave device configuration structure to default values
*
* This function will initialize a given SPI slave device configuration
* structure to a set of known default values. This function should be called
* on any new instance of the configuration structures before being modified by
* the user application.
*
* The default configuration is as follows:
* \li Slave Select on GPIO pin 10
* \li Addressing not enabled
*
* \param[out] config Configuration structure to initialize to default values
*/
static inline void spi_slave_inst_get_config_defaults(
struct spi_slave_inst_config *const config)
{
Assert(config);
config->ss_pin = 10;
config->address_enabled = false;
config->address = 0;
}
/**
* \brief Attaches an SPI peripheral slave
*
* This function will initialize the software SPI peripheral slave, based on
* the values of the config struct. The slave can then be selected and
* optionally addressed by the \ref spi_select_slave function.
*
* \param[out] slave Pointer to the software slave instance struct
* \param[in] config Pointer to the config struct
*
*/
static inline void spi_attach_slave(
struct spi_slave_inst *const slave,
const struct spi_slave_inst_config *const config)
{
Assert(slave);
Assert(config);
slave->ss_pin = config->ss_pin;
slave->address_enabled = config->address_enabled;
slave->address = config->address;
/* Get default config for pin */
struct port_config pin_conf;
port_get_config_defaults(&pin_conf);
/* Edit config to set the pin as output */
pin_conf.direction = PORT_PIN_DIR_OUTPUT;
/* Set config on Slave Select pin */
port_pin_set_config(slave->ss_pin, &pin_conf);
port_pin_set_output_level(slave->ss_pin, true);
}
enum status_code spi_init(
struct spi_module *const module,
Sercom *const hw,
const struct spi_config *const config);
/** @} */
/**
* \name Enable/Disable
* @{
*/
/**
* \brief Enables the SERCOM SPI module
*
* This function will enable the SERCOM SPI module.
*
* \param[in,out] module Pointer to the software instance struct
*/
static inline void spi_enable(
struct spi_module *const module)
{
/* Sanity check arguments */
Assert(module);
Assert(module->hw);
SercomSpi *const spi_module = &(module->hw->SPI);
# if SPI_CALLBACK_MODE == true
system_interrupt_enable(_sercom_get_interrupt_vector(module->hw));
# endif
while (spi_is_syncing(module)) {
/* Wait until the synchronization is complete */
}
/* Enable SPI */
spi_module->CTRLA.reg |= SERCOM_SPI_CTRLA_ENABLE;
}
/**
* \brief Disables the SERCOM SPI module
*
* This function will disable the SERCOM SPI module.
*
* \param[in,out] module Pointer to the software instance struct
*/
static inline void spi_disable(
struct spi_module *const module)
{
/* Sanity check arguments */
Assert(module);
Assert(module->hw);
SercomSpi *const spi_module = &(module->hw->SPI);
# if SPI_CALLBACK_MODE == true
system_interrupt_disable(_sercom_get_interrupt_vector(module->hw));
# endif
while (spi_is_syncing(module)) {
/* Wait until the synchronization is complete */
}
/* Disbale interrupt */
spi_module->INTENCLR.reg = SERCOM_SPI_INTENCLR_MASK;
/* Clear interrupt flag */
spi_module->INTFLAG.reg = SERCOM_SPI_INTFLAG_MASK;
/* Disable SPI */
spi_module->CTRLA.reg &= ~SERCOM_SPI_CTRLA_ENABLE;
}
void spi_reset(
struct spi_module *const module);
/** @} */
enum status_code spi_set_baudrate(
struct spi_module *const module,
uint32_t baudrate);
/**
* \name Lock/Unlock
* @{
*/
/**
* \brief Attempt to get lock on driver instance
*
* This function checks the instance's lock, which indicates whether or not it
* is currently in use, and sets the lock if it was not already set.
*
* The purpose of this is to enable exclusive access to driver instances, so
* that, e.g., transactions by different services will not interfere with each
* other.
*
* \param[in,out] module Pointer to the driver instance to lock
*
* \retval STATUS_OK If the module was locked
* \retval STATUS_BUSY If the module was already locked
*/
static inline enum status_code spi_lock(struct spi_module *const module)
{
enum status_code status;
system_interrupt_enter_critical_section();
if (module->locked) {
status = STATUS_BUSY;
} else {
module->locked = true;
status = STATUS_OK;
}
system_interrupt_leave_critical_section();
return status;
}
/**
* \brief Unlock driver instance
*
* This function clears the instance lock, indicating that it is available for
* use.
*
* \param[in,out] module Pointer to the driver instance to lock
*
* \retval STATUS_OK If the module was locked
* \retval STATUS_BUSY If the module was already locked
*/
static inline void spi_unlock(struct spi_module *const module)
{
module->locked = false;
}
/** @} */
/**
* \name Ready to Write/Read
* @{
*/
/**
* \brief Checks if the SPI in master mode has shifted out last data, or if the master has ended the transfer in slave mode.
*
* This function will check if the SPI master module has shifted out last data,
* or if the slave select pin has been drawn high by the master for the SPI
* slave module.
*
* \param[in] module Pointer to the software instance struct
*
* \return Indication of whether any writes are ongoing.
* \retval true If the SPI master module has shifted out data, or slave select
* has been drawn high for SPI slave
* \retval false If the SPI master module has not shifted out data
*/
static inline bool spi_is_write_complete(
struct spi_module *const module)
{
/* Sanity check arguments */
Assert(module);
Assert(module->hw);
SercomSpi *const spi_module = &(module->hw->SPI);
/* Check interrupt flag */
return (spi_module->INTFLAG.reg & SERCOM_SPI_INTFLAG_TXC);
}
/**
* \brief Checks if the SPI module is ready to write data
*
* This function will check if the SPI module is ready to write data.
*
* \param[in] module Pointer to the software instance struct
*
* \return Indication of whether the module is ready to read data or not.
* \retval true If the SPI module is ready to write data
* \retval false If the SPI module is not ready to write data
*/
static inline bool spi_is_ready_to_write(
struct spi_module *const module)
{
/* Sanity check arguments */
Assert(module);
Assert(module->hw);
SercomSpi *const spi_module = &(module->hw->SPI);
/* Check interrupt flag */
return (spi_module->INTFLAG.reg & SERCOM_SPI_INTFLAG_DRE);
}
/**
* \brief Checks if the SPI module is ready to read data
*
* This function will check if the SPI module is ready to read data.
*
* \param[in] module Pointer to the software instance struct
*
* \return Indication of whether the module is ready to read data or not.
* \retval true If the SPI module is ready to read data
* \retval false If the SPI module is not ready to read data
*/
static inline bool spi_is_ready_to_read(
struct spi_module *const module)
{
/* Sanity check arguments */
Assert(module);
Assert(module->hw);
SercomSpi *const spi_module = &(module->hw->SPI);
/* Check interrupt flag */
return (spi_module->INTFLAG.reg & SERCOM_SPI_INTFLAG_RXC);
}
/** @} */
/**
* \name Read/Write
* @{
*/
/**
* \brief Transfers a single SPI character
*
* This function will send a single SPI character via SPI and ignore any data
* shifted in by the connected device. To both send and receive data, use the
* \ref spi_transceive_wait function or use the \ref spi_read function after
* writing a character. The \ref spi_is_ready_to_write function
* should be called before calling this function.
*
* Note that this function does not handle the SS (Slave Select)
* pin(s) in master mode; this must be handled from the user application.
*
* \note In slave mode, the data will not be transferred before a master
* initiates a transaction.
*
* \param[in] module Pointer to the software instance struct
* \param[in] tx_data Data to transmit
*
* \return Status of the procedure.
* \retval STATUS_OK If the data was written
* \retval STATUS_BUSY If the last write was not completed
*/
static inline enum status_code spi_write(
struct spi_module *module,
uint16_t tx_data)
{
/* Sanity check arguments */
Assert(module);
Assert(module->hw);
SercomSpi *const spi_module = &(module->hw->SPI);
/* Check if the data register has been copied to the shift register */
if (!spi_is_ready_to_write(module)) {
/* Data register has not been copied to the shift register, return */
return STATUS_BUSY;
}
/* Write the character to the DATA register */
spi_module->DATA.reg = tx_data & SERCOM_SPI_DATA_MASK;
return STATUS_OK;
}
enum status_code spi_write_buffer_wait(
struct spi_module *const module,
const uint8_t *tx_data,
uint16_t length);
/**
* \brief Reads last received SPI character
*
* This function will return the last SPI character shifted into the receive
* register by the \ref spi_write function.
*
* \note The \ref spi_is_ready_to_read function should be called before calling
* this function.
*
* \note Receiver must be enabled in the configuration.
*
* \param[in] module Pointer to the software instance struct
* \param[out] rx_data Pointer to store the received data
*
* \returns Status of the read operation.
* \retval STATUS_OK If data was read
* \retval STATUS_ERR_IO If no data is available
* \retval STATUS_ERR_OVERFLOW If the data is overflown
*/
static inline enum status_code spi_read(
struct spi_module *const module,
uint16_t *rx_data)
{
/* Sanity check arguments */
Assert(module);
Assert(module->hw);
SercomSpi *const spi_module = &(module->hw->SPI);
/* Check if data is ready to be read */
if (!spi_is_ready_to_read(module)) {
/* No data has been received, return */
return STATUS_ERR_IO;
}
/* Return value */
enum status_code retval = STATUS_OK;
/* Check if data is overflown */
if (spi_module->STATUS.reg & SERCOM_SPI_STATUS_BUFOVF) {
retval = STATUS_ERR_OVERFLOW;
/* Clear overflow flag */
spi_module->STATUS.reg = SERCOM_SPI_STATUS_BUFOVF;
}
/* Read the character from the DATA register */
if (module->character_size == SPI_CHARACTER_SIZE_9BIT) {
*rx_data = (spi_module->DATA.reg & SERCOM_SPI_DATA_MASK);
} else {
*rx_data = (uint8_t)spi_module->DATA.reg;
}
return retval;
}
enum status_code spi_read_buffer_wait(
struct spi_module *const module,
uint8_t *rx_data,
uint16_t length,
uint16_t dummy);
enum status_code spi_transceive_wait(
struct spi_module *const module,
uint16_t tx_data,
uint16_t *rx_data);
enum status_code spi_transceive_buffer_wait(
struct spi_module *const module,
uint8_t *tx_data,
uint8_t *rx_data,
uint16_t length);
enum status_code spi_select_slave(
struct spi_module *const module,
struct spi_slave_inst *const slave,
bool select);
/** @} */
#ifdef __cplusplus
}
#endif
/** @} */
/**
* \page asfdoc_sam0_sercom_spi_extra Extra Information for SERCOM SPI Driver
*
* \section asfdoc_sam0_sercom_spi_extra_acronyms Acronyms
* Below is a table listing the acronyms used in this module, along with their
* intended meanings.
*
* <table>
* <tr>
* <th>Acronym</th>
* <th>Description</th>
* </tr>
* <tr>
* <td>SERCOM</td>
* <td>Serial Communication Interface</td>
* </tr>
* <tr>
* <td>SPI</td>
* <td>Serial Peripheral Interface</td>
* </tr>
* <tr>
* <td>SCK</td>
* <td>Serial Clock</td>
* </tr>
* <tr>
* <td>MOSI</td>
* <td>Master Output Slave Input</td>
* </tr>
* <tr>
* <td>MISO</td>
* <td>Master Input Slave Output</td>
* </tr>
* <tr>
* <td>SS</td>
* <td>Slave Select</td>
* </tr>
* <tr>
* <td>DIO</td>
* <td>Data Input Output</td>
* </tr>
* <tr>
* <td>DO</td>
* <td>Data Output</td>
* </tr>
* <tr>
* <td>DI</td>
* <td>Data Input</td>
* </tr>
* <tr>
* <td>DMA</td>
* <td>Direct Memory Access</td>
* </tr>
* </table>
*
* \section asfdoc_sam0_sercom_spi_extra_dependencies Dependencies
* The SPI driver has the following dependencies:
* \li \ref asfdoc_sam0_system_pinmux_group "System Pin Multiplexer Driver"
*
*
* \section asfdoc_sam0_sercom_spi_extra_workarounds Workarounds Implemented by Driver
* No workarounds in driver.
*
* \section asfdoc_sam0_sercom_spi_extra_history Module History
* An overview of the module history is presented in the table below, with
* details on the enhancements and fixes made to the module since its first
* release. The current version of this corresponds to the newest version in the table.
*
* <table>
* <tr>
* <th>Changelog</th>
* </tr>
* <tr>
* <td>Added new features as below:
* \li Slave select low detect
* \li Hardware slave select
* \li DMA support </td>
* </tr>
* <tr>
* <td>Edited slave part of write and transceive buffer functions to ensure
* that second character is sent at the right time</td>
* </tr>
* <tr>
* <td>Renamed the anonymous union in \c struct spi_config to
* \c mode_specific</td>
* </tr>
* <tr>
* <td>Initial Release</td>
* </tr>
* </table>
*/
/**
* \page asfdoc_sam0_sercom_spi_exqsg Examples for SERCOM SPI Driver
*
* This is a list of the available Quick Start guides (QSGs) and example
* applications for \ref asfdoc_sam0_sercom_spi_group. QSGs are simple examples with
* step-by-step instructions to configure and use this driver in a selection of
* use cases. Note that a QSG can be compiled as a standalone application or be
* added to the user application.
*
* - \subpage asfdoc_sam0_sercom_spi_master_basic_use
* - \subpage asfdoc_sam0_sercom_spi_slave_basic_use
* \if SPI_CALLBACK_MODE
* - \subpage asfdoc_sam0_sercom_spi_master_callback_use
* - \subpage asfdoc_sam0_sercom_spi_slave_callback_use
* \endif
* - \subpage asfdoc_sam0_sercom_spi_dma_use_case
*/
/**
* \page asfdoc_sam0_sercom_spi_mux_settings MUX Settings
*
* The following lists the possible internal SERCOM module pad function
* assignments for the four SERCOM pads in both SPI Master and SPI Slave
* modes. They are combinations of DOPO and DIPO in CTRLA.
* Note that this is in addition to the physical GPIO pin MUX of the device,
* and can be used in conjunction to optimize the serial data pin-out.
*
* \section asfdoc_sam0_sercom_spi_mux_settings_master Master Mode Settings
* The following table describes the SERCOM pin functionalities for the various
* MUX settings, whilst in SPI Master mode.
*
* \note If MISO is unlisted, the SPI receiver must not be enabled for the
* given MUX setting.
*
* <table>
* <tr>
* <th>Combination</th>
* <th>DOPO / DIPO</th>
* <th>SERCOM PAD[0]</th>
* <th>SERCOM PAD[1]</th>
* <th>SERCOM PAD[2]</th>
* <th>SERCOM PAD[3]</th>
* </tr>
* <tr>
* <td>A</td>
* <td>0x0 / 0x0</td>
* <td>MOSI</td>
* <td>SCK</td>
* <td>-</td>
* <td>-</td>
* </tr>
* <tr>
* <td>B</td>
* <td>0x0 / 0x1</td>
* <td>MOSI</td>
* <td>SCK</td>
* <td>-</td>
* <td>-</td>
* </tr>
* <tr>
* <td>C</td>
* <td>0x0 / 0x2</td>
* <td>MOSI</td>
* <td>SCK</td>
* <td>MISO</td>
* <td>-</td>
* </tr>
* <tr>
* <td>D</td>
* <td>0x0 / 0x3</td>
* <td>MOSI</td>
* <td>SCK</td>
* <td>-</td>
* <td>MISO</td>
* </tr>
* <tr>
* <td>E</td>
* <td>0x1 / 0x0</td>
* <td>MISO</td>
* <td>-</td>
* <td>MOSI</td>
* <td>SCK</td>
* </tr>
* <tr>
* <td>F</td>
* <td>0x1 / 0x1</td>
* <td>-</td>
* <td>MISO</td>
* <td>MOSI</td>
* <td>SCK</td>
* </tr>
* <tr>
* <td>G</td>
* <td>0x1 / 0x2</td>
* <td>-</td>
* <td>-</td>
* <td>MOSI</td>
* <td>SCK</td>
* </tr>
* <tr>
* <td>H</td>
* <td>0x1 / 0x3</td>
* <td>-</td>
* <td>-</td>
* <td>MOSI</td>
* <td>SCK</td>
* </tr>
* <tr>
* <td>I</td>
* <td>0x2 / 0x0</td>
* <td>MISO</td>
* <td>SCK</td>
* <td>-</td>
* <td>MOSI</td>
* </tr>
* <tr>
* <td>J</td>
* <td>0x2 / 0x1</td>
* <td>-</td>
* <td>SCK</td>
* <td>-</td>
* <td>MOSI</td>
* </tr>
* <tr>
* <td>K</td>
* <td>0x2 / 0x2</td>
* <td>-</td>
* <td>SCK</td>
* <td>MISO</td>
* <td>MOSI</td>
* </tr>
* <tr>
* <td>L</td>
* <td>0x2 / 0x3</td>
* <td>-</td>
* <td>SCK</td>
* <td>-</td>
* <td>MOSI</td>
* </tr>
* <tr>
* <td>M</td>
* <td>0x3 / 0x0</td>
* <td>MOSI</td>
* <td>-</td>
* <td>-</td>
* <td>SCK</td>
* </tr>
* <tr>
* <td>N</td>
* <td>0x3 / 0x1</td>
* <td>MOSI</td>
* <td>MISO</td>
* <td>-</td>
* <td>SCK</td>
* </tr>
* <tr>
* <td>O</td>
* <td>0x3 / 0x2</td>
* <td>MOSI</td>
* <td>-</td>
* <td>MISO</td>
* <td>SCK</td>
* </tr>
* <tr>
* <td>P</td>
* <td>0x3 / 0x3</td>
* <td>MOSI</td>
* <td>-</td>
* <td>-</td>
* <td>SCK</td>
* </tr>
* </table>
*
*
* \section asfdoc_sam0_sercom_spi_mux_settings_slave Slave Mode Settings
* The following table describes the SERCOM pin functionalities for the various
* MUX settings, whilst in SPI Slave mode.
*
* \note If MISO is unlisted, the SPI receiver must not be enabled for the
* given MUX setting.
*
* <table>
* <tr>
* <th>Combination</th>
* <th>DOPO / DIPO</th>
* <th>SERCOM PAD[0]</th>
* <th>SERCOM PAD[1]</th>
* <th>SERCOM PAD[2]</th>
* <th>SERCOM PAD[3]</th>
* </tr>
* <tr>
* <td>A</td>
* <td>0x0 / 0x0</td>
* <td>MISO</td>
* <td>SCK</td>
* <td>/SS</td>
* <td>-</td>
* </tr>
* <tr>
* <td>B</td>
* <td>0x0 / 0x1</td>
* <td>MISO</td>
* <td>SCK</td>
* <td>/SS</td>
* <td>-</td>
* </tr>
* <tr>
* <td>C</td>
* <td>0x0 / 0x2</td>
* <td>MISO</td>
* <td>SCK</td>
* <td>/SS</td>
* <td>-</td>
* </tr>
* <tr>
* <td>D</td>
* <td>0x0 / 0x3</td>
* <td>MISO</td>
* <td>SCK</td>
* <td>/SS</td>
* <td>MOSI</td>
* </tr>
* <tr>
* <td>E</td>
* <td>0x1 / 0x0</td>
* <td>MOSI</td>
* <td>/SS</td>
* <td>MISO</td>
* <td>SCK</td>
* </tr>
* <tr>
* <td>F</td>
* <td>0x1 / 0x1</td>
* <td>-</td>
* <td>/SS</td>
* <td>MISO</td>
* <td>SCK</td>
* </tr>
* <tr>
* <td>G</td>
* <td>0x1 / 0x2</td>
* <td>-</td>
* <td>/SS</td>
* <td>MISO</td>
* <td>SCK</td>
* </tr>
* <tr>
* <td>H</td>
* <td>0x1 / 0x3</td>
* <td>-</td>
* <td>/SS</td>
* <td>MISO</td>
* <td>SCK</td>
* </tr>
* <tr>
* <td>I</td>
* <td>0x2 / 0x0</td>
* <td>MOSI</td>
* <td>SCK</td>
* <td>/SS</td>
* <td>MISO</td>
* </tr>
* <tr>
* <td>J</td>
* <td>0x2 / 0x1</td>
* <td>-</td>
* <td>SCK</td>
* <td>/SS</td>
* <td>MISO</td>
* </tr>
* <tr>
* <td>K</td>
* <td>0x2 / 0x2</td>
* <td>-</td>
* <td>SCK</td>
* <td>/SS</td>
* <td>MISO</td>
* </tr>
* <tr>
* <td>L</td>
* <td>0x2 / 0x3</td>
* <td>-</td>
* <td>SCK</td>
* <td>/SS</td>
* <td>MISO</td>
* </tr>
* <tr>
* <td>M</td>
* <td>0x3 / 0x0</td>
* <td>MISO</td>
* <td>/SS</td>
* <td>-</td>
* <td>SCK</td>
* </tr>
* <tr>
* <td>N</td>
* <td>0x3 / 0x1</td>
* <td>MISO</td>
* <td>/SS</td>
* <td>-</td>
* <td>SCK</td>
* </tr>
* <tr>
* <td>O</td>
* <td>0x3 / 0x2</td>
* <td>MISO</td>
* <td>/SS</td>
* <td>MOSI</td>
* <td>SCK</td>
* </tr>
* <tr>
* <td>P</td>
* <td>0x3 / 0x3</td>
* <td>MISO</td>
* <td>/SS</td>
* <td>-</td>
* <td>SCK</td>
* </tr>
* </table>
*
*
*
* \page asfdoc_sam0_sercom_spi_document_revision_history Document Revision History
*
* <table>
* <tr>
* <th>Doc. Rev.</th>
* <th>Date</th>
* <th>Comments</th>
* </tr>
* <tr>
* <td>42115E</td>
* <td>12/2015</td>
* <td>Add SAM L21/L22, SAM DA1, SAM D09, SAMR30 and SAM C21 support</td>
* </tr>
* <tr>
* <td>42115D</td>
* <td>12/2014</td>
* <td>Add SAM R21/D10/D11 support</td>
* </tr>
* <tr>
* <td>42115C</td>
* <td>01/2014</td>
* <td>Add SAM D21 support</td>
* </tr>
* <tr>
* <td>42115B</td>
* <td>11/2013</td>
* <td>Replaced the pad multiplexing documentation with a condensed table</td>
* </tr>
* <tr>
* <td>42115A</td>
* <td>06/2013</td>
* <td>Initial release</td>
* </tr>
* </table>
*/
#endif /* SPI_H_INCLUDED */