circuitpython/ports/silabs/common-hal/busio/SPI.c

252 lines
7.9 KiB
C

/*
* This file is part of Adafruit for EFR32 project
*
* The MIT License (MIT)
*
* Copyright 2023 Silicon Laboratories Inc. www.silabs.com
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/busio/SPI.h"
#include "py/mperrno.h"
#include "py/runtime.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "supervisor/board.h"
#include "shared-bindings/microcontroller/Pin.h"
// Note that any bugs introduced in this file can cause crashes
// at startupfor chips using external SPI flash.
STATIC SPIDRV_HandleData_t spidrv_eusart_handle;
STATIC SPIDRV_Init_t spidrv_eusart_init = SPIDRV_MASTER_EUSART1;
STATIC bool in_used = false;
STATIC bool never_reset = false;
// Reset SPI when reload
void spi_reset(void) {
if (!never_reset && in_used) {
SPIDRV_DeInit(&spidrv_eusart_handle);
in_used = false;
}
return;
}
// Construct SPI protocol, this function init SPI peripheral
void common_hal_busio_spi_construct(busio_spi_obj_t *self,
const mcu_pin_obj_t *sck,
const mcu_pin_obj_t *mosi,
const mcu_pin_obj_t *miso,
bool half_duplex) {
Ecode_t sc = ECODE_OK;
if (half_duplex) {
mp_raise_NotImplementedError(
MP_ERROR_TEXT("Half duplex SPI is not implemented"));
}
if ((sck != NULL) && (mosi != NULL) && (miso != NULL)) {
if (sck->function_list[FN_EUSART1_SCLK] == 1
&& miso->function_list[FN_EUSART1_RX] == 1
&& mosi->function_list[FN_EUSART1_TX] == 1) {
self->sck = sck;
self->mosi = mosi;
self->miso = miso;
self->handle = &spidrv_eusart_handle;
self->polarity = 0;
self->phase = 0;
self->bits = 8;
spidrv_eusart_init.portTx = mosi->port;
spidrv_eusart_init.portRx = miso->port;
spidrv_eusart_init.portClk = sck->port;
spidrv_eusart_init.pinTx = mosi->number;
spidrv_eusart_init.pinRx = miso->number;
spidrv_eusart_init.pinClk = sck->number;
spidrv_eusart_init.bitRate = 1000000;
spidrv_eusart_init.frameLength = 8;
spidrv_eusart_init.dummyTxValue = 0;
spidrv_eusart_init.type = spidrvMaster;
spidrv_eusart_init.bitOrder = spidrvBitOrderMsbFirst;
spidrv_eusart_init.clockMode = spidrvClockMode0;
spidrv_eusart_init.csControl = spidrvCsControlApplication;
spidrv_eusart_init.slaveStartMode = spidrvSlaveStartImmediate;
sc = SPIDRV_Init(self->handle, &spidrv_eusart_init);
if (sc != ECODE_EMDRV_SPIDRV_OK) {
mp_raise_ValueError(MP_ERROR_TEXT("SPI init error"));
}
} else {
mp_raise_ValueError(MP_ERROR_TEXT("Hardware in use, try alternative pins"));
}
} else {
raise_ValueError_invalid_pins();
}
in_used = true;
common_hal_mcu_pin_claim(sck);
common_hal_mcu_pin_claim(mosi);
common_hal_mcu_pin_claim(miso);
}
// Never reset SPI when reload
void common_hal_busio_spi_never_reset(busio_spi_obj_t *self) {
never_reset = true;
common_hal_never_reset_pin(self->mosi);
common_hal_never_reset_pin(self->miso);
common_hal_never_reset_pin(self->sck);
}
// Check SPI status, deinited or not
bool common_hal_busio_spi_deinited(busio_spi_obj_t *self) {
return self->sck == NULL;
}
// Deinit SPI obj
void common_hal_busio_spi_deinit(busio_spi_obj_t *self) {
if (common_hal_busio_spi_deinited(self)) {
return;
}
Ecode_t sc = SPIDRV_DeInit(self->handle);
if (sc != ECODE_EMDRV_SPIDRV_OK) {
mp_raise_RuntimeError(MP_ERROR_TEXT("SPI re-init"));
}
in_used = false;
self->sck = NULL;
self->mosi = NULL;
self->miso = NULL;
self->handle = NULL;
common_hal_reset_pin(self->mosi);
common_hal_reset_pin(self->miso);
common_hal_reset_pin(self->sck);
}
// Configures the SPI bus. The SPI object must be locked.
bool common_hal_busio_spi_configure(busio_spi_obj_t *self,
uint32_t baudrate,
uint8_t polarity,
uint8_t phase,
uint8_t bits) {
Ecode_t sc;
// This resets the SPI, so check before updating it redundantly
if (baudrate == self->baudrate && polarity == self->polarity
&& phase == self->phase && bits == self->bits) {
return true;
}
sc = SPIDRV_DeInit(self->handle);
if (sc != ECODE_EMDRV_SPIDRV_OK) {
mp_raise_RuntimeError(MP_ERROR_TEXT("SPI re-init"));
}
in_used = false;
self->baudrate = baudrate;
self->phase = phase;
self->bits = bits;
self->polarity = polarity;
spidrv_eusart_init.bitRate = baudrate;
spidrv_eusart_init.frameLength = 8;
if (polarity == 0 && phase == 0) {
spidrv_eusart_init.clockMode = spidrvClockMode0;
} else if (polarity == 0 && phase == 1) {
spidrv_eusart_init.clockMode = spidrvClockMode1;
} else if (polarity == 1 && phase == 0) {
spidrv_eusart_init.clockMode = spidrvClockMode2;
} else if (polarity == 1 && phase == 1) {
spidrv_eusart_init.clockMode = spidrvClockMode3;
}
sc = SPIDRV_Init(self->handle, &spidrv_eusart_init);
if (sc != ECODE_EMDRV_SPIDRV_OK) {
mp_raise_RuntimeError(MP_ERROR_TEXT("SPI re-init"));
}
in_used = true;
return true;
}
// Lock SPI bus
bool common_hal_busio_spi_try_lock(busio_spi_obj_t *self) {
bool grabbed_lock = false;
if (!self->has_lock) {
grabbed_lock = true;
self->has_lock = true;
}
return grabbed_lock;
}
// Check SPI lock status
bool common_hal_busio_spi_has_lock(busio_spi_obj_t *self) {
return self->has_lock;
}
// Unlock SPI bus
void common_hal_busio_spi_unlock(busio_spi_obj_t *self) {
self->has_lock = false;
}
// Write the data contained in buffer
bool common_hal_busio_spi_write(busio_spi_obj_t *self,
const uint8_t *data,
size_t len) {
Ecode_t result = SPIDRV_MTransmitB(self->handle, data, len);
return result == ECODE_EMDRV_SPIDRV_OK;
}
// Read data into buffer
bool common_hal_busio_spi_read(busio_spi_obj_t *self,
uint8_t *data, size_t len,
uint8_t write_value) {
self->handle->initData.dummyTxValue = write_value;
Ecode_t result = SPIDRV_MReceiveB(self->handle, data, len);
return result == ECODE_EMDRV_SPIDRV_OK;
}
// Write out the data in data_out
// while simultaneously reading data into data_in
bool common_hal_busio_spi_transfer(busio_spi_obj_t *self,
const uint8_t *data_out,
uint8_t *data_in,
size_t len) {
Ecode_t result = SPIDRV_MTransferB(self->handle, data_out, data_in, len);
return result == ECODE_EMDRV_SPIDRV_OK;
}
// Get SPI baudrate
uint32_t common_hal_busio_spi_get_frequency(busio_spi_obj_t *self) {
return self->baudrate;
}
// Get SPI phase
uint8_t common_hal_busio_spi_get_phase(busio_spi_obj_t *self) {
return self->phase;
}
// Get SPI polarity
uint8_t common_hal_busio_spi_get_polarity(busio_spi_obj_t *self) {
return self->polarity;
}