circuitpython/shared-module/vectorio/VectorShape.c
Scott Shawcroft 931c7c1c51
Add Bangle.js 2, JDI memory displays and ACeP epd
This 2-in-1 PR started with the goal of support the Bangle.js 2
smartwatch with *no USB*.
* Adds "secure" DFU build support with a committed private key.
* Adds 3-bit color support with one dummy bit for the JDI memory display
* Allows nrf boards to have a board_background_task() run in RUN_BACKGROUND_TASK.
  This is needed because the Bangle.js 2 uses the watchdog to reset.
* Renamed port_background_task() to port_background_tick() to indicate it
  runs on tick, not RUN_BACKGROUND_TASK.
* Marks serial connected when the display terminal is inited. This means
  that safe mode messages show up on the display.

ACep, 7-color epaper displays also pack 3 bits in 4. So, I added that
support as well.
* Adds 3-bit ACeP color support for 7-color e-paper displays. (Not
  watch related but similar due to color depth.)
* Allows a refresh sequence instead of a single int command. The 7" ACeP
  display requires a data byte for refresh.
* Adds optional delay after resetting the display. The ACeP displays
  need this. (Probably to load LUTs from flash.)
* Adds a cleaning phase for ACeP displays before the real refresh.

For both:
* Add dither support to Palette.
* Palette no longer converts colors when set. Instead, it caches
  converted colors at each index.
* ColorConverter now caches the last converted color. It should make
  conversions faster for repeated colors (not dithering.)
2023-02-15 15:03:40 -08:00

547 lines
26 KiB
C

#include "stdlib.h"
#include "shared-module/vectorio/__init__.h"
#include "shared-bindings/vectorio/VectorShape.h"
#include "py/misc.h"
#include "py/runtime.h"
#include "shared-bindings/time/__init__.h"
#include "shared-bindings/displayio/ColorConverter.h"
#include "shared-bindings/displayio/Palette.h"
#include "shared-bindings/vectorio/Circle.h"
#include "shared-bindings/vectorio/Polygon.h"
#include "shared-bindings/vectorio/Rectangle.h"
// Lifecycle actions.
#define VECTORIO_SHAPE_DEBUG(...) (void)0
// #define VECTORIO_SHAPE_DEBUG(...) mp_printf(&mp_plat_print, __VA_ARGS__)
// Used in both logging and ifdefs, for extra variables
// #define VECTORIO_PERF(...) mp_printf(&mp_plat_print, __VA_ARGS__)
// Really verbose.
#define VECTORIO_SHAPE_PIXEL_DEBUG(...) (void)0
// #define VECTORIO_SHAPE_PIXEL_DEBUG(...) mp_printf(&mp_plat_print, __VA_ARGS__)
#define U32_TO_BINARY_FMT "%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c"
#define U32_TO_BINARY(u32) \
(u32 & 0x80000000 ? '1' : '0'), \
(u32 & 0x40000000 ? '1' : '0'), \
(u32 & 0x20000000 ? '1' : '0'), \
(u32 & 0x10000000 ? '1' : '0'), \
(u32 & 0x8000000 ? '1' : '0'), \
(u32 & 0x4000000 ? '1' : '0'), \
(u32 & 0x2000000 ? '1' : '0'), \
(u32 & 0x1000000 ? '1' : '0'), \
(u32 & 0x800000 ? '1' : '0'), \
(u32 & 0x400000 ? '1' : '0'), \
(u32 & 0x200000 ? '1' : '0'), \
(u32 & 0x100000 ? '1' : '0'), \
(u32 & 0x80000 ? '1' : '0'), \
(u32 & 0x40000 ? '1' : '0'), \
(u32 & 0x20000 ? '1' : '0'), \
(u32 & 0x10000 ? '1' : '0'), \
(u32 & 0x8000 ? '1' : '0'), \
(u32 & 0x4000 ? '1' : '0'), \
(u32 & 0x2000 ? '1' : '0'), \
(u32 & 0x1000 ? '1' : '0'), \
(u32 & 0x800 ? '1' : '0'), \
(u32 & 0x400 ? '1' : '0'), \
(u32 & 0x200 ? '1' : '0'), \
(u32 & 0x100 ? '1' : '0'), \
(u32 & 0x80 ? '1' : '0'), \
(u32 & 0x40 ? '1' : '0'), \
(u32 & 0x20 ? '1' : '0'), \
(u32 & 0x10 ? '1' : '0'), \
(u32 & 0x8 ? '1' : '0'), \
(u32 & 0x4 ? '1' : '0'), \
(u32 & 0x2 ? '1' : '0'), \
(u32 & 0x1 ? '1' : '0')
static void short_bound_check(mp_int_t i, qstr name) {
mp_arg_validate_int_range(i, SHRT_MIN, SHRT_MAX, name);
}
inline __attribute__((always_inline))
static void area_transpose(displayio_area_t *to_transpose) {
int16_t swap = to_transpose->y1;
to_transpose->y1 = to_transpose->x1;
to_transpose->x1 = swap;
swap = to_transpose->y2;
to_transpose->y2 = to_transpose->x2;
to_transpose->x2 = swap;
}
inline __attribute__((always_inline))
static void _get_screen_area(vectorio_vector_shape_t *self, displayio_area_t *out_area) {
VECTORIO_SHAPE_DEBUG("%p get_screen_area (%3d,%3d) tform:{x:%d y:%d dx:%d dy:%d scl:%d w:%d h:%d mx:%d my:%d tr:%d}", self, self->x, self->y,
self->absolute_transform->x, self->absolute_transform->y, self->absolute_transform->dx, self->absolute_transform->dy, self->absolute_transform->scale,
self->absolute_transform->width, self->absolute_transform->height, self->absolute_transform->mirror_x, self->absolute_transform->mirror_y, self->absolute_transform->transpose_xy
);
self->ishape.get_area(self->ishape.shape, out_area);
VECTORIO_SHAPE_DEBUG(" in:{(%5d,%5d), (%5d,%5d)}", out_area->x1, out_area->y1, out_area->x2, out_area->y2);
int16_t x;
int16_t y;
if (self->absolute_transform->transpose_xy) {
x = self->absolute_transform->x + self->absolute_transform->dx * self->y;
y = self->absolute_transform->y + self->absolute_transform->dy * self->x;
if (self->absolute_transform->dx < 1) {
out_area->y1 = out_area->y1 * -1 + 1;
out_area->y2 = out_area->y2 * -1 + 1;
}
if (self->absolute_transform->dy < 1) {
out_area->x1 = out_area->x1 * -1 + 1;
out_area->x2 = out_area->x2 * -1 + 1;
}
area_transpose(out_area);
} else {
x = self->absolute_transform->x + self->absolute_transform->dx * self->x;
y = self->absolute_transform->y + self->absolute_transform->dy * self->y;
if (self->absolute_transform->dx < 1) {
out_area->x1 = out_area->x1 * -1 + 1;
out_area->x2 = out_area->x2 * -1 + 1;
}
if (self->absolute_transform->dy < 1) {
out_area->y1 = out_area->y1 * -1 + 1;
out_area->y2 = out_area->y2 * -1 + 1;
}
}
displayio_area_canon(out_area);
displayio_area_shift(out_area, x, y);
VECTORIO_SHAPE_DEBUG(" out:{(%5d,%5d), (%5d,%5d)}\n", out_area->x1, out_area->y1, out_area->x2, out_area->y2);
}
// Get the target pixel based on the shape's coordinate space
static void screen_to_shape_coordinates(vectorio_vector_shape_t *self, uint16_t x, uint16_t y, int16_t *out_shape_x, int16_t *out_shape_y) {
if (self->absolute_transform->transpose_xy) {
*out_shape_x = y - self->absolute_transform->y - self->absolute_transform->dy * self->x;
*out_shape_y = x - self->absolute_transform->x - self->absolute_transform->dx * self->y;
VECTORIO_SHAPE_PIXEL_DEBUG(" a(%3d, %3d)", *out_shape_x, *out_shape_y);
if (self->absolute_transform->dx < 1) {
*out_shape_y *= -1;
}
if (self->absolute_transform->dy < 1) {
*out_shape_x *= -1;
}
VECTORIO_SHAPE_PIXEL_DEBUG(" b(%3d, %3d)", *out_shape_x, *out_shape_y);
} else {
*out_shape_x = x - self->absolute_transform->x - self->absolute_transform->dx * self->x;
*out_shape_y = y - self->absolute_transform->y - self->absolute_transform->dy * self->y;
VECTORIO_SHAPE_PIXEL_DEBUG(" a(%3d, %3d)", *out_shape_x, *out_shape_y);
if (self->absolute_transform->dx < 1) {
*out_shape_x *= -1;
}
if (self->absolute_transform->dy < 1) {
*out_shape_y *= -1;
}
VECTORIO_SHAPE_PIXEL_DEBUG(" b(%3d, %3d)", *out_shape_x, *out_shape_y);
// It's mirrored via dx. Maybe we need to add support for also separately mirroring?
// if (self->absolute_transform->mirror_x) {
// pixel_to_get_x = (shape_area.x2 - shape_area.x1) - (pixel_to_get_x - shape_area.x1) + shape_area.x1 - 1;
// }
// if (self->absolute_transform->mirror_y) {
// pixel_to_get_y = (shape_area.y2 - shape_area.y1) - (pixel_to_get_y - shape_area.y1) + +shape_area.y1 - 1;
// }
}
}
static void check_bounds_and_set_x(vectorio_vector_shape_t *self, mp_int_t x) {
short_bound_check(x, MP_QSTR_x);
self->x = x;
}
static void check_bounds_and_set_y(vectorio_vector_shape_t *self, mp_int_t y) {
short_bound_check(y, MP_QSTR_y);
self->y = y;
}
// For use by Group to know where it needs to redraw on layer removal.
bool vectorio_vector_shape_get_dirty_area(vectorio_vector_shape_t *self, displayio_area_t *out_area) {
out_area->x1 = out_area->x2;
displayio_area_union(
&self->ephemeral_dirty_area,
&self->current_area,
out_area
);
return true; // For now just always redraw.
}
// This must be invoked after each time a shape changes its position, shape or appearance in any way.
void common_hal_vectorio_vector_shape_set_dirty(void *vector_shape) {
vectorio_vector_shape_t *self = vector_shape;
// In screen space. Need to offset the shape space.
displayio_area_t current_area;
_get_screen_area(self, &current_area);
VECTORIO_SHAPE_DEBUG("%p shape_dirty new:{(%3d,%3d), (%3d,%3d)} dirty:{(%3d,%3d), (%3d,%3d)}",
self,
current_area.x1, current_area.y1, current_area.x2, current_area.y2,
self->ephemeral_dirty_area.x1, self->ephemeral_dirty_area.y1, self->ephemeral_dirty_area.x2, self->ephemeral_dirty_area.y2);
bool moved = !displayio_area_equal(&current_area, &self->current_area);
if (moved) {
displayio_area_union(&self->current_area, &self->ephemeral_dirty_area, &self->ephemeral_dirty_area);
VECTORIO_SHAPE_DEBUG(" stale:{(%3d,%3d), (%3d,%3d)} -> expanded:{(%3d,%3d), (%3d,%3d)}\n",
self->current_area.x1, self->current_area.y1, self->current_area.x2, self->current_area.y2,
self->ephemeral_dirty_area.x1, self->ephemeral_dirty_area.y1, self->ephemeral_dirty_area.x2, self->ephemeral_dirty_area.y2);
// Dirty area tracks the shape's footprint between draws. It's reset on refresh finish.
displayio_area_copy(&current_area, &self->current_area);
}
self->current_area_dirty = true;
}
void common_hal_vectorio_vector_shape_construct(vectorio_vector_shape_t *self,
vectorio_ishape_t ishape,
mp_obj_t pixel_shader, int32_t x, int32_t y) {
VECTORIO_SHAPE_DEBUG("%p vector_shape_construct x:%3d, y:%3d\n", self, x, y);
check_bounds_and_set_x(self, x);
check_bounds_and_set_y(self, y);
self->pixel_shader = pixel_shader;
self->ishape = ishape;
self->absolute_transform = &null_transform; // Critical to have a valid transform before getting screen area.
self->ephemeral_dirty_area.x1 = self->ephemeral_dirty_area.x2; // Cheat to set area to 0
self->ephemeral_dirty_area.next = NULL;
self->current_area_dirty = true;
_get_screen_area(self, &self->current_area);
}
bool common_hal_vectorio_vector_shape_contains(vectorio_vector_shape_t *self, mp_int_t x, mp_int_t y) {
VECTORIO_SHAPE_DEBUG("%p contains(%d, %d)", self);
short_bound_check(x, MP_QSTR_x);
short_bound_check(y, MP_QSTR_y);
int16_t shape_x;
int16_t shape_y;
screen_to_shape_coordinates(self, x, y, &shape_x, &shape_y);
bool shape_contains_coordinates = 0 != self->ishape.get_pixel(self->ishape.shape, shape_x, shape_y);
return shape_contains_coordinates;
}
mp_int_t common_hal_vectorio_vector_shape_get_x(vectorio_vector_shape_t *self) {
VECTORIO_SHAPE_DEBUG("%p get_x\n", self);
return self->x;
}
void common_hal_vectorio_vector_shape_set_x(vectorio_vector_shape_t *self, mp_int_t x) {
VECTORIO_SHAPE_DEBUG("%p set_x %d\n", self, x);
if (self->x == x) {
return;
}
check_bounds_and_set_x(self, x);
common_hal_vectorio_vector_shape_set_dirty(self);
}
mp_int_t common_hal_vectorio_vector_shape_get_y(vectorio_vector_shape_t *self) {
VECTORIO_SHAPE_DEBUG("%p get_y\n", self);
return self->y;
}
void common_hal_vectorio_vector_shape_set_y(vectorio_vector_shape_t *self, mp_int_t y) {
VECTORIO_SHAPE_DEBUG("%p set_y %d\n", self, y);
if (self->y == y) {
return;
}
check_bounds_and_set_y(self, y);
common_hal_vectorio_vector_shape_set_dirty(self);
}
mp_obj_tuple_t *common_hal_vectorio_vector_shape_get_location(vectorio_vector_shape_t *self) {
VECTORIO_SHAPE_DEBUG("%p get_location\n", self);
mp_obj_tuple_t *pair = MP_OBJ_TO_PTR(mp_obj_new_tuple(2, NULL));
pair->items[0] = mp_obj_new_int((mp_int_t)self->x);
pair->items[1] = mp_obj_new_int((mp_int_t)self->y);
return pair;
}
void common_hal_vectorio_vector_shape_set_location(vectorio_vector_shape_t *self, mp_obj_t xy) {
VECTORIO_SHAPE_DEBUG("%p set_location\n", self);
size_t tuple_len = 0;
mp_obj_t *tuple_items;
mp_obj_tuple_get(xy, &tuple_len, &tuple_items);
mp_arg_validate_length(tuple_len, 2, MP_QSTR_location);
mp_int_t x = mp_arg_validate_type_int(tuple_items[0], MP_QSTR_x);
mp_int_t y = mp_arg_validate_type_int(tuple_items[0], MP_QSTR_y);
bool dirty = false;
if (self->x != x) {
check_bounds_and_set_x(self, x);
dirty = true;
}
if (self->y != y) {
check_bounds_and_set_y(self, y);
dirty = true;
}
if (dirty) {
common_hal_vectorio_vector_shape_set_dirty(self);
}
}
mp_int_t common_hal_vectorio_vector_shape_get_hidden(vectorio_vector_shape_t *self) {
VECTORIO_SHAPE_DEBUG("%p get_hidden\n", self);
return self->hidden;
}
void common_hal_vectorio_vector_shape_set_hidden(vectorio_vector_shape_t *self, bool hidden) {
VECTORIO_SHAPE_DEBUG("%p set_hidden %d\n", self, x);
self->hidden = hidden;
common_hal_vectorio_vector_shape_set_dirty(self);
}
mp_obj_t common_hal_vectorio_vector_shape_get_pixel_shader(vectorio_vector_shape_t *self) {
VECTORIO_SHAPE_DEBUG("%p get_pixel_shader\n", self);
return self->pixel_shader;
}
void common_hal_vectorio_vector_shape_set_pixel_shader(vectorio_vector_shape_t *self, mp_obj_t pixel_shader) {
VECTORIO_SHAPE_DEBUG("%p set_pixel_shader\n", self);
self->pixel_shader = pixel_shader;
common_hal_vectorio_vector_shape_set_dirty(self);
}
bool vectorio_vector_shape_fill_area(vectorio_vector_shape_t *self, const _displayio_colorspace_t *colorspace, const displayio_area_t *area, uint32_t *mask, uint32_t *buffer) {
// Shape areas are relative to 0,0. This will allow rotation about a known axis.
// The consequence is that the area reported by the shape itself is _relative_ to 0,0.
// To make it relative to the VectorShape position, we must shift it.
// Pixels are drawn on the screen_area (shifted) coordinate space, while pixels are _determined_ from
// the shape_area (unshifted) space.
#ifdef VECTORIO_PERF
uint64_t start = common_hal_time_monotonic_ns();
uint64_t pixel_time = 0;
#endif
if (self->hidden) {
return false;
}
VECTORIO_SHAPE_DEBUG("%p fill_area: fill: {(%5d,%5d), (%5d,%5d)}",
self,
area->x1, area->y1, area->x2, area->y2
);
displayio_area_t overlap;
if (!displayio_area_compute_overlap(area, &self->current_area, &overlap)) {
VECTORIO_SHAPE_DEBUG(" no overlap\n");
return false;
}
VECTORIO_SHAPE_DEBUG(", overlap: {(%3d,%3d), (%3d,%3d)}", overlap.x1, overlap.y1, overlap.x2, overlap.y2);
bool full_coverage = displayio_area_equal(area, &overlap);
uint8_t pixels_per_byte = 8 / colorspace->depth;
VECTORIO_SHAPE_DEBUG(" xy:(%3d %3d) tform:{x:%d y:%d dx:%d dy:%d scl:%d w:%d h:%d mx:%d my:%d tr:%d}",
self->x, self->y,
self->absolute_transform->x, self->absolute_transform->y, self->absolute_transform->dx, self->absolute_transform->dy, self->absolute_transform->scale,
self->absolute_transform->width, self->absolute_transform->height, self->absolute_transform->mirror_x, self->absolute_transform->mirror_y, self->absolute_transform->transpose_xy
);
uint16_t linestride_px = displayio_area_width(area);
uint16_t line_dirty_offset_px = (overlap.y1 - area->y1) * linestride_px;
uint16_t column_dirty_offset_px = overlap.x1 - area->x1;
VECTORIO_SHAPE_DEBUG(", linestride:%3d line_offset:%3d col_offset:%3d depth:%2d ppb:%2d shape:%s",
linestride_px, line_dirty_offset_px, column_dirty_offset_px, colorspace->depth, pixels_per_byte, mp_obj_get_type_str(self->ishape.shape));
displayio_input_pixel_t input_pixel;
displayio_output_pixel_t output_pixel;
displayio_area_t shape_area;
self->ishape.get_area(self->ishape.shape, &shape_area);
uint16_t mask_start_px = line_dirty_offset_px;
for (input_pixel.y = overlap.y1; input_pixel.y < overlap.y2; ++input_pixel.y) {
mask_start_px += column_dirty_offset_px;
for (input_pixel.x = overlap.x1; input_pixel.x < overlap.x2; ++input_pixel.x) {
// Check the mask first to see if the pixel has already been set.
uint16_t pixel_index = mask_start_px + (input_pixel.x - overlap.x1);
uint32_t *mask_doubleword = &(mask[pixel_index / 32]);
uint8_t mask_bit = pixel_index % 32;
VECTORIO_SHAPE_PIXEL_DEBUG("\n%p pixel_index: %5u mask_bit: %2u mask: "U32_TO_BINARY_FMT, self, pixel_index, mask_bit, U32_TO_BINARY(*mask_doubleword));
if ((*mask_doubleword & (1u << mask_bit)) != 0) {
VECTORIO_SHAPE_PIXEL_DEBUG(" masked");
continue;
}
output_pixel.pixel = 0;
// Cast input screen coordinates to shape coordinates to pick the pixel to draw
int16_t pixel_to_get_x;
int16_t pixel_to_get_y;
screen_to_shape_coordinates(self, input_pixel.x, input_pixel.y, &pixel_to_get_x, &pixel_to_get_y);
VECTORIO_SHAPE_PIXEL_DEBUG(" get_pixel %p (%3d, %3d) -> ( %3d, %3d )", self->ishape.shape, input_pixel.x, input_pixel.y, pixel_to_get_x, pixel_to_get_y);
#ifdef VECTORIO_PERF
uint64_t pre_pixel = common_hal_time_monotonic_ns();
#endif
input_pixel.pixel = self->ishape.get_pixel(self->ishape.shape, pixel_to_get_x, pixel_to_get_y);
#ifdef VECTORIO_PERF
uint64_t post_pixel = common_hal_time_monotonic_ns();
pixel_time += post_pixel - pre_pixel;
#endif
VECTORIO_SHAPE_PIXEL_DEBUG(" -> %d", input_pixel.pixel);
// vectorio shapes use 0 to mean "area is not covered."
// We can skip all the rest of the work for this pixel if it's not currently covered by the shape.
if (input_pixel.pixel == 0) {
VECTORIO_SHAPE_PIXEL_DEBUG(" (encountered transparent pixel; input area is not fully covered)");
full_coverage = false;
} else {
// Pixel is not transparent. Let's pull the pixel value index down to 0-base for more error-resistant palettes.
input_pixel.pixel -= 1;
output_pixel.opaque = true;
if (self->pixel_shader == mp_const_none) {
output_pixel.pixel = input_pixel.pixel;
} else if (mp_obj_is_type(self->pixel_shader, &displayio_palette_type)) {
displayio_palette_get_color(self->pixel_shader, colorspace, &input_pixel, &output_pixel);
} else if (mp_obj_is_type(self->pixel_shader, &displayio_colorconverter_type)) {
displayio_colorconverter_convert(self->pixel_shader, colorspace, &input_pixel, &output_pixel);
}
// We double-check this to fast-path the case when a pixel is not covered by the shape & not call the color converter unnecessarily.
if (!output_pixel.opaque) {
VECTORIO_SHAPE_PIXEL_DEBUG(" (encountered transparent pixel from colorconverter; input area is not fully covered)");
full_coverage = false;
}
*mask_doubleword |= 1u << mask_bit;
if (colorspace->depth == 16) {
VECTORIO_SHAPE_PIXEL_DEBUG(" buffer = %04x 16", output_pixel.pixel);
*(((uint16_t *)buffer) + pixel_index) = output_pixel.pixel;
} else if (colorspace->depth == 32) {
VECTORIO_SHAPE_PIXEL_DEBUG(" buffer = %04x 32", output_pixel.pixel);
*(((uint32_t *)buffer) + pixel_index) = output_pixel.pixel;
} else if (colorspace->depth == 8) {
VECTORIO_SHAPE_PIXEL_DEBUG(" buffer = %02x 8", output_pixel.pixel);
*(((uint8_t *)buffer) + pixel_index) = output_pixel.pixel;
} else if (colorspace->depth < 8) {
// Reorder the offsets to pack multiple rows into a byte (meaning they share a column).
if (!colorspace->pixels_in_byte_share_row) {
uint16_t row = pixel_index / linestride_px;
uint16_t col = pixel_index % linestride_px;
pixel_index = col * pixels_per_byte + (row / pixels_per_byte) * pixels_per_byte * linestride_px + row % pixels_per_byte;
}
uint8_t shift = (pixel_index % pixels_per_byte) * colorspace->depth;
if (colorspace->reverse_pixels_in_byte) {
// Reverse the shift by subtracting it from the leftmost shift.
shift = (pixels_per_byte - 1) * colorspace->depth - shift;
}
VECTORIO_SHAPE_PIXEL_DEBUG(" buffer = %2d %d", output_pixel.pixel, colorspace->depth);
((uint8_t *)buffer)[pixel_index / pixels_per_byte] |= output_pixel.pixel << shift;
}
}
}
mask_start_px += linestride_px - column_dirty_offset_px;
}
#ifdef VECTORIO_PERF
uint64_t end = common_hal_time_monotonic_ns();
uint32_t pixels = (overlap.x2 - overlap.x1) * (overlap.y2 - overlap.y1);
VECTORIO_PERF("draw %16s -> shape:{%4dpx, %4.1fms,%9.1fpps fill} shape_pixels:{%6.1fus total, %4.1fus/px}\n",
mp_obj_get_type_str(self->ishape.shape),
(overlap.x2 - overlap.x1) * (overlap.y2 - overlap.y1),
(double)((end - start) / 1000000.0),
(double)(MAX(1, pixels * (1000000000.0 / (end - start)))),
(double)(pixel_time / 1000.0),
(double)(pixel_time / 1000.0 / pixels)
);
#endif
VECTORIO_SHAPE_DEBUG(" -> pixels:%4d\n", (overlap.x2 - overlap.x1) * (overlap.y2 - overlap.y1));
return full_coverage;
}
void vectorio_vector_shape_finish_refresh(vectorio_vector_shape_t *self) {
if (displayio_area_empty(&self->ephemeral_dirty_area) && !self->current_area_dirty) {
return;
}
VECTORIO_SHAPE_DEBUG("%p finish_refresh was:{(%3d,%3d), (%3d,%3d)}\n", self, self->ephemeral_dirty_area.x1, self->ephemeral_dirty_area.y1, self->ephemeral_dirty_area.x2, self->ephemeral_dirty_area.y2);
// Reset dirty area to nothing
self->ephemeral_dirty_area.x1 = self->ephemeral_dirty_area.x2; // Cheat to set area to empty
self->ephemeral_dirty_area.next = NULL;
self->current_area_dirty = false; // We don't clear current area so we can remember what to clean up if we move
self->current_area.next = NULL;
VECTORIO_SHAPE_DEBUG("%p finish_refresh now:{(%3d,%3d), (%3d,%3d)}\n", self, self->ephemeral_dirty_area.x1, self->ephemeral_dirty_area.y1, self->ephemeral_dirty_area.x2, self->ephemeral_dirty_area.y2);
if (mp_obj_is_type(self->pixel_shader, &displayio_palette_type)) {
displayio_palette_finish_refresh(self->pixel_shader);
} else if (mp_obj_is_type(self->pixel_shader, &displayio_colorconverter_type)) {
displayio_colorconverter_finish_refresh(self->pixel_shader);
}
}
// Assembles a singly linked list of dirty areas from all components on the display.
displayio_area_t *vectorio_vector_shape_get_refresh_areas(vectorio_vector_shape_t *self, displayio_area_t *tail) {
if (self->current_area_dirty
|| (mp_obj_is_type(self->pixel_shader, &displayio_palette_type) && displayio_palette_needs_refresh(self->pixel_shader))
|| (mp_obj_is_type(self->pixel_shader, &displayio_colorconverter_type) && displayio_colorconverter_needs_refresh(self->pixel_shader))
) {
if (!displayio_area_empty(&self->ephemeral_dirty_area)) {
// Both are dirty, check if we should combine the areas or draw separately
// Draws as few pixels as possible both when animations move short distances and large distances.
// The display core implementation currently doesn't combine areas to reduce redrawing of masked areas. If it does,
// this could be simplified to just return the 2 possibly overlapping areas.
displayio_area_t area_swap;
displayio_area_compute_overlap(&self->ephemeral_dirty_area, &self->current_area, &area_swap);
uint32_t overlap_size = displayio_area_size(&area_swap);
displayio_area_union(&self->ephemeral_dirty_area, &self->current_area, &area_swap); // Leave area_swap as the union area for later.
uint32_t union_size = displayio_area_size(&area_swap);
uint32_t current_size = displayio_area_size(&self->current_area);
uint32_t dirty_size = displayio_area_size(&self->ephemeral_dirty_area);
VECTORIO_SHAPE_DEBUG("%p get_refresh_area: dirty{(%3d,%3d), (%3d,%3d)} + current{(%3d,%3d), (%3d,%3d)} = union{(%3d,%3d), (%3d,%3d)}: union%d - dirty%d - curr%d + overlap%d = excluded%d : ", self,
self->ephemeral_dirty_area.x1, self->ephemeral_dirty_area.y1, self->ephemeral_dirty_area.x2, self->ephemeral_dirty_area.y2,
self->current_area.x1, self->current_area.y1, self->current_area.x2, self->current_area.y2,
area_swap.x1, area_swap.y1, area_swap.x2, area_swap.y2,
union_size, dirty_size, current_size, overlap_size, (int32_t)union_size - dirty_size - current_size + overlap_size
);
if ((int32_t)union_size - dirty_size - current_size + overlap_size <= MIN(dirty_size, current_size)) {
// The excluded / non-overlapping area from the disjoint dirty and current areas is smaller
// than the smallest area we need to draw. Redrawing the overlapping area would cost more
// than just drawing the union disjoint area once.
VECTORIO_SHAPE_DEBUG("combining to take disjoint area\n");
displayio_area_copy(&area_swap, &self->ephemeral_dirty_area);
} else {
// The excluded area between the 2 dirty areas is larger than the smallest dirty area. It would be
// more costly to combine these areas than possibly redraw some overlap.
VECTORIO_SHAPE_DEBUG("excluded area too large, drawing separate area\n");
self->current_area.next = tail;
tail = &self->current_area;
}
self->ephemeral_dirty_area.next = tail;
tail = &self->ephemeral_dirty_area;
} else {
self->current_area.next = tail;
tail = &self->current_area;
VECTORIO_SHAPE_DEBUG("%p get_refresh_area: redrawing current: {(%3d,%3d), (%3d,%3d)}\n", self, self->current_area.x1, self->current_area.y1, self->current_area.x2, self->current_area.y2);
}
} else if (!displayio_area_empty(&self->ephemeral_dirty_area)) {
self->ephemeral_dirty_area.next = tail;
tail = &self->ephemeral_dirty_area;
VECTORIO_SHAPE_DEBUG("%p get_refresh_area redrawing dirty: {(%3d,%3d), (%3d,%3d)}\n", self, self->ephemeral_dirty_area.x1, self->ephemeral_dirty_area.y1, self->ephemeral_dirty_area.x2, self->ephemeral_dirty_area.y2);
}
return tail;
}
void vectorio_vector_shape_update_transform(vectorio_vector_shape_t *self, displayio_buffer_transform_t *group_transform) {
self->absolute_transform = group_transform == NULL ? &null_transform : group_transform;
common_hal_vectorio_vector_shape_set_dirty(self);
}