circuitpython/ports/stm32/stm32_it.c
Damien George 88c26a48b4 stm32/pyb_i2c: Put pyb.I2C under MICROPY_PY_PYB_LEGACY setting.
When disabled, the pyb.I2C class saves around 8k of code space and 172
bytes of RAM.  The same functionality is now available in machine.I2C
(for F4 and F7 MCUs).

It is still enabled by default.
2018-05-14 13:53:46 +10:00

838 lines
22 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* Original template from ST Cube library. See below for header.
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/**
******************************************************************************
* @file Templates/Src/stm32f4xx_it.c
* @author MCD Application Team
* @version V1.0.1
* @date 26-February-2014
* @brief Main Interrupt Service Routines.
* This file provides template for all exceptions handler and
* peripherals interrupt service routine.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
#include <stdio.h>
#include "py/obj.h"
#include "py/mphal.h"
#include "stm32_it.h"
#include "pendsv.h"
#include "irq.h"
#include "pybthread.h"
#include "gccollect.h"
#include "extint.h"
#include "timer.h"
#include "uart.h"
#include "storage.h"
#include "can.h"
#include "dma.h"
#include "i2c.h"
#include "usb.h"
extern void __fatal_error(const char*);
extern PCD_HandleTypeDef pcd_fs_handle;
extern PCD_HandleTypeDef pcd_hs_handle;
/******************************************************************************/
/* Cortex-M4 Processor Exceptions Handlers */
/******************************************************************************/
// Set the following to 1 to get some more information on the Hard Fault
// More information about decoding the fault registers can be found here:
// http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0646a/Cihdjcfc.html
STATIC char *fmt_hex(uint32_t val, char *buf) {
const char *hexDig = "0123456789abcdef";
buf[0] = hexDig[(val >> 28) & 0x0f];
buf[1] = hexDig[(val >> 24) & 0x0f];
buf[2] = hexDig[(val >> 20) & 0x0f];
buf[3] = hexDig[(val >> 16) & 0x0f];
buf[4] = hexDig[(val >> 12) & 0x0f];
buf[5] = hexDig[(val >> 8) & 0x0f];
buf[6] = hexDig[(val >> 4) & 0x0f];
buf[7] = hexDig[(val >> 0) & 0x0f];
buf[8] = '\0';
return buf;
}
STATIC void print_reg(const char *label, uint32_t val) {
char hexStr[9];
mp_hal_stdout_tx_str(label);
mp_hal_stdout_tx_str(fmt_hex(val, hexStr));
mp_hal_stdout_tx_str("\r\n");
}
STATIC void print_hex_hex(const char *label, uint32_t val1, uint32_t val2) {
char hex_str[9];
mp_hal_stdout_tx_str(label);
mp_hal_stdout_tx_str(fmt_hex(val1, hex_str));
mp_hal_stdout_tx_str(" ");
mp_hal_stdout_tx_str(fmt_hex(val2, hex_str));
mp_hal_stdout_tx_str("\r\n");
}
// The ARMv7M Architecture manual (section B.1.5.6) says that upon entry
// to an exception, that the registers will be in the following order on the
// // stack: R0, R1, R2, R3, R12, LR, PC, XPSR
typedef struct {
uint32_t r0, r1, r2, r3, r12, lr, pc, xpsr;
} ExceptionRegisters_t;
int pyb_hard_fault_debug = 0;
void HardFault_C_Handler(ExceptionRegisters_t *regs) {
if (!pyb_hard_fault_debug) {
NVIC_SystemReset();
}
#if MICROPY_HW_ENABLE_USB
// We need to disable the USB so it doesn't try to write data out on
// the VCP and then block indefinitely waiting for the buffer to drain.
pyb_usb_flags = 0;
#endif
mp_hal_stdout_tx_str("HardFault\r\n");
print_reg("R0 ", regs->r0);
print_reg("R1 ", regs->r1);
print_reg("R2 ", regs->r2);
print_reg("R3 ", regs->r3);
print_reg("R12 ", regs->r12);
print_reg("SP ", (uint32_t)regs);
print_reg("LR ", regs->lr);
print_reg("PC ", regs->pc);
print_reg("XPSR ", regs->xpsr);
uint32_t cfsr = SCB->CFSR;
print_reg("HFSR ", SCB->HFSR);
print_reg("CFSR ", cfsr);
if (cfsr & 0x80) {
print_reg("MMFAR ", SCB->MMFAR);
}
if (cfsr & 0x8000) {
print_reg("BFAR ", SCB->BFAR);
}
if ((void*)&_ram_start <= (void*)regs && (void*)regs < (void*)&_ram_end) {
mp_hal_stdout_tx_str("Stack:\r\n");
uint32_t *stack_top = &_estack;
if ((void*)regs < (void*)&_heap_end) {
// stack not in static stack area so limit the amount we print
stack_top = (uint32_t*)regs + 32;
}
for (uint32_t *sp = (uint32_t*)regs; sp < stack_top; ++sp) {
print_hex_hex(" ", (uint32_t)sp, *sp);
}
}
/* Go to infinite loop when Hard Fault exception occurs */
while (1) {
__fatal_error("HardFault");
}
}
// Naked functions have no compiler generated gunk, so are the best thing to
// use for asm functions.
__attribute__((naked))
void HardFault_Handler(void) {
// From the ARMv7M Architecture Reference Manual, section B.1.5.6
// on entry to the Exception, the LR register contains, amongst other
// things, the value of CONTROL.SPSEL. This can be found in bit 3.
//
// If CONTROL.SPSEL is 0, then the exception was stacked up using the
// main stack pointer (aka MSP). If CONTROL.SPSEL is 1, then the exception
// was stacked up using the process stack pointer (aka PSP).
__asm volatile(
" tst lr, #4 \n" // Test Bit 3 to see which stack pointer we should use.
" ite eq \n" // Tell the assembler that the nest 2 instructions are if-then-else
" mrseq r0, msp \n" // Make R0 point to main stack pointer
" mrsne r0, psp \n" // Make R0 point to process stack pointer
" b HardFault_C_Handler \n" // Off to C land
);
}
/**
* @brief This function handles NMI exception.
* @param None
* @retval None
*/
void NMI_Handler(void) {
}
/**
* @brief This function handles Memory Manage exception.
* @param None
* @retval None
*/
void MemManage_Handler(void) {
/* Go to infinite loop when Memory Manage exception occurs */
while (1) {
__fatal_error("MemManage");
}
}
/**
* @brief This function handles Bus Fault exception.
* @param None
* @retval None
*/
void BusFault_Handler(void) {
/* Go to infinite loop when Bus Fault exception occurs */
while (1) {
__fatal_error("BusFault");
}
}
/**
* @brief This function handles Usage Fault exception.
* @param None
* @retval None
*/
void UsageFault_Handler(void) {
/* Go to infinite loop when Usage Fault exception occurs */
while (1) {
__fatal_error("UsageFault");
}
}
/**
* @brief This function handles SVCall exception.
* @param None
* @retval None
*/
void SVC_Handler(void) {
}
/**
* @brief This function handles Debug Monitor exception.
* @param None
* @retval None
*/
void DebugMon_Handler(void) {
}
/**
* @brief This function handles PendSVC exception.
* @param None
* @retval None
*/
void PendSV_Handler(void) {
pendsv_isr_handler();
}
/**
* @brief This function handles SysTick Handler.
* @param None
* @retval None
*/
void SysTick_Handler(void) {
// Instead of calling HAL_IncTick we do the increment here of the counter.
// This is purely for efficiency, since SysTick is called 1000 times per
// second at the highest interrupt priority.
// Note: we don't need uwTick to be declared volatile here because this is
// the only place where it can be modified, and the code is more efficient
// without the volatile specifier.
extern uint32_t uwTick;
uwTick += 1;
// Read the systick control regster. This has the side effect of clearing
// the COUNTFLAG bit, which makes the logic in mp_hal_ticks_us
// work properly.
SysTick->CTRL;
// Right now we have the storage and DMA controllers to process during
// this interrupt and we use custom dispatch handlers. If this needs to
// be generalised in the future then a dispatch table can be used as
// follows: ((void(*)(void))(systick_dispatch[uwTick & 0xf]))();
if (STORAGE_IDLE_TICK(uwTick)) {
NVIC->STIR = FLASH_IRQn;
}
if (DMA_IDLE_ENABLED() && DMA_IDLE_TICK(uwTick)) {
dma_idle_handler(uwTick);
}
#if MICROPY_PY_THREAD
if (pyb_thread_enabled) {
if (pyb_thread_cur->timeslice == 0) {
if (pyb_thread_cur->run_next != pyb_thread_cur) {
SCB->ICSR = SCB_ICSR_PENDSVSET_Msk;
}
} else {
--pyb_thread_cur->timeslice;
}
}
#endif
}
/******************************************************************************/
/* STM32F4xx Peripherals Interrupt Handlers */
/* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */
/* available peripheral interrupt handler's name please refer to the startup */
/* file (startup_stm32f4xx.s). */
/******************************************************************************/
/**
* @brief This function handles USB-On-The-Go FS global interrupt request.
* @param None
* @retval None
*/
#if MICROPY_HW_USB_FS
void OTG_FS_IRQHandler(void) {
IRQ_ENTER(OTG_FS_IRQn);
HAL_PCD_IRQHandler(&pcd_fs_handle);
IRQ_EXIT(OTG_FS_IRQn);
}
#endif
#if MICROPY_HW_USB_HS
void OTG_HS_IRQHandler(void) {
IRQ_ENTER(OTG_HS_IRQn);
HAL_PCD_IRQHandler(&pcd_hs_handle);
IRQ_EXIT(OTG_HS_IRQn);
}
#endif
#if MICROPY_HW_USB_FS || MICROPY_HW_USB_HS
/**
* @brief This function handles USB OTG Common FS/HS Wakeup functions.
* @param *pcd_handle for FS or HS
* @retval None
*/
STATIC void OTG_CMD_WKUP_Handler(PCD_HandleTypeDef *pcd_handle) {
if (pcd_handle->Init.low_power_enable) {
/* Reset SLEEPDEEP bit of Cortex System Control Register */
SCB->SCR &= (uint32_t)~((uint32_t)(SCB_SCR_SLEEPDEEP_Msk | SCB_SCR_SLEEPONEXIT_Msk));
/* Configures system clock after wake-up from STOP: enable HSE, PLL and select
PLL as system clock source (HSE and PLL are disabled in STOP mode) */
__HAL_RCC_HSE_CONFIG(MICROPY_HW_CLK_HSE_STATE);
/* Wait till HSE is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
{}
/* Enable the main PLL. */
__HAL_RCC_PLL_ENABLE();
/* Wait till PLL is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
{}
/* Select PLL as SYSCLK */
MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_PLLCLK);
#if defined(STM32H7)
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL1)
{}
#else
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL)
{}
#endif
/* ungate PHY clock */
__HAL_PCD_UNGATE_PHYCLOCK(pcd_handle);
}
}
#endif
#if MICROPY_HW_USB_FS
/**
* @brief This function handles USB OTG FS Wakeup IRQ Handler.
* @param None
* @retval None
*/
void OTG_FS_WKUP_IRQHandler(void) {
IRQ_ENTER(OTG_FS_WKUP_IRQn);
OTG_CMD_WKUP_Handler(&pcd_fs_handle);
/* Clear EXTI pending Bit*/
__HAL_USB_FS_EXTI_CLEAR_FLAG();
IRQ_EXIT(OTG_FS_WKUP_IRQn);
}
#endif
#if MICROPY_HW_USB_HS
/**
* @brief This function handles USB OTG HS Wakeup IRQ Handler.
* @param None
* @retval None
*/
void OTG_HS_WKUP_IRQHandler(void) {
IRQ_ENTER(OTG_HS_WKUP_IRQn);
OTG_CMD_WKUP_Handler(&pcd_hs_handle);
/* Clear EXTI pending Bit*/
__HAL_USB_HS_EXTI_CLEAR_FLAG();
IRQ_EXIT(OTG_HS_WKUP_IRQn);
}
#endif
/**
* @brief This function handles PPP interrupt request.
* @param None
* @retval None
*/
/*void PPP_IRQHandler(void)
{
}*/
// Handle a flash (erase/program) interrupt.
void FLASH_IRQHandler(void) {
IRQ_ENTER(FLASH_IRQn);
// This calls the real flash IRQ handler, if needed
/*
uint32_t flash_cr = FLASH->CR;
if ((flash_cr & FLASH_IT_EOP) || (flash_cr & FLASH_IT_ERR)) {
HAL_FLASH_IRQHandler();
}
*/
// This call the storage IRQ handler, to check if the flash cache needs flushing
storage_irq_handler();
IRQ_EXIT(FLASH_IRQn);
}
/**
* @brief These functions handle the EXTI interrupt requests.
* @param None
* @retval None
*/
void EXTI0_IRQHandler(void) {
IRQ_ENTER(EXTI0_IRQn);
Handle_EXTI_Irq(0);
IRQ_EXIT(EXTI0_IRQn);
}
void EXTI1_IRQHandler(void) {
IRQ_ENTER(EXTI1_IRQn);
Handle_EXTI_Irq(1);
IRQ_EXIT(EXTI1_IRQn);
}
void EXTI2_IRQHandler(void) {
IRQ_ENTER(EXTI2_IRQn);
Handle_EXTI_Irq(2);
IRQ_EXIT(EXTI2_IRQn);
}
void EXTI3_IRQHandler(void) {
IRQ_ENTER(EXTI3_IRQn);
Handle_EXTI_Irq(3);
IRQ_EXIT(EXTI3_IRQn);
}
void EXTI4_IRQHandler(void) {
IRQ_ENTER(EXTI4_IRQn);
Handle_EXTI_Irq(4);
IRQ_EXIT(EXTI4_IRQn);
}
void EXTI9_5_IRQHandler(void) {
IRQ_ENTER(EXTI9_5_IRQn);
Handle_EXTI_Irq(5);
Handle_EXTI_Irq(6);
Handle_EXTI_Irq(7);
Handle_EXTI_Irq(8);
Handle_EXTI_Irq(9);
IRQ_EXIT(EXTI9_5_IRQn);
}
void EXTI15_10_IRQHandler(void) {
IRQ_ENTER(EXTI15_10_IRQn);
Handle_EXTI_Irq(10);
Handle_EXTI_Irq(11);
Handle_EXTI_Irq(12);
Handle_EXTI_Irq(13);
Handle_EXTI_Irq(14);
Handle_EXTI_Irq(15);
IRQ_EXIT(EXTI15_10_IRQn);
}
void PVD_IRQHandler(void) {
IRQ_ENTER(PVD_IRQn);
Handle_EXTI_Irq(EXTI_PVD_OUTPUT);
IRQ_EXIT(PVD_IRQn);
}
#if defined(STM32L4)
void PVD_PVM_IRQHandler(void) {
IRQ_ENTER(PVD_PVM_IRQn);
Handle_EXTI_Irq(EXTI_PVD_OUTPUT);
IRQ_EXIT(PVD_PVM_IRQn);
}
#endif
void RTC_Alarm_IRQHandler(void) {
IRQ_ENTER(RTC_Alarm_IRQn);
Handle_EXTI_Irq(EXTI_RTC_ALARM);
IRQ_EXIT(RTC_Alarm_IRQn);
}
#if defined(ETH) // The 407 has ETH, the 405 doesn't
void ETH_WKUP_IRQHandler(void) {
IRQ_ENTER(ETH_WKUP_IRQn);
Handle_EXTI_Irq(EXTI_ETH_WAKEUP);
IRQ_EXIT(ETH_WKUP_IRQn);
}
#endif
void TAMP_STAMP_IRQHandler(void) {
IRQ_ENTER(TAMP_STAMP_IRQn);
Handle_EXTI_Irq(EXTI_RTC_TIMESTAMP);
IRQ_EXIT(TAMP_STAMP_IRQn);
}
void RTC_WKUP_IRQHandler(void) {
IRQ_ENTER(RTC_WKUP_IRQn);
RTC->ISR &= ~(1 << 10); // clear wakeup interrupt flag
Handle_EXTI_Irq(EXTI_RTC_WAKEUP); // clear EXTI flag and execute optional callback
IRQ_EXIT(RTC_WKUP_IRQn);
}
void TIM1_BRK_TIM9_IRQHandler(void) {
IRQ_ENTER(TIM1_BRK_TIM9_IRQn);
timer_irq_handler(9);
IRQ_EXIT(TIM1_BRK_TIM9_IRQn);
}
#if defined(STM32L4)
void TIM1_BRK_TIM15_IRQHandler(void) {
IRQ_ENTER(TIM1_BRK_TIM15_IRQn);
timer_irq_handler(15);
IRQ_EXIT(TIM1_BRK_TIM15_IRQn);
}
#endif
void TIM1_UP_TIM10_IRQHandler(void) {
IRQ_ENTER(TIM1_UP_TIM10_IRQn);
timer_irq_handler(1);
timer_irq_handler(10);
IRQ_EXIT(TIM1_UP_TIM10_IRQn);
}
#if defined(STM32L4)
void TIM1_UP_TIM16_IRQHandler(void) {
IRQ_ENTER(TIM1_UP_TIM16_IRQn);
timer_irq_handler(1);
timer_irq_handler(16);
IRQ_EXIT(TIM1_UP_TIM16_IRQn);
}
#endif
void TIM1_TRG_COM_TIM11_IRQHandler(void) {
IRQ_ENTER(TIM1_TRG_COM_TIM11_IRQn);
timer_irq_handler(11);
IRQ_EXIT(TIM1_TRG_COM_TIM11_IRQn);
}
#if defined(STM32L4)
void TIM1_TRG_COM_TIM17_IRQHandler(void) {
IRQ_ENTER(TIM1_TRG_COM_TIM17_IRQn);
timer_irq_handler(17);
IRQ_EXIT(TIM1_TRG_COM_TIM17_IRQn);
}
#endif
void TIM1_CC_IRQHandler(void) {
IRQ_ENTER(TIM1_CC_IRQn);
timer_irq_handler(1);
IRQ_EXIT(TIM1_CC_IRQn);
}
void TIM2_IRQHandler(void) {
IRQ_ENTER(TIM2_IRQn);
timer_irq_handler(2);
IRQ_EXIT(TIM2_IRQn);
}
void TIM3_IRQHandler(void) {
IRQ_ENTER(TIM3_IRQn);
timer_irq_handler(3);
IRQ_EXIT(TIM3_IRQn);
}
void TIM4_IRQHandler(void) {
IRQ_ENTER(TIM4_IRQn);
timer_irq_handler(4);
IRQ_EXIT(TIM4_IRQn);
}
void TIM5_IRQHandler(void) {
IRQ_ENTER(TIM5_IRQn);
timer_irq_handler(5);
HAL_TIM_IRQHandler(&TIM5_Handle);
IRQ_EXIT(TIM5_IRQn);
}
#if defined(TIM6) // STM32F401 doesn't have TIM6
void TIM6_DAC_IRQHandler(void) {
IRQ_ENTER(TIM6_DAC_IRQn);
timer_irq_handler(6);
IRQ_EXIT(TIM6_DAC_IRQn);
}
#endif
#if defined(TIM7) // STM32F401 doesn't have TIM7
void TIM7_IRQHandler(void) {
IRQ_ENTER(TIM7_IRQn);
timer_irq_handler(7);
IRQ_EXIT(TIM7_IRQn);
}
#endif
#if defined(TIM8) // STM32F401 doesn't have TIM8
void TIM8_BRK_TIM12_IRQHandler(void) {
IRQ_ENTER(TIM8_BRK_TIM12_IRQn);
timer_irq_handler(12);
IRQ_EXIT(TIM8_BRK_TIM12_IRQn);
}
void TIM8_UP_TIM13_IRQHandler(void) {
IRQ_ENTER(TIM8_UP_TIM13_IRQn);
timer_irq_handler(8);
timer_irq_handler(13);
IRQ_EXIT(TIM8_UP_TIM13_IRQn);
}
#if defined(STM32L4)
void TIM8_UP_IRQHandler(void) {
IRQ_ENTER(TIM8_UP_IRQn);
timer_irq_handler(8);
IRQ_EXIT(TIM8_UP_IRQn);
}
#endif
void TIM8_CC_IRQHandler(void) {
IRQ_ENTER(TIM8_CC_IRQn);
timer_irq_handler(8);
IRQ_EXIT(TIM8_CC_IRQn);
}
void TIM8_TRG_COM_TIM14_IRQHandler(void) {
IRQ_ENTER(TIM8_TRG_COM_TIM14_IRQn);
timer_irq_handler(14);
IRQ_EXIT(TIM8_TRG_COM_TIM14_IRQn);
}
#endif
// UART/USART IRQ handlers
void USART1_IRQHandler(void) {
IRQ_ENTER(USART1_IRQn);
uart_irq_handler(1);
IRQ_EXIT(USART1_IRQn);
}
void USART2_IRQHandler(void) {
IRQ_ENTER(USART2_IRQn);
uart_irq_handler(2);
IRQ_EXIT(USART2_IRQn);
}
void USART3_IRQHandler(void) {
IRQ_ENTER(USART3_IRQn);
uart_irq_handler(3);
IRQ_EXIT(USART3_IRQn);
}
void UART4_IRQHandler(void) {
IRQ_ENTER(UART4_IRQn);
uart_irq_handler(4);
IRQ_EXIT(UART4_IRQn);
}
void UART5_IRQHandler(void) {
IRQ_ENTER(UART5_IRQn);
uart_irq_handler(5);
IRQ_EXIT(UART5_IRQn);
}
void USART6_IRQHandler(void) {
IRQ_ENTER(USART6_IRQn);
uart_irq_handler(6);
IRQ_EXIT(USART6_IRQn);
}
#if defined(MICROPY_HW_UART7_TX)
void UART7_IRQHandler(void) {
IRQ_ENTER(UART7_IRQn);
uart_irq_handler(7);
IRQ_EXIT(UART7_IRQn);
}
#endif
#if defined(MICROPY_HW_UART8_TX)
void UART8_IRQHandler(void) {
IRQ_ENTER(UART8_IRQn);
uart_irq_handler(8);
IRQ_EXIT(UART8_IRQn);
}
#endif
#if defined(MICROPY_HW_CAN1_TX)
void CAN1_RX0_IRQHandler(void) {
IRQ_ENTER(CAN1_RX0_IRQn);
can_rx_irq_handler(PYB_CAN_1, CAN_FIFO0);
IRQ_EXIT(CAN1_RX0_IRQn);
}
void CAN1_RX1_IRQHandler(void) {
IRQ_ENTER(CAN1_RX1_IRQn);
can_rx_irq_handler(PYB_CAN_1, CAN_FIFO1);
IRQ_EXIT(CAN1_RX1_IRQn);
}
void CAN1_SCE_IRQHandler(void) {
IRQ_ENTER(CAN1_SCE_IRQn);
can_sce_irq_handler(PYB_CAN_1);
IRQ_EXIT(CAN1_SCE_IRQn);
}
#endif
#if defined(MICROPY_HW_CAN2_TX)
void CAN2_RX0_IRQHandler(void) {
IRQ_ENTER(CAN2_RX0_IRQn);
can_rx_irq_handler(PYB_CAN_2, CAN_FIFO0);
IRQ_EXIT(CAN2_RX0_IRQn);
}
void CAN2_RX1_IRQHandler(void) {
IRQ_ENTER(CAN2_RX1_IRQn);
can_rx_irq_handler(PYB_CAN_2, CAN_FIFO1);
IRQ_EXIT(CAN2_RX1_IRQn);
}
void CAN2_SCE_IRQHandler(void) {
IRQ_ENTER(CAN2_SCE_IRQn);
can_sce_irq_handler(PYB_CAN_2);
IRQ_EXIT(CAN2_SCE_IRQn);
}
#endif
#if MICROPY_PY_PYB_LEGACY
#if defined(MICROPY_HW_I2C1_SCL)
void I2C1_EV_IRQHandler(void) {
IRQ_ENTER(I2C1_EV_IRQn);
i2c_ev_irq_handler(1);
IRQ_EXIT(I2C1_EV_IRQn);
}
void I2C1_ER_IRQHandler(void) {
IRQ_ENTER(I2C1_ER_IRQn);
i2c_er_irq_handler(1);
IRQ_EXIT(I2C1_ER_IRQn);
}
#endif // defined(MICROPY_HW_I2C1_SCL)
#if defined(MICROPY_HW_I2C2_SCL)
void I2C2_EV_IRQHandler(void) {
IRQ_ENTER(I2C2_EV_IRQn);
i2c_ev_irq_handler(2);
IRQ_EXIT(I2C2_EV_IRQn);
}
void I2C2_ER_IRQHandler(void) {
IRQ_ENTER(I2C2_ER_IRQn);
i2c_er_irq_handler(2);
IRQ_EXIT(I2C2_ER_IRQn);
}
#endif // defined(MICROPY_HW_I2C2_SCL)
#if defined(MICROPY_HW_I2C3_SCL)
void I2C3_EV_IRQHandler(void) {
IRQ_ENTER(I2C3_EV_IRQn);
i2c_ev_irq_handler(3);
IRQ_EXIT(I2C3_EV_IRQn);
}
void I2C3_ER_IRQHandler(void) {
IRQ_ENTER(I2C3_ER_IRQn);
i2c_er_irq_handler(3);
IRQ_EXIT(I2C3_ER_IRQn);
}
#endif // defined(MICROPY_HW_I2C3_SCL)
#if defined(MICROPY_HW_I2C4_SCL)
void I2C4_EV_IRQHandler(void) {
IRQ_ENTER(I2C4_EV_IRQn);
i2c_ev_irq_handler(4);
IRQ_EXIT(I2C4_EV_IRQn);
}
void I2C4_ER_IRQHandler(void) {
IRQ_ENTER(I2C4_ER_IRQn);
i2c_er_irq_handler(4);
IRQ_EXIT(I2C4_ER_IRQn);
}
#endif // defined(MICROPY_HW_I2C4_SCL)
#endif // MICROPY_PY_PYB_LEGACY